메뉴 건너뛰기




Volumn 22, Issue 3, 2017, Pages 254-275

Current Trends in Multidrug Optimization: An Alley of Future Successful Treatment of Complex Disorders

Author keywords

drug mixture optimization; drug drug interactions; feedback system control; response surface; synergistic drug combinations; top down approach

Indexed keywords

BIOINFORMATICS; COMPLEX NETWORKS; DIAGNOSIS; DISEASES; DRUG INTERACTIONS; ONCOLOGY; OPTIMIZATION;

EID: 85019380720     PISSN: 24726303     EISSN: 24726311     Source Type: Journal    
DOI: 10.1177/2472630316682338     Document Type: Review
Times cited : (33)

References (120)
  • 1
    • 23944482649 scopus 로고    scopus 로고
    • Challenges and Successes in Developing New Therapies for Hepatitis C
    • De Francesco R, Migliaccio G. Challenges and Successes in Developing New Therapies for Hepatitis C. Nature 2005, 436 (7053), 953–960.
    • (2005) Nature , vol.436 , Issue.7053 , pp. 953-960
    • De Francesco, R.1    Migliaccio, G.2
  • 2
    • 67650488269 scopus 로고    scopus 로고
    • Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity
    • Lehar J., Krueger A. S., Avery W.. Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity. Nat. Biotechnol. 2009, 27 (7), 659–666.
    • (2009) Nat. Biotechnol , vol.27 , Issue.7 , pp. 659-666
    • Lehar, J.1    Krueger, A.S.2    Avery, W.3
  • 3
    • 0242363264 scopus 로고    scopus 로고
    • Target Discovery
    • Lindsay M. A., Target Discovery. Nat. Rev. Drug Discov. 2003, 2 (10), 831–838.
    • (2003) Nat. Rev. Drug Discov , vol.2 , Issue.10 , pp. 831-838
    • Lindsay, M.A.1
  • 4
    • 33744493376 scopus 로고    scopus 로고
    • Targeting Tyrosine Kinases in Cancer: The Second Wave
    • Baselga J., Targeting Tyrosine Kinases in Cancer: The Second Wave. Science 2006, 312 (5777), 1175–1178.
    • (2006) Science , vol.312 , Issue.5777 , pp. 1175-1178
    • Baselga, J.1
  • 5
    • 77950688983 scopus 로고    scopus 로고
    • Anti-Angiogenic Tyrosine Kinase Inhibitors: What Is Their Mechanism of Action?
    • Gotink K. J., Verheul H. M., Anti-Angiogenic Tyrosine Kinase Inhibitors: What Is Their Mechanism of Action? Angiogenesis 2010, 13 (1), 1–14.
    • (2010) Angiogenesis , vol.13 , Issue.1 , pp. 1-14
    • Gotink, K.J.1    Verheul, H.M.2
  • 6
    • 33845914783 scopus 로고    scopus 로고
    • 2-Year Follow-Up of Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer: A Randomised Controlled Trial
    • Smith I., Procter M., Gelber R. D.. 2-Year Follow-Up of Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer: A Randomised Controlled Trial. Lancet 2007, 369 (9555), 29–36.
    • (2007) Lancet , vol.369 , Issue.9555 , pp. 29-36
    • Smith, I.1    Procter, M.2    Gelber, R.D.3
  • 7
    • 33845444046 scopus 로고    scopus 로고
    • Five-Year Follow-Up of Patients Receiving Imatinib for Chronic Myeloid Leukemia
    • Druker B. J., Guilhot F., O’Brien S. G.. Five-Year Follow-Up of Patients Receiving Imatinib for Chronic Myeloid Leukemia. N. Engl. J. Med. 2006, 355 (23), 2408–2417.
    • (2006) N. Engl. J. Med , vol.355 , Issue.23 , pp. 2408-2417
    • Druker, B.J.1    Guilhot, F.2    O’Brien, S.G.3
  • 8
    • 2342471392 scopus 로고    scopus 로고
    • Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib
    • Lynch T. J., Bell D. W., Sordella R.. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. 2004, 350 (21), 2129–2139.
