메뉴 건너뛰기




Volumn 2015-October, Issue , 2015, Pages 18-26

Convolutional recurrent neural networks: Learning spatial dependencies for image representation

Author keywords

Computational modeling; Context; Image representation; Mathematical model; Recurrent neural networks; Visualization

Indexed keywords

COMPUTER VISION; CONVOLUTION; FLOW VISUALIZATION; IMAGE ENHANCEMENT; MATHEMATICAL MODELS;

EID: 84937153918     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2015.7301268     Document Type: Conference Paper
Times cited : (149)

References (55)
  • 1
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising auto-encoders as generative models
    • 2
    • Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, 2013. 2
    • (2013) NIPS
    • Bengio, Y.1    Yao, L.2    Alain, G.3    Vincent, P.4
  • 2
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • 2
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012. 2
    • (2012) ICML
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 3
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • 1, 2
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014. 1, 2
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • 1,2
    • D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CVPR, 2012. 1, 2
    • (2012) CVPR
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 6
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • 7
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013. 7
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 9
    • 26444565569 scopus 로고
    • Finding structure in time
    • 1, 2
    • J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990. 1, 2
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1,2
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • 1, 2
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014. 1, 2
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 12
    • 84919832465 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • 2, 3
    • A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In ICML, 2014. 2, 3
    • (2014) ICML
    • Graves, A.1    Jaitly, N.2
  • 13
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • 3
    • A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in Neural Information Processing Systems, pages 545-552, 2009. 3
    • (2009) Advances in Neural Information Processing Systems , pp. 545-552
    • Graves, A.1    Schmidhuber, J.2
  • 14
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 1, 2
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 2
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 2
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006. 2
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 33947307527 scopus 로고    scopus 로고
    • Tutorial on training recurrent neural networks covering BPPT RTRL EKF and the "echo state network" approach
    • 1,2
    • H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach. GMD-Forschungszentrum Informationstechnik, 2002. 1, 2
    • (2002) GMD-Forschungszentrum Informationstechnik
    • Jaeger, H.1
  • 19
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • 7
    • M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013. 7
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.3    Zisserman, A.4
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 2, 3, 5, 6, 7
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2, 3, 5, 6, 7
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 22
    • 84911375886 scopus 로고    scopus 로고
    • Scalable multitask representation learning for scene classification
    • 6
    • M. Lapin, B. Schiele, and M. Hein. Scalable multitask representation learning for scene classification. In CVPR, 2014. 6
    • (2014) CVPR
    • Lapin, M.1    Schiele, B.2    Hein, M.3
  • 25
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009. 2
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 26
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • 7
    • L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010. 7
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Fei-Fei, L.3    Xing, E.P.4
  • 27
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • 7
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013. 7
    • (2013) CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 28
    • 84911452981 scopus 로고    scopus 로고
    • Learning important spatial pooling regions for scene classification
    • 7
    • D. Lin, C. Lu, R. Liao, and J. Jia. Learning important spatial pooling regions for scene classification. In CVPR, 2014. 7
    • (2014) CVPR
    • Lin, D.1    Lu, C.2    Liao, R.3    Jia, J.4
  • 32
    • 78149306047 scopus 로고    scopus 로고
    • 3d object recognition with deep belief nets
    • 2
    • V. Nair and G. E. Hinton. 3d object recognition with deep belief nets. In NIPS, 2009. 2
    • (2009) NIPS
    • Nair, V.1    Hinton, G.E.2
  • 33
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 2
    • M. Oquab, L. Bottou, I. Laptev, J. Sivic, et al. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 2
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • 3
    • P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014. 3
    • (2014) ICML
    • Pinheiro, P.1    Collobert, R.2
  • 36
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • 5, 6, 7
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009. 5, 6, 7
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 42
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • 1
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, 2014. 1
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 44
    • 84858768256 scopus 로고    scopus 로고
    • The recurrent temporal restricted boltzmann machine
    • 2
    • I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS, 2009. 2
    • (2009) NIPS
    • Sutskever, I.1    Hinton, G.E.2    Taylor, G.W.3
  • 46
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • 1, 2
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014. 1, 2
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 48
    • 84897567827 scopus 로고    scopus 로고
    • Max-margin multiple-instance dictionary learning
    • 7
    • X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu. Max-margin multiple-instance dictionary learning. In ICML, 2013. 7
    • (2013) ICML
    • Wang, X.1    Wang, B.2    Bai, X.3    Liu, W.4    Tu, Z.5
  • 49
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • 5, 6
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 5, 6
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 50
    • 84952053879 scopus 로고    scopus 로고
    • Modeling video dynamics with deep dynencoder
    • 2
    • X. Yan, H. Chang, S. Shan, and X. Chen. Modeling video dynamics with deep dynencoder. In ECCV, 2014. 2
    • (2014) ECCV
    • Yan, X.1    Chang, H.2    Shan, S.3    Chen, X.4
  • 52
    • 84952035580 scopus 로고    scopus 로고
    • Deep learning of scene-specific classifier for pedestrian detection
    • 1
    • X. Zeng, W. Ouyang, M. Wang, and X. Wang. Deep learning of scene-specific classifier for pedestrian detection. In ECCV, 2014. 1
    • (2014) ECCV
    • Zeng, X.1    Ouyang, W.2    Wang, M.3    Wang, X.4
  • 53
    • 84937556678 scopus 로고    scopus 로고
    • Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
    • 2
    • J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment. In ECCV, 2014. 2
    • (2014) ECCV
    • Zhang, J.1    Shan, S.2    Kan, M.3    Chen, X.4
  • 54
    • 84902133494 scopus 로고    scopus 로고
    • Learning discriminative hierarchical features for object recognition
    • 1
    • Z. Zuo and G. Wang. Learning discriminative hierarchical features for object recognition. Signal Processing Letters, 21(9):1159-1163, 2014. 1
    • (2014) Signal Processing Letters , vol.21 , Issue.9 , pp. 1159-1163
    • Zuo, Z.1    Wang, G.2
  • 55
    • 84931581819 scopus 로고    scopus 로고
    • Learning discriminative and shareable features for scene classification
    • 1
    • Z. Zuo, G. Wang, B. Shuai, L. Zhao, Q. Yang, and X. Jiang. Learning discriminative and shareable features for scene classification. In ECCV, 2014. 1
    • (2014) ECCV
    • Zuo, Z.1    Wang, G.2    Shuai, B.3    Zhao, L.4    Yang, Q.5    Jiang, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.