-
3
-
-
14644392676
-
-
Cambridge University Press, New York, NY, USA
-
J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, New York, NY, USA, 2004.
-
(2004)
Kernel Methods for Pattern Analysis
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
4
-
-
38849166405
-
-
L. Bottou O. Chapelle D. Decoste J. Weston eds MIT Press, Cambridge, MA
-
L. Bottou, O. Chapelle, D. Decoste, and J. Weston, eds., Large-scale Kernel Machines, MIT Press, Cambridge, MA, 2007.
-
(2007)
Large-scale Kernel Machines
-
-
-
6
-
-
77950326241
-
Functions of positive and negative type, and their connection with the theory of integral equations
-
J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral equations," Proc. Royal Society of London. Series A, vol.83, no.559, pp.69-70, 1909.
-
(1909)
Proc. Royal Society of London. Series A
, vol.83
, Issue.559
, pp. 69-70
-
-
Mercer, J.1
-
9
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol.10, no.5, pp.1299-1319, 1998.
-
(1998)
Neural Comput.
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
10
-
-
0003474751
-
-
Cambridge University Press
-
H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., Cambridge University Press, 1992.
-
(1992)
Numerical Recipes in C, 2nd Ed
-
-
Press, H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
11
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," Journal of Machine Learning Research, vol.2, pp.243-264, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
13
-
-
0004236492
-
-
3rd ed., Johns Hopkins University Press, Baltimore, MD
-
G.H. Golub and C.F.V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Loan, C.F.V.2
-
18
-
-
26944431850
-
Observations on the Nyström method for Gaussian process prediction
-
University of Edinburgh
-
C.K.I. Williams, C.E. Rasmussen, A. Schwaighofer, and V. Tresp, "Observations on the Nyström method for Gaussian process prediction," Tech. Rep., University of Edinburgh, 2002.
-
(2002)
Tech. Rep.
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
Schwaighofer, A.3
Tresp, V.4
-
19
-
-
84864060428
-
Fast Krylov methods for N-body learning
-
N.D. Freitas, Y. Wang, M. Mahdaviani, and D. Lang, "Fast Krylov methods for N-body learning," Advances in Neural Information Processing Systems 18, pp.251-258, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 251-258
-
-
Freitas, N.D.1
Wang, Y.2
Mahdaviani, M.3
Lang, D.4
-
20
-
-
84898938795
-
Efficient kernel machines using the improved fast Gauss transform
-
C. Yang, R. Duraiswami, and L. Davis, "Efficient kernel machines using the improved fast Gauss transform," Advances in Neural Information Processing Systems 17, pp.1561-1568, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1561-1568
-
-
Yang, C.1
Duraiswami, R.2
Davis, L.3
-
21
-
-
84943585339
-
Dual-tree fast Gauss transforms
-
D. Lee, A.G. Gray, and A.W. Moore, "Dual-tree fast Gauss transforms," Advances in Neural Information Processing Systems 18, pp.1561-1568, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1561-1568
-
-
Lee, D.1
Gray, A.G.2
Moore, A.W.3
-
23
-
-
0038259120
-
Kernel partial least squares regression in reproducing kernel Hilbert space
-
R. Rosipal and L.J. Trejo, "Kernel partial least squares regression in reproducing kernel Hilbert space," Journal of Machine Learning Research, vol.2, pp.97-123, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
24
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, B, vol.58, no.1, pp.267-288, 1996.
-
(1996)
Journal of the Royal Statistical Society, B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
25
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M.E. Tipping, "Sparse Bayesian learning and the relevance vector machine," Journal of Machine Learning Research, vol.1, pp.211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
26
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
G.C. Cawley and N.L. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol.17, no.10, pp.1467-1475, 2004.
-
(2004)
Neural Netw.
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.2
-
27
-
-
34548023713
-
Kernelizing PLS, degrees of freedom, and efficient model selection
-
N. Krämer and M.L. Braun, "Kernelizing PLS, degrees of freedom, and efficient model selection," Proc. International Conference on Machine Learning, pp.441-448, 2007.
-
(2007)
Proc. International Conference on Machine Learning
, pp. 441-448
-
-
Krämer, N.1
Braun, M.L.2
-
30
-
-
84864063320
-
Sparse kernel orthogonalized PLS for feature extraction in large data sets
-
J. Arenas-Garcia, K.B. Petersen, and L.K. Hansen, "Sparse kernel orthogonalized PLS for feature extraction in large data sets," Advances in Neural Information Processing Systems 18, pp.33-40, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 33-40
-
-
Arenas-Garcia, J.1
Petersen, K.B.2
Hansen, L.K.3
-
31
-
-
65449142148
-
Partial least squares regression for graph mining
-
H. Saigo, N. Krämer, and K. Tsuda, "Partial least squares regression for graph mining," Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.578-586, 2008.