    • (2004) N. Engl. J. Med , vol.350 , Issue.21 , pp. 2129-2139
    • Lynch, T.J.1    Bell, D.W.2    Sordella, R.3
  • 9
    • 33747620519 scopus 로고    scopus 로고
    • Systems Biology and Combination Therapy in the Quest for Clinical Efficacy
    • Fitzgerald J. B., Schoeberl B., Nielsen U. B.. Systems Biology and Combination Therapy in the Quest for Clinical Efficacy. Nat. Chem. Biol. 2006, 2 (9), 458–466.
    • (2006) Nat. Chem. Biol , vol.2 , Issue.9 , pp. 458-466
    • Fitzgerald, J.B.1    Schoeberl, B.2    Nielsen, U.B.3
  • 10
    • 84942325212 scopus 로고    scopus 로고
    • Vertical Suppression of the EGFR Pathway Prevents Onset of Resistance in Colorectal Cancers
    • Misale S., Bozic I., Tong J.. Vertical Suppression of the EGFR Pathway Prevents Onset of Resistance in Colorectal Cancers. Nat. Commun. 2015, 6, 8305.
    • (2015) Nat. Commun , vol.6 , pp. 8305
    • Misale, S.1    Bozic, I.2    Tong, J.3
  • 11
    • 84881483492 scopus 로고    scopus 로고
    • Evolutionary Dynamics of Cancer in Response to Targeted Combination Therapy
    • Bozic I., Reiter J. G., Allen B.. Evolutionary Dynamics of Cancer in Response to Targeted Combination Therapy. eLife 2013, 2, e00747.
    • (2013) eLife , vol.2 , pp. e00747
    • Bozic, I.1    Reiter, J.G.2    Allen, B.3
  • 12
    • 84944916590 scopus 로고    scopus 로고
    • The Influence of Subclonal Resistance Mutations on Targeted Cancer Therapy
    • Schmitt M. W., Loeb L. A., Salk J. J., The Influence of Subclonal Resistance Mutations on Targeted Cancer Therapy. Nat. Rev. Clin. Oncol. 2016, 13 (6), 335–347.
    • (2016) Nat. Rev. Clin. Oncol , vol.13 , Issue.6 , pp. 335-347
    • Schmitt, M.W.1    Loeb, L.A.2    Salk, J.J.3
  • 13
    • 84855882587 scopus 로고    scopus 로고
    • Novel Computational Approaches to Polypharmacology as a Means to Define Responses to Individual Drugs
    • Xie L., Xie L., Kinnings S. L.. Novel Computational Approaches to Polypharmacology as a Means to Define Responses to Individual Drugs. Ann. Rev. Pharmacol. Tox. 2012, 52, 361–379.
    • (2012) Ann. Rev. Pharmacol. Tox , vol.52 , pp. 361-379
    • Xie, L.1    Xie, L.2    Kinnings, S.L.3
  • 14
    • 84911890466 scopus 로고    scopus 로고
    • The Emerging Quest for the Optimal Angiostatic Combination Therapy
    • Griffioen A. W., Weiss A., Berndsen R. H.. The Emerging Quest for the Optimal Angiostatic Combination Therapy. Biochem. Soc. Trans. 2014, 42(6), 1608–1615.
    • (2014) Biochem. Soc. Trans , vol.42 , Issue.6 , pp. 1608-1615
    • Griffioen, A.W.1    Weiss, A.2    Berndsen, R.H.3
  • 15
    • 0011667310 scopus 로고
    • Quadruple Combination Therapy (VAMP) for Acute Lymphocytic Leukemia of Childhood
    • Freireich E. J., Karon M., Frei E., III. Quadruple Combination Therapy (VAMP) for Acute Lymphocytic Leukemia of Childhood. Proc. Am. Assoc. Cancer Res. 1964, 5, 20.
