-
1
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
2
-
Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, 2013. 2
-
(2013)
NIPS
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
2
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
2
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012. 2
-
(2012)
ICML
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
3
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
1, 2
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014. 1, 2
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
4
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
1,2
-
D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CVPR, 2012. 1, 2
-
(2012)
CVPR
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
5
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
1,5
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009. 1, 5
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84898936638
-
Mid-level visual element discovery as discriminative mode seeking
-
7
-
C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013. 7
-
(2013)
NIPS
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
7
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
2
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014. 2
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
9
-
-
26444565569
-
Finding structure in time
-
1, 2
-
J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990. 1, 2
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1,2
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84938217896
-
Multi-scale orderless pooling of deep convolutional activation features
-
1, 2
-
Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014. 1, 2
-
(2014)
ECCV
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
12
-
-
84919832465
-
Towards end-to-end speech recognition with recurrent neural networks
-
2, 3
-
A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In ICML, 2014. 2, 3
-
(2014)
ICML
-
-
Graves, A.1
Jaitly, N.2
-
13
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
3
-
A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in Neural Information Processing Systems, pages 545-552, 2009. 3
-
(2009)
Advances in Neural Information Processing Systems
, pp. 545-552
-
-
Graves, A.1
Schmidhuber, J.2
-
14
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
1, 2
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 2
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
2
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006. 2
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
17
-
-
33947307527
-
Tutorial on training recurrent neural networks covering BPPT RTRL EKF and the "echo state network" approach
-
1,2
-
H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach. GMD-Forschungszentrum Informationstechnik, 2002. 1, 2
-
(2002)
GMD-Forschungszentrum Informationstechnik
-
-
Jaeger, H.1
-
18
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093, 4, 5
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 4, 5
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
19
-
-
84887325186
-
Blocks that shout: Distinctive parts for scene classification
-
7
-
M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013. 7
-
(2013)
CVPR
-
-
Juneja, M.1
Vedaldi, A.2
Jawahar, C.3
Zisserman, A.4
-
20
-
-
84919782249
-
A clockwork rnn
-
2, 3
-
J. Koutník, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork rnn. In ICML, 2014. 2, 3
-
(2014)
ICML
-
-
Koutník, J.1
Greff, K.2
Gomez, F.3
Schmidhuber, J.4
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1, 2, 3, 5, 6, 7
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2, 3, 5, 6, 7
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
22
-
-
84911375886
-
Scalable multitask representation learning for scene classification
-
6
-
M. Lapin, B. Schiele, and M. Hein. Scalable multitask representation learning for scene classification. In CVPR, 2014. 6
-
(2014)
CVPR
-
-
Lapin, M.1
Schiele, B.2
Hein, M.3
-
23
-
-
0000494467
-
Handwritten digit recognition with a back-propagation network
-
1, 2
-
B. B. Le Cun, J. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Handwritten digit recognition with a back-propagation network. In NIPS, 1990. 1, 2
-
(1990)
NIPS
-
-
Le Cun, B.B.1
Denker, J.2
Henderson, D.3
Howard, R.E.4
Hubbard, W.5
Jackel, L.D.6
-
24
-
-
85009928594
-
-
arXiv preprint arXiv: 1409.5185, 1,2
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. arXiv preprint arXiv:1409.5185, 2014. 1, 2
-
(2014)
Deeplysupervised Nets
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
25
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
2
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009. 2
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
26
-
-
85162513516
-
Object bank: A high-level image representation for scene classification & semantic feature sparsification
-
7
-
L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010. 7
-
(2010)
NIPS
-
-
Li, L.-J.1
Su, H.2
Fei-Fei, L.3
Xing, E.P.4
-
27
-
-
84887327253
-
Harvesting mid-level visual concepts from large-scale internet images
-
7
-
Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013. 7
-
(2013)
CVPR
-
-
Li, Q.1
Wu, J.2
Tu, Z.3
-
28
-
-
84911452981
-
Learning important spatial pooling regions for scene classification
-
7
-
D. Lin, C. Lu, R. Liao, and J. Jia. Learning important spatial pooling regions for scene classification. In CVPR, 2014. 7
-
(2014)
CVPR
-
-
Lin, D.1
Lu, C.2
Liao, R.3
Jia, J.4
-
29
-
-
84930206401
-
Joint feature learning for face recognition
