메뉴 건너뛰기




Volumn 9, Issue 3, 2017, Pages

Convolutional recurrent neural networks for hyperspectral data classification

Author keywords

Convolutional neural network; Convolutional recurrent neural network; Deep learning; Hyperspectral image; Recurrent neural network

Indexed keywords

CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; HYPERSPECTRAL IMAGING; LEARNING SYSTEMS; NEURAL NETWORKS; POSITIVE IONS; SPECTROSCOPY;

EID: 85019463183     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9030298     Document Type: Article
Times cited : (259)

References (43)
  • 7
    • 85003881350 scopus 로고    scopus 로고
    • How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza?
    • Nanni, L.; Ghidoni, S. How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit. Lett. 2017, 85, 1-7.
    • (2017) Pattern Recognit. Lett , vol.85 , pp. 1-7
    • Nanni, L.1    Ghidoni, S.2
  • 8
    • 84956858756 scopus 로고    scopus 로고
    • String representations and distances in deep Convolutional Neural Networks for image classification
    • Barat, C.; Ducottet, C. String representations and distances in deep Convolutional Neural Networks for image classification. Pattern Recognit. 2016, 54, 104-115.
    • (2016) Pattern Recognit. , vol.54 , pp. 104-115
    • Barat, C.1    Ducottet, C.2
  • 11
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451-2471.
    • (2000) Neural Comput. , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 12
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602-610.
    • (2005) Neural Netw. , vol.18 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 14
    • 84919832465 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • Beijing, China, 21-26 June
    • Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the International Conference on Machine Learning (ICML), Beijing, China, 21-26 June 2014; Volume 14, pp. 1764-1772.
    • (2014) Proceedings of the International Conference on Machine Learning (ICML) , vol.14 , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17-28.
    • (2002) IEEE Signal Process. Mag. , vol.19 , pp. 17-28
    • Landgrebe, D.1
  • 21
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 2002, 19, 12-16.
    • (2002) IEEE Signal Process. Mag. , vol.19 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 22
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Manolakis, D.; Siracusa, C.; Shaw, G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1392-1409.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 23
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 25
    • 84973561955 scopus 로고    scopus 로고
    • Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification
    • Wu, H.; Prasad, S. Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4882-4895.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 4882-4895
    • Wu, H.1    Prasad, S.2
  • 26
    • 77957602079 scopus 로고    scopus 로고
    • An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
    • Yuen, P.W.; Richardson, M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci. J. 2010, 58, 241-253.
    • (2010) Imaging Sci. J. , vol.58 , pp. 241-253
    • Yuen, P.W.1    Richardson, M.2
  • 27
    • 0042843360 scopus 로고    scopus 로고
    • Remote sensing of the coastal zone: An overview and priorities for future research
    • Malthus, T.J.; Mumby, P.J. Remote sensing of the coastal zone: An overview and priorities for future research. Int. J. Remote Sens. 2003, 24, 2805-2815.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 2805-2815
    • Malthus, T.J.1    Mumby, P.J.2
  • 29
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015.
    • (2015) J. Sens. , pp. 2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 30
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-Spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-Spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468-477.
    • (2015) Remote Sens. Lett. , vol.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 31
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-Spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Zhao, W.; Du, S. Spectral-Spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544-4554.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 32
    • 84962611241 scopus 로고    scopus 로고
    • Hyperspectral imagery classification using sparse representations of convolutional neural network features
    • Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99.
    • (2016) Remote Sens. , vol.8 , pp. 99
    • Liang, H.1    Li, Q.2
  • 33
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680.
    • (2015) Remote Sens. , vol.7
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 34
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 2016, 8, 506.
    • (2016) Remote Sens. , vol.8 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 37
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157-166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 38
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550-1560.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 39
    • 0037560727 scopus 로고    scopus 로고
    • Multisource remote sensing data classification based on consensus and pruning
    • Benediktsson, J.A.; Sveinsson, J.R. Multisource remote sensing data classification based on consensus and pruning. IEEE Trans. Geosci. Remote Sens. 2003, 41, 932-936.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 932-936
    • Benediktsson, J.A.1    Sveinsson, J.R.2
  • 40
    • 84897695614 scopus 로고    scopus 로고
    • Infinite Gaussian mixture models for robust decision fusion of hyperspectral imagery and full waveform LiDAR data
    • Austin, TX, USA, 3-5 December
    • Wu, H.; Prasad, S. Infinite Gaussian mixture models for robust decision fusion of hyperspectral imagery and full waveform LiDAR data. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, USA, 3-5 December 2013; pp. 1025-1028.
    • (2013) Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP) , pp. 1025-1028
    • Wu, H.1    Prasad, S.2
  • 42
    • 84981263443 scopus 로고    scopus 로고
    • (accessed on 9 January 2017)
    • Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 9 January 2017).
    • Keras
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.