-
(2008)
Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 578-586
-
-
Saigo, H.1
Krämer, N.2
Tsuda, K.3
-
32
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Annals of Statistics, vol.32, no.2, pp.407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
33
-
-
68949134159
-
An algorithm for the solution of the parametric quadratic programming problem
-
Faculty of Mathematics, University of Waterloo
-
M.J. Best, "An algorithm for the solution of the parametric quadratic programming problem," CORR Report 82-124, Faculty of Mathematics, University of Waterloo, 1982.
-
(1982)
CORR Report
, pp. 82-124
-
-
Best, M.J.1
-
34
-
-
45849107328
-
Pathwise coordinate optimization
-
J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, "Pathwise coordinate optimization," Annals of Applied Statistics, vol.1, no.2, pp.302-332, 2007.
-
(2007)
Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
35
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Bühlmann, "High-dimensional graphs and variable selection with the lasso," Annals of Statistics, vol.34, no.3, pp.1436-1462, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
36
-
-
45849134070
-
Sparse inverse covari-ance estimation with the graphical lasso
-
J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covari-ance estimation with the graphical lasso," Biostatistics, vol.9, no.3, pp.432-441, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
37
-
-
72849150929
-
Proximity-based anomaly detection using sparse structure learning
-
T. Idé, A.C. Lozano, N. Abe, and Y. Liu, "Proximity-based anomaly detection using sparse structure learning," Proc. 2009 SIAM International Conference on Data Mining, 2009.
-
(2009)
Proc. 2009 SIAM International Conference on Data Mining
-
-
Idé, T.1
Lozano, A.C.2
Abe, N.3
Liu, Y.4
-
39
-
-
1242263806
-
The generalized lasso
-
V. Roth, "The generalized lasso," IEEE Trans. Neural Netw., vol.15, no.1, pp.16-28, 2004.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.1
, pp. 16-28
-
-
Roth, V.1
-
40
-
-
84862283286
-
The kernel path in ker-nelized lasso
-
G. Wang, D.Y. Yeung, and F.H. Lochovsky, "The kernel path in ker-nelized lasso," Proc. Eleventh International Workshop on Artificial Intelligence and Statistics, pp.580-587, 2007.
-
(2007)
Proc. Eleventh International Workshop on Artificial Intelligence and Statistics
, pp. 580-587
-
-
Wang, G.1
Yeung, D.Y.2
Lochovsky, F.H.3
-
43
-
-
84864038646
-
Sparse Gaussian processes using pseudo-inputs
-
ed. Y. Weiss, B. Schölkopf, and J. Platt Cambridge, MA, MIT Press
-
E. Snelson and Z. Ghahramani, "Sparse Gaussian processes using pseudo-inputs," Advances in Neural Information Processing Systems 18, ed. Y. Weiss, B. Schölkopf, and J. Platt, pp.1257-1264, Cambridge, MA, MIT Press, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 1257-1264
-
-
Snelson, E.1
Ghahramani, Z.2
-
45
-
-
36849059715
-
A scalable modular convex solver for regularized risk minimization
-
ACM, New York, NY
-
C.H. Teo, Q. Le, A.J. Smola, and S.V.N. Vishwanathan, "A scalable modular convex solver for regularized risk minimization," Proc. 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.727-736, ACM, New York, NY, 2007.
-
(2007)
Proc. 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 727-736
-
-
Teo, C.H.1
Le, Q.2
Smola, A.J.3
Vishwanathan, S.V.N.4
-
46
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
ACM, New York, NY
-
C.J. Hsieh, K.W. Chang, C.J. Lin, S.S. Keerthi, and S. Sundararajan, "A dual coordinate descent method for large-scale linear SVM," Proc. 25nd International Conference on Machine Learning, pp.408-415, ACM, New York, NY, 2008.
-
(2008)
Proc. 25nd International Conference on Machine Learning
, pp. 408-415
-
-
Hsieh, C.J.1
Chang, K.W.2
Lin, C.J.3
Keerthi, S.S.4
Sundararajan, S.5
-
47
-
-
33749563073
-
Training linear SVMs in linear time
-
ACM, New York, NY
-
T. Joachims, "Training linear SVMs in linear time," Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.217-226, ACM, New York, NY, 2006.
