-
1
-
-
37549058056
-
Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
-
A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117-122, 2008.
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 117-122
-
-
Andoni, A.1
Indyk, P.2
-
3
-
-
65449167843
-
Parallelizing support vector machines on distributed computers
-
E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing support vector machines on distributed computers. In NIPS, 2007.
-
(2007)
NIPS
-
-
Chang, E.Y.1
Zhu, K.2
Wang, H.3
Bai, H.4
Li, J.5
Qiu, Z.6
Cui, H.7
-
4
-
-
80052677867
-
Selective block minimization for faster convergence of limited memory large-scale linear models
-
K.-W. Chang and D. Roth. Selective block minimization for faster convergence of limited memory large-scale linear models. In SIGKDD, 2011.
-
(2011)
SIGKDD
-
-
Chang, K.-W.1
Roth, D.2
-
5
-
-
0036040277
-
Similarity estimation techniques from rounding algorithms
-
M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002.
-
(2002)
STOC
-
-
Charikar, M.1
-
6
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273-297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
0037236821
-
An elementary proof of a theorem of johnson and lindenstrauss
-
S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Struct. Algorithms, 22(1):60-65, 2003.
-
(2003)
Random Struct. Algorithms
, vol.22
, Issue.1
, pp. 60-65
-
-
Dasgupta, S.1
Gupta, A.2
-
8
-
-
33244462526
-
Locality-sensitive hashing scheme based on p-stable distributions
-
M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In STOC, 2004.
-
(2004)
STOC
-
-
Datar, M.1
Immorlica, N.2
Indyk, P.3
Mirrokni, V.4
-
9
-
-
77956514224
-
Approximating a gram matrix for improved kernel-based learning
-
P. Drineas and M. W. Mahoney. Approximating a gram matrix for improved kernel-based learning. In COLT, 2005.
-
(2005)
COLT
-
-
Drineas, P.1
Mahoney, M.W.2
-
10
-
-
85162396210
-
Beating sgd: Learning svms in sublinear time
-
E. Hazan, T. Koren, and N. Srebro. Beating sgd: Learning svms in sublinear time. In NIPS, 2011.
-
(2011)
NIPS
-
-
Hazan, E.1
Koren, T.2
Srebro, N.3
-
11
-
-
77956220112
-
Scalable similarity search with optimized kernel hashing
-
J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel hashing. In SIGKDD, 2010.
-
(2010)
SIGKDD
-
-
He, J.1
Liu, W.2
Chang, S.-F.3
-
12
-
-
56449086680
-
A dual coordinate descent method for large-scale linear svm
-
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundarara-jan. A dual coordinate descent method for large-scale linear svm. In ICML, 2008.
-
(2008)
ICML
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundarara-Jan, S.5
-
13
-
-
0031644241
-
Approximate nearest neighbors: Towards removing the curse of dimensionality
-
P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In STOC, 1998.
-
(1998)
STOC
-
-
Indyk, P.1
Motwani, R.2
-
14
-
-
33749563073
-
Training linear svms in linear time
-
T. Joachims. Training linear svms in linear time. In SIGKDD, 2006.
-
(2006)
SIGKDD
-
-
Joachims, T.1
-
17
-
-
84867839341
-
Chebyshev approximations to the histogram chi-square kernel
-
F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev approximations to the histogram chi-square kernel. In CVPR, 2012.
-
(2012)
CVPR
-
-
Li, F.1
Lebanon, G.2
Sminchisescu, C.3
-
19
-
-
77955986970
-
Weakly-supervised hashing in kernel space
-
Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel space. In CVPR, 2010.
-
(2010)
CVPR
-
-
Mu, Y.1
Shen, J.2
Yan, S.3
-
20
-
-
84911427136
-
Accelerated large scale optimization by concomitant hashing
-
Y. Mu, J. Wright, and S.-F. Chang. Accelerated large scale optimization by concomitant hashing. In ECCV, 2012.
-
(2012)
ECCV
-
-
Mu, Y.1
Wright, J.2
Chang, S.-F.3
-
21
-
-
84898983292
-
Using analytic qp and sparseness to speed training of support vector machines
-
J. C. Platt. Using analytic qp and sparseness to speed training of support vector machines. In NIPS, 1999.
-
(1999)
NIPS
-
-
Platt, J.C.1
-
22
-
-
77953218689
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.
-
(2007)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
23
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
24
-
-
48849117633
-
Pegasos: Primal estimated sub-gradient solver for svm
-
S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, 2007.
-
(2007)
ICML
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
26
-
-
21844440579
-
Core vector machines: Fast svm training on very large data sets
-
I. Tsang, J. Kwok, and P.-M. Cheung. Core vector machines: Fast svm training on very large data sets. J. Mach. Learn. Res., 6:363-392, 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 363-392
-
-
Tsang, I.1
Kwok, J.2
Cheung, P.-M.3
-
28
-
-
80052651135
-
Trading repre-sentability for scalability: Adaptive multi-hyperplane machine for nonlinear classification
-
Z. Wang, N. Djuric, K. Crammer, and S. Vucetic. Trading repre-sentability for scalability: adaptive multi-hyperplane machine for nonlinear classification. In SIGKDD, 2011.
-
(2011)
SIGKDD
-
-
Wang, Z.1
Djuric, N.2
Crammer, K.3
Vucetic, S.4
-
29
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
C. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In NIPS, 2001.
-
(2001)
NIPS
-
-
Williams, C.1
Seeger, M.2
-
30
-
-
33745784205
-
Parallel software for training large scale support vector machines on multiprocessor systems
-
L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:1467-1492, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1467-1492
-
-
Zanni, L.1
Serafini, T.2
Zanghirati, G.3
-
31
-
-
84879867381
-
Scaling up kernel svm on limited resources: A low-rank linearization approach
-
K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel svm on limited resources: A low-rank linearization approach. Journal of Machine Learning Research-Proceedings Track, 22:1425-1434, 2012.
-
(2012)
Journal of Machine Learning Research-Proceedings Track
, vol.22
, pp. 1425-1434
-
-
Zhang, K.1
Lan, L.2
Wang, Z.3
Moerchen, F.4
-
32
-
-
14344259207
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML, 2004.
-
(2004)
ICML
-
-
Zhang, T.1
|