메뉴 건너뛰기




Volumn E92-D, Issue 7, 2009, Pages 1338-1353

Recent advances and trends in large-scale kernel methods

Author keywords

Kernel methods; Kernel trick; Lowrank approximation; Optimization; Structured data; Support vector machines

Indexed keywords

OPTIMIZATION; SUPPORT VECTOR MACHINES;

EID: 77950308459     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1587/transinf.E92.D.1338     Document Type: Article
Times cited : (20)

References (98)
  • 4
    • 38849166405 scopus 로고    scopus 로고
    • L. Bottou O. Chapelle D. Decoste J. Weston eds MIT Press, Cambridge, MA
    • L. Bottou, O. Chapelle, D. Decoste, and J. Weston, eds., Large-scale Kernel Machines, MIT Press, Cambridge, MA, 2007.
    • (2007) Large-scale Kernel Machines
  • 6
    • 77950326241 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral equations," Proc. Royal Society of London. Series A, vol.83, no.559, pp.69-70, 1909.
    • (1909) Proc. Royal Society of London. Series A , vol.83 , Issue.559 , pp. 69-70
    • Mercer, J.1
  • 9
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol.10, no.5, pp.1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 11
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," Journal of Machine Learning Research, vol.2, pp.243-264, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 13
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed., Johns Hopkins University Press, Baltimore, MD
    • G.H. Golub and C.F.V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 18
    • 26944431850 scopus 로고    scopus 로고
    • Observations on the Nyström method for Gaussian process prediction
    • University of Edinburgh
    • C.K.I. Williams, C.E. Rasmussen, A. Schwaighofer, and V. Tresp, "Observations on the Nyström method for Gaussian process prediction," Tech. Rep., University of Edinburgh, 2002.
    • (2002) Tech. Rep.
    • Williams, C.K.I.1    Rasmussen, C.E.2    Schwaighofer, A.3    Tresp, V.4
  • 23
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • R. Rosipal and L.J. Trejo, "Kernel partial least squares regression in reproducing kernel Hilbert space," Journal of Machine Learning Research, vol.2, pp.97-123, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 24
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, B, vol.58, no.1, pp.267-288, 1996.
    • (1996) Journal of the Royal Statistical Society, B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M.E. Tipping, "Sparse Bayesian learning and the relevance vector machine," Journal of Machine Learning Research, vol.1, pp.211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 26
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • G.C. Cawley and N.L. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol.17, no.10, pp.1467-1475, 2004.
    • (2004) Neural Netw. , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.2
  • 33
    • 68949134159 scopus 로고
    • An algorithm for the solution of the parametric quadratic programming problem
    • Faculty of Mathematics, University of Waterloo
    • M.J. Best, "An algorithm for the solution of the parametric quadratic programming problem," CORR Report 82-124, Faculty of Mathematics, University of Waterloo, 1982.
    • (1982) CORR Report , pp. 82-124
    • Best, M.J.1
  • 35
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann, "High-dimensional graphs and variable selection with the lasso," Annals of Statistics, vol.34, no.3, pp.1436-1462, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 36
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covari-ance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covari-ance estimation with the graphical lasso," Biostatistics, vol.9, no.3, pp.432-441, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 39
    • 1242263806 scopus 로고    scopus 로고
    • The generalized lasso
    • V. Roth, "The generalized lasso," IEEE Trans. Neural Netw., vol.15, no.1, pp.16-28, 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 16-28
    • Roth, V.1
  • 43
    • 84864038646 scopus 로고    scopus 로고
    • Sparse Gaussian processes using pseudo-inputs
    • ed. Y. Weiss, B. Schölkopf, and J. Platt Cambridge, MA, MIT Press
    • E. Snelson and Z. Ghahramani, "Sparse Gaussian processes using pseudo-inputs," Advances in Neural Information Processing Systems 18, ed. Y. Weiss, B. Schölkopf, and J. Platt, pp.1257-1264, Cambridge, MA, MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1257-1264
    • Snelson, E.1    Ghahramani, Z.2
  • 49
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • ed. B. Schölkopf, C. Burges, and A. Smola, MIT Press, Cambridge, MA
    • J.C. Platt, "Fast training of support vector machines using sequential minimal optimization," Advances in Kernel Methods-Support Vector Learning, ed. B. Schölkopf, C. Burges, and A. Smola, pp.185-208, MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 50
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classier design
    • March
    • S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy, "Improvements to Platt's SMO algorithm for SVM classier design," Neural Comput., vol.13, pp.637-649, March 2001.
    • (2001) Neural Comput. , vol.13 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 52
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, "A simplified neuron model as a principal component analyzer," Journal of Mathematical Biology, vol.15, pp.267-273, 1982.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 54
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol.290, no.5500, pp.2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 55
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol.290, no.5500, pp.2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 56