-
(2006)
Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 217-226
-
-
Joachims, T.1
-
48
-
-
56449101964
-
Optimized cutting plane algorithm for support vector machines
-
ACM, New York, NY
-
V. Franc and S. Sonnenburg, "Optimized cutting plane algorithm for support vector machines," Proc. 25nd International Conference on Machine Learning, pp.320-327, ACM, New York, NY, 2008.
-
(2008)
Proc. 25nd International Conference on Machine Learning
, pp. 320-327
-
-
Franc, V.1
Sonnenburg, S.2
-
49
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
ed. B. Schölkopf, C. Burges, and A. Smola, MIT Press, Cambridge, MA
-
J.C. Platt, "Fast training of support vector machines using sequential minimal optimization," Advances in Kernel Methods-Support Vector Learning, ed. B. Schölkopf, C. Burges, and A. Smola, pp.185-208, MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
50
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classier design
-
March
-
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy, "Improvements to Platt's SMO algorithm for SVM classier design," Neural Comput., vol.13, pp.637-649, March 2001.
-
(2001)
Neural Comput.
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
52
-
-
0020464111
-
A simplified neuron model as a principal component analyzer
-
E. Oja, "A simplified neuron model as a principal component analyzer," Journal of Mathematical Biology, vol.15, pp.267-273, 1982.
-
(1982)
Journal of Mathematical Biology
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
54
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol.290, no.5500, pp.2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
55
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol.290, no.5500, pp.2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
56
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol.15, no.6, pp.1373-1396, 2003.
-
(2003)
Neural Comput.
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
57
-
-
0037948870
-
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
-
D.L. Donoho and C.E. Grimes, "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data," Proc. National Academy of Arts and Sciences, pp.5591-5596, 2003.
-
(2003)
Proc. National Academy of Arts and Sciences
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.E.2
-
58
-
-
11144299132
-
A kernel view of the dimensionality reduction of manifolds
-
ACM Press, New York, NY
-
J. Ham, D.D. Lee, S. Mika, and B. Schölkopf, "A kernel view of the dimensionality reduction of manifolds," Proc. Twenty-First International Conference on Machine Learning, ACM Press, New York, NY, 2004.
-
(2004)
Proc. Twenty-First International Conference on Machine Learning
-
-
Ham, J.1
Lee, D.D.2
Mika, S.3
Schölkopf, B.4
-
60
-
-
13444286179
-
Locality preserving projections
-
ed. S. Thrun, L. Saul, and B. Schölkopf, MIT Press, Cambridge, MA
-
X. He and P. Niyogi, "Locality preserving projections," Advances in Neural Information Processing Systems 16, ed. S. Thrun, L. Saul, and B. Schölkopf, MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
He, X.1
Niyogi, P.2
-
61
-
-
77950324410
-
-
American Mathematical Society Providence R.I.
-
F.R.K. Chung, Spectral Graph Theory, American Mathematical Society, Providence, R.I., 1997.
-
(1997)
Spectral Graph Theor
-
-
Chung, F.R.K.1
-
62
-
-
12244256379
-
Kernel k-means, spectral clustering and normalized cuts
-
ACM Press, New York, NY, USA
-
I.S. Dhillon, Y. Guan, and B. Kulis, "Kernel k-means, spectral clustering and normalized cuts," Proc. Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.551-556, ACM Press, New York, NY, USA, 2004.
-
(2004)
Proc. Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 551-556
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
63
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.8, pp.888-905, 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
64
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
ed. T.G. Dietterich, S. Becker, and Z. Ghahramani, MIT Press, Cambridge, MA
-
A.Y. Ng, M.I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," Advances in Neural Information Processing Systems 14, ed. T.G. Dietterich, S. Becker, and Z. Ghahramani, MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
68
-
-
24744435534
-
Kernel methods for predicting protein-protein interactions
-
A. Ben-Hur and W.S. Noble, "Kernel methods for predicting protein-protein interactions," Bioinformatics, vol.21, no.Suppl. 1, pp.i38-i46, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Ben-Hur, A.1
Noble, W.S.2
-
69
-
-
80054878523
-
On pairwise kernels: An efficient alternative and generalization analysis
-
H. Kashima, S. Oyama, Y. Yamanishi, and K. Tsuda, "On pairwise kernels: An efficient alternative and generalization analysis," Proc. 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2009.
