메뉴 건너뛰기




Volumn 8, Issue 6, 2016, Pages

Learning a transferable change rule from a recurrent neural network for land cover change detection

Author keywords

Change detection; LSTMmodel; Recurrent neural network; Transferability; multi spectral image

Indexed keywords

BINS; COMPLEX NETWORKS; IMAGE PROCESSING; REMOTE SENSING; SIGNAL DETECTION; SPECTROSCOPY;

EID: 84974817496     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8060506     Document Type: Article
Times cited : (313)

References (41)
  • 1
    • 84942803173 scopus 로고    scopus 로고
    • Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using landsat-derived time series metrics
    • Hermosilla, T.;Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using landsat-derived time series metrics. Remote Sens. Environ. 2015, 170, 121-132.
    • (2015) Remote Sens. Environ , vol.170 , pp. 121-132
    • Hermosilla, T.1    Wulder, M.A.2    White, J.C.3    Coops, N.C.4    Hobart, G.W.5
  • 2
    • 0024855524 scopus 로고
    • Digital change detection techniques using remotely-sensed data
    • Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989-1003.
    • (1989) Int. J. Remote Sens , vol.10 , pp. 989-1003
    • Singh, A.1
  • 3
    • 84950144054 scopus 로고    scopus 로고
    • Continuous Change Detection and Classification Using Hidden Markov Model: A Case Study for Monitoring Urban Encroachment onto Farmland in Beijing
    • Yuan, Y.; Meng, Y.; Lin, L.; Sahli, H; Yue, A.; Chen, J.b.; Zhao, Z.M.; Kong, Y.L.; He, D.X. Continuous Change Detection and Classification Using Hidden Markov Model: A Case Study for Monitoring Urban Encroachment onto Farmland in Beijing. Remote Sens. 2015, 7, 15318-15339.
    • (2015) Remote Sens , vol.7 , pp. 15318-15339
    • Yuan, Y.1    Meng, Y.2    Lin, L.3    Sahli, H.4    Yue, A.5    Chen, J.B.6    Zhao, Z.M.7    Kong, Y.L.8    He, D.X.9
  • 4
    • 34447500304 scopus 로고    scopus 로고
    • Early fire detection using non-linear mul-titemporal prediction of thermal imagery
    • Koltunov, A.; Ustin, S.L. Early fire detection using non-linear mul-titemporal prediction of thermal imagery. Remote Sens. Environ. 2007, 110, 18-28.
    • (2007) Remote Sens. Environ , vol.110 , pp. 18-28
    • Koltunov, A.1    Ustin, S.L.2
  • 5
    • 84947029296 scopus 로고    scopus 로고
    • A novel automatic changedetection method for urban high-resolution remotely sensed imagery based on multiindex scene representation
    • Wen, D.; Huang, X.; Zhang, L.; enediktsson, J.A. A novel automatic changedetection method for urban high-resolution remotely sensed imagery based on multiindex scene representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 609-625.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 609-625
    • Wen, D.1    Huang, X.2    Zhang, L.3    Enediktsson, J.A.4
  • 6
    • 85168313426 scopus 로고    scopus 로고
    • The Mangroves of the Zambezi Delta: Increase in Extent Observed via Satellite from 1994 to 2013
    • Shapiro, A.C.; Trettin, C.C.; Küchly, H.; Alavinapanah, S.; Bandeira, S. The Mangroves of the Zambezi Delta: Increase in Extent Observed via Satellite from 1994 to 2013. Remote Sens. 2015, 7, 16504-16518.
    • (2015) Remote Sens , vol.7 , pp. 16504-16518
    • Shapiro, A.C.1    Trettin, C.C.2    Küchly, H.3    Alavinapanah, S.4    Bandeira, S.5
  • 7
    • 84957888494 scopus 로고    scopus 로고
    • Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis
    • Robson, B.A.; Holbling, D.; Nuth, C.; Strozzi, T.; Dahl, S.O. Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sens. 2016, 8, doi:10.3390/rs8010067.
    • (2016) Remote Sens , vol.8
    • Robson, B.A.1    Holbling, D.2    Nuth, C.3    Strozzi, T.4    Dahl, S.O.5
  • 8
    • 33846223394 scopus 로고    scopus 로고
    • A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    • Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trnas. Geosci. Remote Sens. 2007, 45, 218-236.
    • (2007) IEEE Trnas. Geosci. Remote Sens , vol.45 , pp. 218-236
    • Bovolo, F.1    Bruzzone, L.2
  • 9
    • 84962624045 scopus 로고    scopus 로고
    • Rank-Based Methods for Selection of Landscape Metrics for Land Cover Pattern Change Detection
    • Sinha, P.; Kumar, L.; Reid, N. Rank-Based Methods for Selection of Landscape Metrics for Land Cover Pattern Change Detection. Remote Sens. 2016, 8, 107, doi:10.3390/rs8020107.
    • (2016) Remote Sens , vol.8 , pp. 107
    • Sinha, P.1    Kumar, L.2    Reid, N.3
  • 10
    • 84933527251 scopus 로고    scopus 로고