-
1
-
J. Lu, V. E. Liong, G. Wang, and P. Moulin. Joint feature learning for face recognition. Information Forensics and Security, IEEE Transactions on, 2015. 1
-
(2015)
Information Forensics and Security, IEEE Transactions on
-
-
Lu, J.1
Liong, V.E.2
Wang, G.3
Moulin, P.4
-
31
-
-
79959829092
-
Recurrent neural network based language model
-
2, 3
-
T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur. Recurrent neural network based language model. In INTERSPEECH, 2010. 2, 3
-
(2010)
Interspeech
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Cernocky, J.4
Khudanpur, S.5
-
32
-
-
78149306047
-
3d object recognition with deep belief nets
-
2
-
V. Nair and G. E. Hinton. 3d object recognition with deep belief nets. In NIPS, 2009. 2
-
(2009)
NIPS
-
-
Nair, V.1
Hinton, G.E.2
-
33
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
2
-
M. Oquab, L. Bottou, I. Laptev, J. Sivic, et al. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 2
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
34
-
-
84952047704
-
-
arXiv preprint arXiv: 1409.3505, 1
-
W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, et al. Deepid-net: multi-stage and deformable deep convolutional neural networks for object detection. arXiv preprint arXiv:1409.3505, 2014. 1
-
(2014)
Deepid-net: Multi-stage and Deformable Deep Convolutional Neural Networks for Object Detection
-
-
Ouyang, W.1
Luo, P.2
Zeng, X.3
Qiu, S.4
Tian, Y.5
Li, H.6
Yang, S.7
Wang, Z.8
Xiong, Y.9
Qian, C.10
-
35
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling
-
3
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014. 3
-
(2014)
ICML
-
-
Pinheiro, P.1
Collobert, R.2
-
36
-
-
70450162315
-
Recognizing indoor scenes
-
5, 6, 7
-
A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009. 5, 6, 7
-
(2009)
CVPR
-
-
Quattoni, A.1
Torralba, A.2
-
38
-
-
84883487458
-
Image classification with the fisher vector: Theory and practice
-
6
-
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. International journal of computer vision, 105(3):222-245, 2013. 6
-
(2013)
International Journal of Computer Vision
, vol.105
, Issue.3
, pp. 222-245
-
-
Sánchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
40
-
-
84906347546
-
-
arXiv preprint arXiv:1312.6229, 1, 2
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013. 1, 2
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
42
-
-
84911126535
-
Deep learning face representation from predicting 10,000 classes
-
1
-
Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, 2014. 1
-
(2014)
CVPR
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
44
-
-
84858768256
-
The recurrent temporal restricted boltzmann machine
-
2
-
I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS, 2009. 2
-
(2009)
NIPS
-
-
Sutskever, I.1
Hinton, G.E.2
Taylor, G.W.3
-
45
-
-
84964983441
-
-
arXiv preprint arXiv:1409.4842, 1, 2
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014. 1, 2
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
46
-
-
84911198048
-
Deepface: Closing the gap to human-level performance in face verification
-
1, 2
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014. 1, 2
-
(2014)
CVPR
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
47
-
-
84924350847
-
Video tracking using learned hierarchical features
-
1
-
L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang. Video tracking using learned hierarchical features. Image Processing, IEEE Transactions on, 24(4):1424-1435, 2015. 1
-
(2015)
Image Processing IEEE Transactions on
, vol.24
, Issue.4
, pp. 1424-1435
-
-
Wang, L.1
Liu, T.2
Wang, G.3
Chan, K.L.4
Yang, Q.5
-
48
-
-
84897567827
-
Max-margin multiple-instance dictionary learning
-
7
-
X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu. Max-margin multiple-instance dictionary learning. In ICML, 2013. 7
-
(2013)
ICML
-
-
Wang, X.1
Wang, B.2
Bai, X.3
Liu, W.4
Tu, Z.5
-
49
-
-
77955988947
-
Sun database: Large-scale scene recognition from abbey to zoo
-
5, 6
-
J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 5, 6
-
(2010)
CVPR
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.A.3
Oliva, A.4
Torralba, A.5
-
50
-
-
84952053879
-
Modeling video dynamics with deep dynencoder
-
2
-
X. Yan, H. Chang, S. Shan, and X. Chen. Modeling video dynamics with deep dynencoder. In ECCV, 2014. 2
-
(2014)
ECCV
-
-
Yan, X.1
Chang, H.2
Shan, S.3
Chen, X.4
-
52
-
-
84952035580
-
Deep learning of scene-specific classifier for pedestrian detection
-
1
-
X. Zeng, W. Ouyang, M. Wang, and X. Wang. Deep learning of scene-specific classifier for pedestrian detection. In ECCV, 2014. 1
-
(2014)
ECCV
-
-
Zeng, X.1
Ouyang, W.2
Wang, M.3
Wang, X.4
-
53
-
-
84937556678
-
Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
-
2
-
J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment. In ECCV, 2014. 2
-
(2014)
ECCV
-
-
Zhang, J.1
Shan, S.2
Kan, M.3
Chen, X.4
-
54
-
-
84902133494
-
Learning discriminative hierarchical features for object recognition
-
1
-
Z. Zuo and G. Wang. Learning discriminative hierarchical features for object recognition. Signal Processing Letters, 21(9):1159-1163, 2014. 1
-
(2014)
Signal Processing Letters
, vol.21
, Issue.9
, pp. 1159-1163
-
-
Zuo, Z.1
Wang, G.2
-
55
-
-
84931581819
-
Learning discriminative and shareable features for scene classification
-
1
-
Z. Zuo, G. Wang, B. Shuai, L. Zhao, Q. Yang, and X. Jiang. Learning discriminative and shareable features for scene classification. In ECCV, 2014. 1
-
(2014)
ECCV
-
-
Zuo, Z.1
Wang, G.2
Shuai, B.3
Zhao, L.4
Yang, Q.5
Jiang, X.6
|