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol.15, no.6, pp.1373-1396, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 57
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • D.L. Donoho and C.E. Grimes, "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data," Proc. National Academy of Arts and Sciences, pp.5591-5596, 2003.
    • (2003) Proc. National Academy of Arts and Sciences , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.E.2
  • 60
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • ed. S. Thrun, L. Saul, and B. Schölkopf, MIT Press, Cambridge, MA
    • X. He and P. Niyogi, "Locality preserving projections," Advances in Neural Information Processing Systems 16, ed. S. Thrun, L. Saul, and B. Schölkopf, MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • He, X.1    Niyogi, P.2
  • 61
    • 77950324410 scopus 로고    scopus 로고
    • American Mathematical Society Providence R.I.
    • F.R.K. Chung, Spectral Graph Theory, American Mathematical Society, Providence, R.I., 1997.
    • (1997) Spectral Graph Theor
    • Chung, F.R.K.1
  • 63
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.8, pp.888-905, 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 64
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • ed. T.G. Dietterich, S. Becker, and Z. Ghahramani, MIT Press, Cambridge, MA
    • A.Y. Ng, M.I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," Advances in Neural Information Processing Systems 14, ed. T.G. Dietterich, S. Becker, and Z. Ghahramani, MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 68
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • A. Ben-Hur and W.S. Noble, "Kernel methods for predicting protein-protein interactions," Bioinformatics, vol.21, no.Suppl. 1, pp.i38-i46, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 71
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • University of California in Santa Cruz
    • D. Haussler, "Convolution kernels on discrete structures," Tech. Rep. UCSC-CRL-99-110, University of California in Santa Cruz, 1999.
    • Tech. Rep. UCSC-CRL-1999 , pp. 99-110
    • Haussler, D.1
  • 73
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • ed. R.B. Altman, A.K. Dunker L. Hunter, K. Lauerdale, and T.E. Klein World Scientific
    • C. Leslie, E. Eskin, and W. Noble, "The spectrum kernel: A string kernel for SVM protein classification," Proc. Pacific Symposium on Biocomputing, ed. R.B. Altman, A.K. Dunker, L. Hunter, K. Lauerdale, and T.E. Klein, pp.566-575, World Scientific, 2002.
    • (2002) Proc. Pacific Symposium on Biocomputing , pp. 566-575
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 74
    • 84898962121 scopus 로고    scopus 로고
    • Fast kernels for string and tree matching
    • ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA
    • S. Vishwanathan and A. Smola, "Fast kernels for string and tree matching," Advances in Neural Information Processing Systems 15, ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Vishwanathan, S.1    Smola, A.2
  • 75
    • 84898968688 scopus 로고    scopus 로고
    • Mismatch string kernels for svm protein classification
    • ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA
    • C. Leslie, E. Eskin, J. Weston, and W. Noble, "Mismatch string kernels for svm protein classification," Advances in Neural Information Processing Systems 15, ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Leslie, C.1    Eskin, E.2    Weston, J.3    Noble, W.4
  • 82
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • P. Pavlidis, J. Weston, J. Cai, and W.S. Noble, "Learning gene functional classifications from multiple data types," Journal of Computational Biology, vol.9, no.2, pp.401-411, 2002.
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.S.4
  • 84
    • 19544364324 scopus 로고    scopus 로고
    • Selective integration of multiple biological data for supervised network inference
    • T. Kato, K. Tsuda, and K. Asai, "Selective integration of multiple biological data for supervised network inference," Bioinformatics, vol.21, pp.2488-2495, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 2488-2495
    • Kato, T.1    Tsuda, K.2    Asai, K.3
  • 89
    • 58649108536 scopus 로고    scopus 로고
    • Robust label propagation on multiple networks
    • T. Kato, H. Kashima, and M. Sugiyama, "Robust label propagation on multiple networks," IEEE Trans. Neural Netw. vol.20, no.1, pp.35-44, 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.1 , pp. 35-44
    • Kato, T.1    Kashima, H.2    Sugiyama, M.3
  • 91
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Jan
    • K. Fukumizu, F.R. Bach, and M.I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces," Journal of Machine Learning Research, vol.5, no.Jan, pp.73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 95
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol.55, pp.119-139, 1997.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 96
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Annals of Statistics, vol.26, pp.1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 97
    • 56449095204 scopus 로고    scopus 로고
    • Nu-support vector machine as conditional value-at-risk minimization
    • ed. A. McCallum and S. Roweis
    • A. Takeda and M. Sugiyama, "Nu-support vector machine as conditional value-at-risk minimization," Proc. 25th Annual International Conference on Machine Learning, ed. A. McCallum and S. Roweis, pp.1056-1063, 2008.
    • (2008) Proc. 25th Annual International Conference on Machine Learning , pp. 1056-1063
    • Takeda, A.1    Sugiyama, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.