    • (1964) Proc. Am. Assoc. Cancer Res , vol.5 , pp. 20
    • Freireich, E.J.1    Karon, M.2    Frei, E.3
  • 16
    • 32244438770 scopus 로고    scopus 로고
    • Preclinical Modeling of Combination Treatments: Fantasy or Requirement?
    • Decker S., Sausville E. A., Preclinical Modeling of Combination Treatments: Fantasy or Requirement? Ann. N.Y. Acad. Sci. 2005, 1059, 61–69.
    • (2005) Ann. N.Y. Acad. Sci , vol.1059 , pp. 61-69
    • Decker, S.1    Sausville, E.A.2
  • 17
    • 59749091477 scopus 로고    scopus 로고
    • Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer
    • Tol J., Koopman M., Cats A.. Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer. N. Engl. J. Med. 2009, 360 (6), 563–572.
    • (2009) N. Engl. J. Med , vol.360 , Issue.6 , pp. 563-572
    • Tol, J.1    Koopman, M.2    Cats, A.3
  • 18
    • 79959549917 scopus 로고    scopus 로고
    • Temsirolimus and Bevacizumab, or Sunitinib, or Interferon Alfa and Bevacizumab for Patients with Advanced Renal Cell Carcinoma (TORAVA): A Randomised Phase 2 Trial
    • Negrier S., Gravis G., Perol D.. Temsirolimus and Bevacizumab, or Sunitinib, or Interferon Alfa and Bevacizumab for Patients with Advanced Renal Cell Carcinoma (TORAVA): A Randomised Phase 2 Trial. Lancet Oncol. 2011, 12 (7), 673–680.
    • (2011) Lancet Oncol , vol.12 , Issue.7 , pp. 673-680
    • Negrier, S.1    Gravis, G.2    Perol, D.3
  • 19
    • 49249113484 scopus 로고    scopus 로고
    • Combination Targeted Therapy with Sorafenib and Bevacizumab Results in Enhanced Toxicity and Antitumor Activity
    • Azad N. S., Posadas E. M., Kwitkowski V. E.. Combination Targeted Therapy with Sorafenib and Bevacizumab Results in Enhanced Toxicity and Antitumor Activity. J. Clin. Oncol. 2008, 26 (22), 3709–3714.
    • (2008) J. Clin. Oncol , vol.26 , Issue.22 , pp. 3709-3714
    • Azad, N.S.1    Posadas, E.M.2    Kwitkowski, V.E.3
  • 20
    • 84940394410 scopus 로고    scopus 로고
    • BEST: A Randomized Phase II Study of Vascular Endothelial Growth Factor, RAF Kinase, and Mammalian Target of Rapamycin Combination Targeted Therapy with Bevacizumab, Sorafenib, and Temsirolimus in Advanced Renal Cell Carcinoma—A Trial of the ECOG-ACRIN Cancer Research Group (E2804)
    • Flaherty K. T., Manola J. B., Pins M.. BEST: A Randomized Phase II Study of Vascular Endothelial Growth Factor, RAF Kinase, and Mammalian Target of Rapamycin Combination Targeted Therapy with Bevacizumab, Sorafenib, and Temsirolimus in Advanced Renal Cell Carcinoma—A Trial of the ECOG-ACRIN Cancer Research Group (E2804). J. Clin. Oncol. 2015, 33 (21), 2384–2391.
    • (2015) J. Clin. Oncol , vol.33 , Issue.21 , pp. 2384-2391
    • Flaherty, K.T.1    Manola, J.B.2    Pins, M.3
  • 21
    • 84904661674 scopus 로고    scopus 로고
    • In Vitro Clinical Trials: The Future of Cell-Based Profiling
    • Ross N. T., Wilson C. J., In Vitro Clinical Trials: The Future of Cell-Based Profiling. Front. Pharmacol. 2014, 5, 121.