-
(2009)
Proc. 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining
-
-
Kashima, H.1
Oyama, S.2
Yamanishi, Y.3
Tsuda, K.4
-
70
-
-
73449109177
-
Link propagation: A fast semi-supervised algorithm for link prediction
-
H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda, "Link propagation: A fast semi-supervised algorithm for link prediction," Proc. 2009 SIAM International Conference on Data Mining, 2009.
-
(2009)
Proc. 2009 SIAM International Conference on Data Mining
-
-
Kashima, H.1
Kato, T.2
Yamanishi, Y.3
Sugiyama, M.4
Tsuda, K.5
-
71
-
-
0004019973
-
Convolution kernels on discrete structures
-
University of California in Santa Cruz
-
D. Haussler, "Convolution kernels on discrete structures," Tech. Rep. UCSC-CRL-99-110, University of California in Santa Cruz, 1999.
-
Tech. Rep. UCSC-CRL-1999
, pp. 99-110
-
-
Haussler, D.1
-
72
-
-
0041965869
-
Text classification using string kernels
-
H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, "Text classification using string kernels," Journal of Machine Learning Research, vol.2, pp.419-444, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 419-444
-
-
Lodhi, H.1
Saunders, C.2
Shawe-Taylor, J.3
Cristianini, N.4
Watkins, C.5
-
73
-
-
0036358995
-
The spectrum kernel: A string kernel for SVM protein classification
-
ed. R.B. Altman, A.K. Dunker L. Hunter, K. Lauerdale, and T.E. Klein World Scientific
-
C. Leslie, E. Eskin, and W. Noble, "The spectrum kernel: A string kernel for SVM protein classification," Proc. Pacific Symposium on Biocomputing, ed. R.B. Altman, A.K. Dunker, L. Hunter, K. Lauerdale, and T.E. Klein, pp.566-575, World Scientific, 2002.
-
(2002)
Proc. Pacific Symposium on Biocomputing
, pp. 566-575
-
-
Leslie, C.1
Eskin, E.2
Noble, W.3
-
74
-
-
84898962121
-
Fast kernels for string and tree matching
-
ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA
-
S. Vishwanathan and A. Smola, "Fast kernels for string and tree matching," Advances in Neural Information Processing Systems 15, ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
-
-
Vishwanathan, S.1
Smola, A.2
-
75
-
-
84898968688
-
Mismatch string kernels for svm protein classification
-
ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA
-
C. Leslie, E. Eskin, J. Weston, and W. Noble, "Mismatch string kernels for svm protein classification," Advances in Neural Information Processing Systems 15, ed. S. Becker, S. Thrun, and K. Obermayer, MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
-
-
Leslie, C.1
Eskin, E.2
Weston, J.3
Noble, W.4
-
76
-
-
84898995383
-
Convolution kernels for natural language
-
MIT Press, Cambridge, MA
-
M. Collins and N. Duffy, "Convolution kernels for natural language," Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Collins, M.1
Duffy, N.2
-
77
-
-
10844244750
-
Kernels for semi-structured date
-
Morgan Kaufmann, San Francisco, CA
-
H. Kashima and T. Koyanagi, "Kernels for semi-structured date," Proc. 19th International Conference on Machine Learning, pp.291-298, Morgan Kaufmann, San Francisco, CA, 2002.
-
(2002)
Proc. 19th International Conference on Machine Learning
, pp. 291-298
-
-
Kashima, H.1
Koyanagi, T.2
-
78
-
-
34250219954
-
A gram distribution kernel applied to glycan classification and motif extraction
-
H. Kuboyama, K. Hirata, K.F. Aoki-Kinoshita, H. Kashima, and H. Yasuda, "A gram distribution kernel applied to glycan classification and motif extraction," Proc. 17th International Conference on Genome Informatics, 2006.
-
(2006)
Proc. 17th International Conference on Genome Informatics
-
-
Kuboyama, H.1
Hirata, K.2
Aoki-Kinoshita, K.F.3
Kashima, H.4
Yasuda, H.5
-
79
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
Morgan Kaufmann, San Francisco, CA
-
H. Kashima, K. Tsuda, and A. Inokuchi, "Marginalized kernels between labeled graphs," Proc. 20th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2003.
-
(2003)
Proc. 20th International Conference on Machine Learning
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
82
-
-
0036100116
-
Learning gene functional classifications from multiple data types
-
P. Pavlidis, J. Weston, J. Cai, and W.S. Noble, "Learning gene functional classifications from multiple data types," Journal of Computational Biology, vol.9, no.2, pp.401-411, 2002.
