-
1
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Inc.: South Lake Tahoe, NV, USA
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: South Lake Tahoe, NV, USA, 2012; pp. 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus, OH, USA, 23-28 June
-
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 580-587.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
6
-
-
84986274465
-
Deep residual learning for image recognition
-
Seattle, WA, USA, 27-30 June
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27-30 June 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
7
-
-
85003881350
-
How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza?
-
Nanni, L.; Ghidoni, S. How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit. Lett. 2017, 85, 1-7.
-
(2017)
Pattern Recognit. Lett
, vol.85
, pp. 1-7
-
-
Nanni, L.1
Ghidoni, S.2
-
8
-
-
84956858756
-
String representations and distances in deep Convolutional Neural Networks for image classification
-
Barat, C.; Ducottet, C. String representations and distances in deep Convolutional Neural Networks for image classification. Pattern Recognit. 2016, 54, 104-115.
-
(2016)
Pattern Recognit.
, vol.54
, pp. 104-115
-
-
Barat, C.1
Ducottet, C.2
-
9
-
-
84890525984
-
Deep convolutional neural networks for LVCSR
-
BC, Canada, 26-31 May
-
Sainath, T.N.; Mohamed, A.R.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26-31 May 2013; pp. 8614-8618.
-
(2013)
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver
, pp. 8614-8618
-
-
Sainath, T.N.1
Mohamed, A.R.2
Kingsbury, B.3
Ramabhadran, B.4
-
11
-
-
0034293152
-
Learning to forget: Continual prediction with LSTM
-
Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451-2471.
-
(2000)
Neural Comput.
, vol.12
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
12
-
-
27744588611
-
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
-
Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602-610.
-
(2005)
Neural Netw.
, vol.18
, pp. 602-610
-
-
Graves, A.1
Schmidhuber, J.2
-
13
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Vancouver, BC, Canada, 26-31 May
-
Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26-31 May 2013; pp. 6645-6649.
-
(2013)
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.R.2
Hinton, G.3
-
14
-
-
84919832465
-
Towards end-to-end speech recognition with recurrent neural networks
-
Beijing, China, 21-26 June
-
Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the International Conference on Machine Learning (ICML), Beijing, China, 21-26 June 2014; Volume 14, pp. 1764-1772.
-
(2014)
Proceedings of the International Conference on Machine Learning (ICML)
, vol.14
, pp. 1764-1772
-
-
Graves, A.1
Jaitly, N.2
-
15
-
-
84959112739
-
-
arXiv, arXiv:1507.06947
-
Sak, H.; Senior, A.; Rao, K.; Beaufays, F. Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv 2015, arXiv:1507.06947.
-
(2015)
Fast and accurate recurrent neural network acoustic models for speech recognition
-
-
Sak, H.1
Senior, A.2
Rao, K.3
Beaufays, F.4
-
16
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Inc.: South Lake Tahoe, NV, USA
-
Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: South Lake Tahoe, NV, USA, 2014; pp. 3104-3112.
-
(2014)
Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
17
-
-
84919728106
-
-
arXiv, arXiv:1406.1078
-
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
-
(2014)
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
-
Cho, K.1
van Merriënboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
85032751896
-
Hyperspectral image data analysis
-
Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17-28.
-
(2002)
IEEE Signal Process. Mag.
, vol.19
, pp. 17-28
-
-
Landgrebe, D.1
-
21
-
-
85032751238
-
Signal processing for hyperspectral image exploitation
-
Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 2002, 19, 12-16.
-
(2002)
IEEE Signal Process. Mag.
, vol.19
, pp. 12-16
-
-
Shaw, G.1
Manolakis, D.2
-
22
-
-
0035392132
-
Hyperspectral subpixel target detection using the linear mixing model
-
Manolakis, D.; Siracusa, C.; Shaw, G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1392-1409.
-
(2001)
IEEE Trans. Geosci. Remote Sens.
, vol.39
, pp. 1392-1409
-
-
Manolakis, D.1
Siracusa, C.2
Shaw, G.3
-
23
-
-
0037138473
-
An assessment of support vector machines for land cover classification
-
Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725-749.
-
(2002)
Int. J. Remote Sens.