    • Tracking Land Use/Land Cover Dynamics in Cloud Prone Areas Using Moderate Resolution Satellite Data: A Case Study in Central Africa
    • Basnet, B.; Vodacek, A. Tracking Land Use/Land Cover Dynamics in Cloud Prone Areas Using Moderate Resolution Satellite Data: A Case Study in Central Africa. Remote Sens. 2015, 7, 6683-6709.
    • (2015) Remote Sens , vol.7 , pp. 6683-6709
    • Basnet, B.1    Vodacek, A.2
  • 11
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Demir, B.; Bovolo, F.; Bruzzone, L. Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 300-312.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 14
    • 84920086878 scopus 로고    scopus 로고
    • Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis
    • Parmentier, B. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis. Remote Sens. 2014, 6, 12639-12665.
    • (2014) Remote Sens , vol.6 , pp. 12639-12665
    • Parmentier, B.1
  • 15
    • 33847751877 scopus 로고    scopus 로고
    • The regularized iteratively reweighted mad method for change detection in multi-and hyperspectral data
    • Nielsen, A.A. The regularized iteratively reweighted mad method for change detection in multi-and hyperspectral data. IEEE Trans. Image Process. 2007, 16, 463-478.
    • (2007) IEEE Trans. Image Process , vol.16 , pp. 463-478
    • Nielsen, A.A.1
  • 16
  • 17
    • 84901329459 scopus 로고    scopus 로고
    • Insar phase filtering via joint subspace projection method: Application in change detection
    • Bouaraba, A.; Aissa, A.B.; Borghys, D.; Acheroy, M.; Closson, D. Insar phase filtering via joint subspace projection method: Application in change detection. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1817-1820.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1817-1820
    • Bouaraba, A.1    Aissa, A.B.2    Borghys, D.3    Acheroy, M.4    Closson, D.5
  • 19
    • 84896317984 scopus 로고    scopus 로고
    • Slow feature analysis for change detection in multispectral imagery
    • Wu, C.; Du, B.; Zhang, L. Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2858-2874.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 2858-2874
    • Wu, C.1    Du, B.2    Zhang, L.3
  • 20
    • 84867072485 scopus 로고    scopus 로고
    • Application of model-based change detection to airborne VNIR/SWIR hyperspectral imagery
    • Meola, J.; Eismann, M.T.; Moses, R.L.; Ash, J.N. Application of model-based change detection to airborne VNIR/SWIR hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3693-3706.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 3693-3706
    • Meola, J.1    Eismann, M.T.2    Moses, R.L.3    Ash, J.N.4
  • 21
    • 84897479350 scopus 로고    scopus 로고
    • Distance metric-based forest cover change detection using modis time series
    • Huang, X.; Friedl, M.A. Distance metric-based forest cover change detection using modis time series. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 78-92.
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.29 , pp. 78-92
    • Huang, X.1    Friedl, M.A.2
  • 22
    • 84939436339 scopus 로고    scopus 로고
    • Image Fusion-Based Change Detection for Flood Extent Extraction Using Bi-Temporal Very High-Resolution Satellite Images
    • Byun, Y.; Han, Y.; Chae, T. Image Fusion-Based Change Detection for Flood Extent Extraction Using Bi-Temporal Very High-Resolution Satellite Images. Remote Sens. 2015, 7, 10347-10363.
    • (2015) Remote Sens , vol.7 , pp. 10347-10363
    • Byun, Y.1    Han, Y.2    Chae, T.3
  • 23
    • 84906782734 scopus 로고    scopus 로고
    • Hierarchical unsupervised change detection in multitemporal hyperspectral images
    • Liu, S.; Bruzzone, L. Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 244-260.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 244-260
    • Liu, S.1    Bruzzone, L.2
  • 24
    • 84945927329 scopus 로고    scopus 로고
    • A Hybrid Kernel-Based Change Detection Method for Remotely Sensed Data in a Similarity Space
    • Shah-Hosseini, R.; Homayouni, S.; Safari, A. A Hybrid Kernel-Based Change Detection Method for Remotely Sensed Data in a Similarity Space. Remote Sens. 2015, 7, 12829-12858.
    • (2015) Remote Sens , vol.7 , pp. 12829-12858
    • Shah-Hosseini, R.1    Homayouni, S.2    Safari, A.3
  • 25
    • 84908058606 scopus 로고    scopus 로고
    • Sparse hierarchical clustering for vhr image change detection