-
(2002)
Journal of Computational Biology
, vol.9
, Issue.2
, pp. 401-411
-
-
Pavlidis, P.1
Weston, J.2
Cai, J.3
Noble, W.S.4
-
83
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jordan, "Learning the kernel matrix with semidefinite programming," Journal of Machine Learning Research, vol.5, pp.27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
84
-
-
19544364324
-
Selective integration of multiple biological data for supervised network inference
-
T. Kato, K. Tsuda, and K. Asai, "Selective integration of multiple biological data for supervised network inference," Bioinformatics, vol.21, pp.2488-2495, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 2488-2495
-
-
Kato, T.1
Tsuda, K.2
Asai, K.3
-
85
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," Proc. 21st International Conference on Machine Learning, 2004.
-
(2004)
Proc. 21st International Conference on Machine Learning
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
86
-
-
33745776113
-
Large scale multiple kernel learning
-
July
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, "Large scale multiple kernel learning," Journal of Machine Learning Research, vol.7, pp.1531-1565, July 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
87
-
-
57249084590
-
-
Sim-plemkl
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, "Sim-plemkl," Journal of Machine Learning Research, vol.9, pp.2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
88
-
-
34547992388
-
Multiclass multiple kernel learning
-
ACM, New York, NY
-
A. Zien and C.S. Ong, "Multiclass multiple kernel learning," Proc. 24th International Conference on Machine Learning, pp.1191-1198, ACM, New York, NY, 2007.
-
(2007)
Proc. 24th International Conference on Machine Learning
, pp. 1191-1198
-
-
Zien, A.1
Ong, C.S.2
-
89
-
-
58649108536
-
Robust label propagation on multiple networks
-
T. Kato, H. Kashima, and M. Sugiyama, "Robust label propagation on multiple networks," IEEE Trans. Neural Netw. vol.20, no.1, pp.35-44, 2009.
-
(2009)
IEEE Trans. Neural Netw
, vol.20
, Issue.1
, pp. 35-44
-
-
Kato, T.1
Kashima, H.2
Sugiyama, M.3
-
90
-
-
33947304179
-
Network-based de-noising improves prediction from microarray data
-
March
-
T. Kato, Y. Murata, K. Miura, K. Asai, P.B. Horton, K. Tsuda, and W. Fujibuchi, "Network-based de-noising improves prediction from microarray data," BMC Bioinformatics, vol.7 (Suppl 1), March 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 1
-
-
Kato, T.1
Murata, Y.2
Miura, K.3
Asai, K.4
Horton, P.B.5
Tsuda, K.6
Fujibuchi, W.7
-
91
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
Jan
-
K. Fukumizu, F.R. Bach, and M.I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces," Journal of Machine Learning Research, vol.5, no.Jan, pp.73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
92
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
L. Song, A. Smola, A. Gretton, K.M. Borgwardt, and J. Bedo, "Supervised feature selection via dependence estimation," Proc. 24th International Conference on Machine learning, pp.823-830, 2007.
-
(2007)
Proc. 24th International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
93
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
J. Huang, A. Smola, A. Gretton, K.M. Borgwardt, and B. Schölkopf, "Correcting sample selection bias by unlabeled data," Advances in Neural Information Processing Systems 19, pp.601-608, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 601-608
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Schölkopf, B.5
-
95
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol.55, pp.119-139, 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
96
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Annals of Statistics, vol.26, pp.1651-1686, 1998.
-
(1998)
Annals of Statistics
, vol.26
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
97
-
-
56449095204
-
Nu-support vector machine as conditional value-at-risk minimization
-
ed. A. McCallum and S. Roweis
-
A. Takeda and M. Sugiyama, "Nu-support vector machine as conditional value-at-risk minimization," Proc. 25th Annual International Conference on Machine Learning, ed. A. McCallum and S. Roweis, pp.1056-1063, 2008.
-
(2008)
Proc. 25th Annual International Conference on Machine Learning
, pp. 1056-1063
-
-
Takeda, A.1
Sugiyama, M.2
-
98
-
-
80053436012
-
On the margin explanation of boosting algorithms
-
ed. R. Servedio and T. Zhang
-
L. Wang, M. Sugiyama, C. Yang, Z.H. Zhou, and J. Feng, "On the margin explanation of boosting algorithms," Proc. 21st International Conference on Learning Theory, ed. R. Servedio and T. Zhang, pp.479-490, 2008.
-
(2008)
Proc. 21st International Conference on Learning Theory
, pp. 479-490
-
-
Wang, L.1
Sugiyama, M.2
Yang, C.3
Zhou, Z.H.4
Feng, J.5
|