    • (2014) Front. Pharmacol , vol.5 , pp. 121
    • Ross, N.T.1    Wilson, C.J.2
  • 22
    • 84865973305 scopus 로고    scopus 로고
    • Impact of Genetic Dynamics and Single-Cell Heterogeneity on Development of Nonstandard Personalized Medicine Strategies for Cancer
    • Beckman R. A., Schemmann G. S., Yeang C. H., Impact of Genetic Dynamics and Single-Cell Heterogeneity on Development of Nonstandard Personalized Medicine Strategies for Cancer. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (36), 14586–14591.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , Issue.36 , pp. 14586-14591
    • Beckman, R.A.1    Schemmann, G.S.2    Yeang, C.H.3
  • 23
    • 77952557918 scopus 로고    scopus 로고
    • Missing Heritability and Strategies for Finding the Underlying Causes of Complex Disease
    • Eichler E. E., Flint J., Gibson G.. Missing Heritability and Strategies for Finding the Underlying Causes of Complex Disease. Nat. Rev. Genet. 2010, 11 (6), 446–450.
    • (2010) Nat. Rev. Genet , vol.11 , Issue.6 , pp. 446-450
    • Eichler, E.E.1    Flint, J.2    Gibson, G.3
  • 24
    • 70349956433 scopus 로고    scopus 로고
    • Finding the Missing Heritability of Complex Diseases
    • Manolio T. A., Collins F. S., Cox N. J.. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461 (7265), 747–753.
    • (2009) Nature , vol.461 , Issue.7265 , pp. 747-753
    • Manolio, T.A.1    Collins, F.S.2    Cox, N.J.3
  • 25
    • 84939450802 scopus 로고    scopus 로고
    • Precision Medicine: Beyond the Inflection Point
    • Hawgood S., Hook-Barnard I. G., O’Brien T. C.. Precision Medicine: Beyond the Inflection Point. Sci. Transl. Med. 2015, 7 (300), 300ps17.
    • (2015) Sci. Transl. Med , vol.7 , Issue.300 , pp. 300ps17
    • Hawgood, S.1    Hook-Barnard, I.G.2    O’Brien, T.C.3
  • 26
    • 33746622984 scopus 로고    scopus 로고
    • Strategies for Optimizing Combinations of Molecularly Targeted Anticancer Agents
    • Dancey J. E., Chen H. X., Strategies for Optimizing Combinations of Molecularly Targeted Anticancer Agents. Nat. Rev. Drug Discov. 2006, 5 (8), 649–659.
    • (2006) Nat. Rev. Drug Discov , vol.5 , Issue.8 , pp. 649-659
    • Dancey, J.E.1    Chen, H.X.2
  • 27
    • 78649740382 scopus 로고    scopus 로고
    • Systems Approaches and Algorithms for Discovery of Combinatorial Therapies
    • Feala J. D., Cortes J., Duxbury P. M.. Systems Approaches and Algorithms for Discovery of Combinatorial Therapies. WIRE Syst. Biol. Med. 2010, 2 (2), 181–193.
    • (2010) WIRE Syst. Biol. Med , vol.2 , Issue.2 , pp. 181-193
    • Feala, J.D.1    Cortes, J.2    Duxbury, P.M.3
  • 28
    • 84906678385 scopus 로고    scopus 로고
    • Enhanced Killing of Antibiotic-Resistant Bacteria Enabled by Massively Parallel Combinatorial Genetics
    • Cheng A. A., Ding H., Lu T. K., Enhanced Killing of Antibiotic-Resistant Bacteria Enabled by Massively Parallel Combinatorial Genetics. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (34), 12462–12467.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , Issue.34 , pp. 12462-12467
    • Cheng, A.A.1    Ding, H.2    Lu, T.K.3
  • 29
    • 77649101892 scopus 로고    scopus 로고
    • Protein Dynamics in Drug Combinations: A Linear Superposition of Individual-Drug Responses
    • Geva-Zatorsky N., Dekel E., Cohen A. A.. Protein Dynamics in Drug Combinations: A Linear Superposition of Individual-Drug Responses. Cell 2010, 140 (5), 643–651.