, vol.23
, pp. 725-749
-
-
Huang, C.1
Davis, L.2
Townshend, J.3
-
24
-
-
84883824357
-
Generalized composite kernel framework for hyperspectral image classification
-
Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816-4829.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, pp. 4816-4829
-
-
Li, J.1
Marpu, P.R.2
Plaza, A.3
Bioucas-Dias, J.M.4
Benediktsson, J.A.5
-
25
-
-
84973561955
-
Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification
-
Wu, H.; Prasad, S. Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4882-4895.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 4882-4895
-
-
Wu, H.1
Prasad, S.2
-
26
-
-
77957602079
-
An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
-
Yuen, P.W.; Richardson, M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci. J. 2010, 58, 241-253.
-
(2010)
Imaging Sci. J.
, vol.58
, pp. 241-253
-
-
Yuen, P.W.1
Richardson, M.2
-
27
-
-
0042843360
-
Remote sensing of the coastal zone: An overview and priorities for future research
-
Malthus, T.J.; Mumby, P.J. Remote sensing of the coastal zone: An overview and priorities for future research. Int. J. Remote Sens. 2003, 24, 2805-2815.
-
(2003)
Int. J. Remote Sens.
, vol.24
, pp. 2805-2815
-
-
Malthus, T.J.1
Mumby, P.J.2
-
28
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094-2107.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
29
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015.
-
(2015)
J. Sens.
, pp. 2015
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
30
-
-
84930423638
-
Spectral-Spatial classification of hyperspectral images using deep convolutional neural networks
-
Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-Spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468-477.
-
(2015)
Remote Sens. Lett.
, vol.6
, pp. 468-477
-
-
Yue, J.1
Zhao, W.2
Mao, S.3
Liu, H.4
-
31
-
-
84979492674
-
Spectral-Spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
-
Zhao, W.; Du, S. Spectral-Spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544-4554.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 4544-4554
-
-
Zhao, W.1
Du, S.2
-
32
-
-
84962611241
-
Hyperspectral imagery classification using sparse representations of convolutional neural network features
-
Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99.
-
(2016)
Remote Sens.
, vol.8
, pp. 99
-
-
Liang, H.1
Li, Q.2
-
33
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680.
-
(2015)
Remote Sens.
, vol.7
-
-
Hu, F.1
Xia, G.S.2
Hu, J.3
Zhang, L.4
-
34
-
-
84974817496
-
Learning a transferable change rule from a recurrent neural network for land cover change detection
-
Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 2016, 8, 506.
-
(2016)
Remote Sens.
, vol.8
, pp. 506
-
-
Lyu, H.1
Lu, H.2
Mou, L.3
-
35
-
-
84937153918
-
Convolutional recurrent neural networks: Learning spatial dependencies for image representation
-
Boston, MA, USA, 7-12 June
-
Zuo, Z.; Shuai, B.; Wang, G.; Liu, X.; Wang, X.; Wang, B.; Chen, Y. Convolutional recurrent neural networks: Learning spatial dependencies for image representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7-12 June 2015; pp. 18-26.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 18-26
-
-
Zuo, Z.1
Shuai, B.2
Wang, G.3
Liu, X.4
Wang, X.5
Wang, B.6
Chen, Y.7
-
37
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157-166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
38
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550-1560.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1550-1560
-
-
Werbos, P.J.1
-
39
-
-
0037560727
-
Multisource remote sensing data classification based on consensus and pruning
-
Benediktsson, J.A.; Sveinsson, J.R. Multisource remote sensing data classification based on consensus and pruning. IEEE Trans. Geosci. Remote Sens. 2003, 41, 932-936.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, pp. 932-936
-
-
Benediktsson, J.A.1
Sveinsson, J.R.2
-
40
-
-
84897695614
-
Infinite Gaussian mixture models for robust decision fusion of hyperspectral imagery and full waveform LiDAR data
-
Austin, TX, USA, 3-5 December
-
Wu, H.; Prasad, S. Infinite Gaussian mixture models for robust decision fusion of hyperspectral imagery and full waveform LiDAR data. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, USA, 3-5 December 2013; pp. 1025-1028.
-
(2013)
Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
, pp. 1025-1028
-
-
Wu, H.1
Prasad, S.2
-
41
-
-
84958264664
-
-
accessed on 9 January 2017
-
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.;, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 9 January 2017).
-
(2015)
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
42
-
-
84981263443
-
-
(accessed on 9 January 2017)
-
Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 9 January 2017).
-
Keras
-
-
Chollet, F.1
|