메뉴 건너뛰기




Volumn , Issue , 2014, Pages 979-986

Hash-SVM: Scalable kernel machines for large-scale visual classification

Author keywords

Kernel SVM; Locality sensitive hashing; random subspace

Indexed keywords

COST REDUCTION; PATTERN RECOGNITION;

EID: 84911369278     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.130     Document Type: Conference Paper
Times cited : (47)

References (32)
  • 1
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117-122, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 3
    • 65449167843 scopus 로고    scopus 로고
    • Parallelizing support vector machines on distributed computers
    • E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing support vector machines on distributed computers. In NIPS, 2007.
    • (2007) NIPS
    • Chang, E.Y.1    Zhu, K.2    Wang, H.3    Bai, H.4    Li, J.5    Qiu, Z.6    Cui, H.7
  • 4
    • 80052677867 scopus 로고    scopus 로고
    • Selective block minimization for faster convergence of limited memory large-scale linear models
    • K.-W. Chang and D. Roth. Selective block minimization for faster convergence of limited memory large-scale linear models. In SIGKDD, 2011.
    • (2011) SIGKDD
    • Chang, K.-W.1    Roth, D.2
  • 5
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002.
    • (2002) STOC
    • Charikar, M.1
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of johnson and lindenstrauss
    • S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Struct. Algorithms, 22(1):60-65, 2003.
    • (2003) Random Struct. Algorithms , vol.22 , Issue.1 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 8
    • 33244462526 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In STOC, 2004.
    • (2004) STOC
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.4
  • 9
    • 77956514224 scopus 로고    scopus 로고
    • Approximating a gram matrix for improved kernel-based learning
    • P. Drineas and M. W. Mahoney. Approximating a gram matrix for improved kernel-based learning. In COLT, 2005.
    • (2005) COLT
    • Drineas, P.1    Mahoney, M.W.2
  • 10
    • 85162396210 scopus 로고    scopus 로고
    • Beating sgd: Learning svms in sublinear time
    • E. Hazan, T. Koren, and N. Srebro. Beating sgd: Learning svms in sublinear time. In NIPS, 2011.
    • (2011) NIPS
    • Hazan, E.1    Koren, T.2    Srebro, N.3
  • 11
    • 77956220112 scopus 로고    scopus 로고
    • Scalable similarity search with optimized kernel hashing
    • J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel hashing. In SIGKDD, 2010.
    • (2010) SIGKDD
    • He, J.1    Liu, W.2    Chang, S.-F.3
  • 13
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In STOC, 1998.
    • (1998) STOC
    • Indyk, P.1    Motwani, R.2
  • 14
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In SIGKDD, 2006.
    • (2006) SIGKDD
    • Joachims, T.1
  • 16
    • 84860672647 scopus 로고    scopus 로고
    • Sampling methods for the nyström method
    • 98888
    • S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the nyström method. J. Mach. Learn. Res., 98888:981-1006, 2012.
    • (2012) J. Mach. Learn. Res. , pp. 981-1006
    • Kumar, S.1    Mohri, M.2    Talwalkar, A.3
  • 17
    • 84867839341 scopus 로고    scopus 로고
    • Chebyshev approximations to the histogram chi-square kernel
    • F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev approximations to the histogram chi-square kernel. In CVPR, 2012.
    • (2012) CVPR
    • Li, F.1    Lebanon, G.2    Sminchisescu, C.3
  • 19
    • 77955986970 scopus 로고    scopus 로고
    • Weakly-supervised hashing in kernel space
    • Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel space. In CVPR, 2010.
    • (2010) CVPR
    • Mu, Y.1    Shen, J.2    Yan, S.3
  • 20
    • 84911427136 scopus 로고    scopus 로고
    • Accelerated large scale optimization by concomitant hashing
    • Y. Mu, J. Wright, and S.-F. Chang. Accelerated large scale optimization by concomitant hashing. In ECCV, 2012.
    • (2012) ECCV
    • Mu, Y.1    Wright, J.2    Chang, S.-F.3
  • 21
    • 84898983292 scopus 로고    scopus 로고
    • Using analytic qp and sparseness to speed training of support vector machines
    • J. C. Platt. Using analytic qp and sparseness to speed training of support vector machines. In NIPS, 1999.
    • (1999) NIPS
    • Platt, J.C.1
  • 22
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 24
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, 2007.
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 26
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast svm training on very large data sets
    • I. Tsang, J. Kwok, and P.-M. Cheung. Core vector machines: Fast svm training on very large data sets. J. Mach. Learn. Res., 6:363-392, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.1    Kwok, J.2    Cheung, P.-M.3
  • 28
    • 80052651135 scopus 로고    scopus 로고
    • Trading repre-sentability for scalability: Adaptive multi-hyperplane machine for nonlinear classification
    • Z. Wang, N. Djuric, K. Crammer, and S. Vucetic. Trading repre-sentability for scalability: adaptive multi-hyperplane machine for nonlinear classification. In SIGKDD, 2011.
    • (2011) SIGKDD
    • Wang, Z.1    Djuric, N.2    Crammer, K.3    Vucetic, S.4
  • 29
    • 84899010839 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • C. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In NIPS, 2001.
    • (2001) NIPS
    • Williams, C.1    Seeger, M.2
  • 30
    • 33745784205 scopus 로고    scopus 로고
    • Parallel software for training large scale support vector machines on multiprocessor systems
    • L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:1467-1492, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1467-1492
    • Zanni, L.1    Serafini, T.2    Zanghirati, G.3
  • 32
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, 2004.
    • (2004) ICML
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.