    • (2010) Cell , vol.140 , Issue.5 , pp. 643-651
    • Geva-Zatorsky, N.1    Dekel, E.2    Cohen, A.A.3
  • 30
    • 84864369297 scopus 로고    scopus 로고
    • Mechanism-Independent Method for Predicting Response to Multidrug Combinations in Bacteria
    • Wood K., Nishida S., Sontag E. D.. Mechanism-Independent Method for Predicting Response to Multidrug Combinations in Bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (30), 12254–12259.
    • (2012) Proc. Natl. Acad. Sci. U.S.A , vol.109 , Issue.30 , pp. 12254-12259
    • Wood, K.1    Nishida, S.2    Sontag, E.D.3
  • 32
    • 46949087369 scopus 로고    scopus 로고
    • Modeling and Optimization I: Usability of Response Surface Methodology
    • Bas D., Boyaci I. H., Modeling and Optimization I: Usability of Response Surface Methodology. J. Food Eng. 2007, 78 (3), 836–845.
    • (2007) J. Food Eng , vol.78 , Issue.3 , pp. 836-845
    • Bas, D.1    Boyaci, I.H.2
  • 33
    • 0018647566 scopus 로고
    • An Improved Method for Analyzing Survival Data from Combination Chemotherapy Experiments
    • Carter W. H., Jr. Stablein D. M., Wampler G. L., An Improved Method for Analyzing Survival Data from Combination Chemotherapy Experiments. Cancer Res. 1979, 39 (9), 3446–3453.
    • (1979) Cancer Res , vol.39 , Issue.9 , pp. 3446-3453
    • Carter, W.H.1    Stablein, D.M.2    Wampler, G.L.3
  • 34
    • 0022595644 scopus 로고
    • Review of the Application of Response Surface Methodology in the Combination Therapy of Cancer
    • Carter W. H., Jr. Wampler G. L., Review of the Application of Response Surface Methodology in the Combination Therapy of Cancer. Cancer Treat. Rep. 1986, 70 (1), 133–140.
    • (1986) Cancer Treat. Rep , vol.70 , Issue.1 , pp. 133-140
    • Carter, W.H.1    Wampler, G.L.2
  • 35
    • 0019996964 scopus 로고
    • Drug Activity and Therapeutic Synergism in Cancer Treatment
    • Carter W. H., Jr. Wampler G. L., Stablein D. M.. Drug Activity and Therapeutic Synergism in Cancer Treatment. Cancer Res. 1982, 42 (8), 2963–2971.
    • (1982) Cancer Res , vol.42 , Issue.8 , pp. 2963-2971
    • Carter, W.H.1    Wampler, G.L.2    Stablein, D.M.3
  • 36
    • 0020821523 scopus 로고
    • Confidence Regions for Constrained Optima in Response-Surface Experiments
    • Stablein D. M., Carter W. H., Jr. Wampler G. L., Confidence Regions for Constrained Optima in Response-Surface Experiments. Biometrics 1983, 39 (3), 759–763.
    • (1983) Biometrics , vol.39 , Issue.3 , pp. 759-763
    • Stablein, D.M.1    Carter, W.H.2    Wampler, G.L.3
  • 38
    • 84942795835 scopus 로고    scopus 로고
    • A Streamlined Search Technology for Identification of Synergistic Drug Combinations
    • Weiss A., Berndsen R. H., Ding X.. A Streamlined Search Technology for Identification of Synergistic Drug Combinations. Sci. Rep. 2015, 5, 14508.
    • (2015) Sci. Rep , vol.5 , pp. 14508
    • Weiss, A.1    Berndsen, R.H.2    Ding, X.3
  • 39
    • 27944432172 scopus 로고    scopus 로고
    • A Unifying Concept for Assessing Toxicological Interactions: Changes in Slope
    • Gennings C., Carter W. H., Jr. Carchman R. A.. A Unifying Concept for Assessing Toxicological Interactions: Changes in Slope. Toxicol. Sci. 2005, 88 (2), 287–297.