    • Ding, K.; Huo, C. Sparse hierarchical clustering for vhr image change detection. IEEE Geosci. Remote Sens. Lett. 2015, 12, 577-581.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 577-581
    • Ding, K.1    Huo, C.2
  • 26
    • 84939811733 scopus 로고    scopus 로고
    • Training Recurrent Neural Networks with the Levenberg"Marquardt Algorithm for Optimal Control of a Grid-Connected Converter
    • Fu, X.; Li, S.; Fairbank, M.; Wunsch, D.C.; Alonso, E. Training Recurrent Neural Networks with the Levenberg"Marquardt Algorithm for Optimal Control of a Grid-Connected Converter. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1900-1912.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , pp. 1900-1912
    • Fu, X.1    Li, S.2    Fairbank, M.3    Wunsch, D.C.4    Alonso, E.5
  • 27
    • 84955143444 scopus 로고    scopus 로고
    • Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
    • Ordóňez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115.
    • (2016) Sensors , vol.16 , pp. 115
    • Ordóňez, F.J.1    Roggen, D.2
  • 28
    • 39549123616 scopus 로고    scopus 로고
    • Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients
    • Ubeyli, E. Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients. Comput. Biol. Med. 2008, 38, 401-410.
    • (2008) Comput. Biol. Med , vol.38 , pp. 401-410
    • Ubeyli, E.1
  • 29
    • 34248138917 scopus 로고    scopus 로고
    • Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring
    • Pacella, M.; Semeraro, Q. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring. Comput. Ind. Eng. 2007, 52, 502-520.
    • (2007) Comput. Ind. Eng , vol.52 , pp. 502-520
    • Pacella, M.1    Semeraro, Q.2
  • 30
    • 0029202983 scopus 로고
    • One-hot residue coding for high-speed non-uniform pseudo-random test pattern generation
    • Seattle, WA, USA, 30 April-3 May
    • Chren, W. One-hot residue coding for high-speed non-uniform pseudo-random test pattern generation. In Proceedings of the 1995 IEEE International Symposium on Circuits and Systems (ISCAS '95), Seattle, WA, USA, 30 April-3 May 1995; Volume 1, pp. 401-404.
    • (1995) Proceedings of the 1995 IEEE International Symposium on Circuits and Systems (ISCAS '95) , vol.1 , pp. 401-404
    • Chren, W.1
  • 31
    • 84953245542 scopus 로고    scopus 로고
    • Improvement of aeroelastic vehicles performance through recurrent neural network controllers
    • Brillante, C.; Mannarino, A. Improvement of aeroelastic vehicles performance through recurrent neural network controllers. Nonlinear Dyn. 2016, 84, 1479-1495.
    • (2016) Nonlinear Dyn , vol.84 , pp. 1479-1495
    • Brillante, C.1    Mannarino, A.2
  • 32
    • 84944068115 scopus 로고    scopus 로고
    • Scene Recognition by Manifold Regularized Deep Learning Architecture
    • Yuan, Y.; Mou, L.; Lu, X. Scene Recognition by Manifold Regularized Deep Learning Architecture. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2222-2233.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , pp. 2222-2233
    • Yuan, Y.1    Mou, L.2    Lu, X.3
  • 34
    • 48249085703 scopus 로고    scopus 로고
    • Pca-based land-use change detection and analysis using multitemporal and multisensor satellite data
    • Deng, J.;Wang, K.; Deng, Y.; Qi, G. Pca-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823-4838.
    • (2008) Int. J. Remote Sens , vol.29 , pp. 4823-4838
    • Deng, J.1    Wang, K.2    Deng, Y.3    Qi, G.4
  • 35
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines
    • Chang, C.; Lin, C. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1-27.
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , pp. 1-27
    • Chang, C.1    Lin, C.2
  • 36
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M.; Mather, P. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554-565.
    • (2003) Remote Sens. Environ , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.2
  • 37
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707.
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 39
    • 70350347100 scopus 로고    scopus 로고
    • Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci
    • Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772-776.
    • (2009) Remote Sens. Lett , vol.6 , pp. 772-776
    • Celik, T.1
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E.; Hintont, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 41
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46.
    • (1991) Remote Sens. Environ , vol.37 , pp. 35-46
    • Congalton, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.