    • (2005) Toxicol. Sci , vol.88 , Issue.2 , pp. 287-297
    • Gennings, C.1    Carter, W.H.2    Carchman, R.A.3
  • 41
    • 84872179153 scopus 로고    scopus 로고
    • Defining Principles of Combination Drug Mechanisms of Action
    • Pritchard J. R., Bruno P. M., Gilbert L. A.. Defining Principles of Combination Drug Mechanisms of Action. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (2), E170–E179.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , Issue.2 , pp. E170-E179
    • Pritchard, J.R.1    Bruno, P.M.2    Gilbert, L.A.3
  • 42
    • 78649760578 scopus 로고    scopus 로고
    • Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions
    • Chen H. C., Gau V., Zhang D. D.. Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions. PLoS One 2010, 5 (11), e15472.
    • (2010) PLoS One , vol.5 , Issue.11 , pp. e15472
    • Chen, H.C.1    Gau, V.2    Zhang, D.D.3
  • 43
    • 84892747080 scopus 로고    scopus 로고
    • Combining Two-Level and Three-Level Orthogonal Arrays for Factor Screening and Response Surface Exploration
    • Xu H., Jaynes J., Ding X., Combining Two-Level and Three-Level Orthogonal Arrays for Factor Screening and Response Surface Exploration. Stat. Sin. 2014, 24, 269–289.
    • (2014) Stat. Sin , vol.24 , pp. 269-289
    • Xu, H.1    Jaynes, J.2    Ding, X.3
  • 44
    • 84963753977 scopus 로고    scopus 로고
    • Output-Driven Feedback System Control Platform Optimizes Combinatorial Therapy of Tuberculosis Using a Macrophage Cell Culture Model
    • Silva A., Lee B. Y., Clemens D. L.. Output-Driven Feedback System Control Platform Optimizes Combinatorial Therapy of Tuberculosis Using a Macrophage Cell Culture Model. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (15), E2172–E2179.
    • (2016) Proc. Natl. Acad. Sci. U.S.A , vol.113 , Issue.15 , pp. E2172-E2179
    • Silva, A.1    Lee, B.Y.2    Clemens, D.L.3
  • 45
    • 84925639530 scopus 로고    scopus 로고
    • Mechanism-Independent Optimization of Combinatorial Nanodiamond and Unmodified Drug Delivery Using a Phenotypically Driven Platform Technology
    • Wang H., Lee D. K., Chen K. Y.. Mechanism-Independent Optimization of Combinatorial Nanodiamond and Unmodified Drug Delivery Using a Phenotypically Driven Platform Technology. ACS Nano 2015, 9 (3), 3332–3344.
    • (2015) ACS Nano , vol.9 , Issue.3 , pp. 3332-3344
    • Wang, H.1    Lee, D.K.2    Chen, K.Y.3
  • 46
    • 84929493559 scopus 로고    scopus 로고
    • Discovering Anti-Platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies
    • Lombardi F., Golla K., Fitzpatrick D. J.. Discovering Anti-Platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies. PLoS Comput. Biol. 2015, 11 (4), e1004119.
    • (2015) PLoS Comput. Biol , vol.11 , Issue.4 , pp. e1004119
    • Lombardi, F.1    Golla, K.2    Fitzpatrick, D.J.3
  • 47
    • 84877775168 scopus 로고    scopus 로고
    • Development and Validation of a General Approach to Predict and Quantify the Synergism of Anti-Cancer Drugs Using Experimental Design and Artificial Neural Networks
    • Pivetta T., Isaia F., Trudu F.. Development and Validation of a General Approach to Predict and Quantify the Synergism of Anti-Cancer Drugs Using Experimental Design and Artificial Neural Networks. Talanta 2013, 115, 84–93.
    • (2013) Talanta , vol.115 , pp. 84-93
    • Pivetta, T.1    Isaia, F.2    Trudu, F.3
  • 48
    • 80053440508 scopus 로고    scopus 로고
    • Cross-Validated Stepwise Regression for Identification of Novel Non-Nucleoside Reverse Transcriptase Inhibitor Resistance Associated Mutations
    • Van der Borght K., Van Craenenbroeck E., Lecocq P.. Cross-Validated Stepwise Regression for Identification of Novel Non-Nucleoside Reverse Transcriptase Inhibitor Resistance Associated Mutations. BMC Bioinformatics 2011, 12, 386.
    • (2011) BMC Bioinformatics , vol.12 , pp. 386
    • Van der Borght, K.1    Van Craenenbroeck, E.2    Lecocq, P.3
  • 49
    • 0034082017 scopus 로고    scopus 로고
    • Response Surface Model for Anesthetic Drug Interactions
    • Minto C. F., Schnider T. W., Short T. G.. Response Surface Model for Anesthetic Drug Interactions. Anesthesiology 2000, 92 (6), 1603–1616.
    • (2000) Anesthesiology , vol.92 , Issue.6 , pp. 1603-1616
    • Minto, C.F.1    Schnider, T.W.2    Short, T.G.3
  • 50
    • 84908069797 scopus 로고    scopus 로고
    • An Application of a Hill-Based Response Surface Model for a Drug Combination Experiment on Lung Cancer
    • Ning S., Xu H., Al-Shyoukh I.. An Application of a Hill-Based Response Surface Model for a Drug Combination Experiment on Lung Cancer. Stat. Med. 2014, 33 (24), 4227–4236.
    • (2014) Stat. Med , vol.33 , Issue.24 , pp. 4227-4236
    • Ning, S.1    Xu, H.2    Al-Shyoukh, I.3
  • 51
    • 33748794547 scopus 로고    scopus 로고
    • Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies
    • Chou T. C., Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58 (3), 621–681.
    • (2006) Pharmacol. Rev , vol.58 , Issue.3 , pp. 621-681
    • Chou, T.C.1
  • 52
    • 84897034626 scopus 로고    scopus 로고
    • Uncovering Scaling Laws to Infer Multidrug Response of Resistant Microbes and Cancer Cells
    • Wood K. B., Wood K. C., Nishida S.. Uncovering Scaling Laws to Infer Multidrug Response of Resistant Microbes and Cancer Cells. Cell Rep. 2014, 6 (6), 1073–1084.
    • (2014) Cell Rep , vol.6 , Issue.6 , pp. 1073-1084
    • Wood, K.B.1    Wood, K.C.2    Nishida, S.3
  • 53
    • 84861392612 scopus 로고    scopus 로고
    • Trade-Offs between Drug Toxicity and Benefit in the Multi-Antibiotic Resistance System Underlie Optimal Growth of
    • Wood K. B., Cluzel P., Trade-Offs between Drug Toxicity and Benefit in the Multi-Antibiotic Resistance System Underlie Optimal Growth of E. coli. BMC Syst. Biol 2012, 6, 48.
    • (2012) E. coli. BMC Syst. Biol , vol.6 , pp. 48
    • Wood, K.B.1    Cluzel, P.2
  • 54
    • 84963491185 scopus 로고    scopus 로고
    • Individualizing Liver Transplant Immunosuppression Using a Phenotypic Personalized Medicine Platform
    • Zarrinpar A., Lee D. K., Silva A.. Individualizing Liver Transplant Immunosuppression Using a Phenotypic Personalized Medicine Platform. Sci. Transl. Med. 2016, 8 (333), 333ra49.
    • (2016) Sci. Transl. Med , vol.8 , Issue.333 , pp. 333ra49
    • Zarrinpar, A.1    Lee, D.K.2    Silva, A.3
  • 55
    • 0042884371 scopus 로고    scopus 로고
    • Neural Network Based Optimization of Drug Formulations
    • Takayama K., Fujikawa M., Obata Y.. Neural Network Based Optimization of Drug Formulations. Adv. Drug Deliv. Rev. 2003, 55 (9), 1217–1231.
    • (2003) Adv. Drug Deliv. Rev , vol.55 , Issue.9 , pp. 1217-1231
    • Takayama, K.1    Fujikawa, M.2    Obata, Y.3
  • 56
    • 84908145917 scopus 로고    scopus 로고
    • Machine Learning-Based Prediction of Drug-Drug Interactions by Integrating Drug Phenotypic, Therapeutic, Chemical, and Genomic Properties
    • Cheng F., Zhao Z., Machine Learning-Based Prediction of Drug-Drug Interactions by Integrating Drug Phenotypic, Therapeutic, Chemical, and Genomic Properties. J. Am. Med. Inform. Assoc. 2014, 21 (e2), e278–e286.
    • (2014) J. Am. Med. Inform. Assoc , vol.21 , Issue.e2 , pp. e278-e286
    • Cheng, F.1    Zhao, Z.2
  • 57
    • 84867675481 scopus 로고    scopus 로고
    • Drug-Drug Interaction through Molecular Structure Similarity Analysis
    • Vilar S., Harpaz R., Uriarte E.. Drug-Drug Interaction through Molecular Structure Similarity Analysis. J. Am. Med. Inform Assoc. 2012, 19 (6), 1066–1074.
    • (2012) J. Am. Med. Inform Assoc , vol.19 , Issue.6 , pp. 1066-1074
    • Vilar, S.1    Harpaz, R.2    Uriarte, E.3
  • 58
    • 0034740222 scopus 로고    scopus 로고
    • Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis
    • Burbidge R., Trotter M., Buxton B.. Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis. Comput. Chem. 2001, 26 (1), 5–14.
    • (2001) Comput. Chem , vol.26 , Issue.1 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3
  • 59
    • 0037365194 scopus 로고    scopus 로고
    • Active Learning with Support Vector Machines in the Drug Discovery Process
    • Warmuth M. K., Liao J., Ratsch G.. Active Learning with Support Vector Machines in the Drug Discovery Process. J. Chem. Inf. Comput. Sci. 2003, 43 (2), 667–673.
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , Issue.2 , pp. 667-673
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3
  • 60
    • 18244432236 scopus 로고    scopus 로고
    • Predicting the Outcome of Prostate Biopsy in Screen-Positive Men by a Multilayer Perceptron Network
    • Finne P., Finne R., Auvinen A.. Predicting the Outcome of Prostate Biopsy in Screen-Positive Men by a Multilayer Perceptron Network. Urology 2000, 56 (3), 418–422.
    • (2000) Urology , vol.56 , Issue.3 , pp. 418-422
    • Finne, P.1    Finne, R.2    Auvinen, A.3
  • 61
    • 0036988574 scopus 로고    scopus 로고
    • Artificial Neural Network Analysis for Predicting Pathological Stage of Clinically Localized Prostate Cancer in the Japanese Population
    • Matsui Y., Egawa S., Tsukayama C.. Artificial Neural Network Analysis for Predicting Pathological Stage of Clinically Localized Prostate Cancer in the Japanese Population. Jpn. J. Clin. Oncol. 2002, 32 (12), 530–535.
    • (2002) Jpn. J. Clin. Oncol , vol.32 , Issue.12 , pp. 530-535
    • Matsui, Y.1    Egawa, S.2    Tsukayama, C.3
  • 62
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble Machine Learning on Gene Expression Data for Cancer Classification
    • Tan A. C., Gilbert D., Ensemble Machine Learning on Gene Expression Data for Cancer Classification. Appl. Bioinformatics 2003, 2 (3 Suppl.), S75–S83.
    • (2003) Appl. Bioinformatics , vol.2 , Issue.3 , pp. S75-S83
    • Tan, A.C.1    Gilbert, D.2
  • 63
    • 84876958088 scopus 로고    scopus 로고
    • Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties
    • Menden M. P., Iorio F., Garnett M.. Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS One 2013, 8 (4), e61318.
    • (2013) PLoS One , vol.8 , Issue.4 , pp. e61318
    • Menden, M.P.1    Iorio, F.2    Garnett, M.3
  • 64
    • 84876563391 scopus 로고    scopus 로고
    • Genomics of Drug Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker Discovery in Cancer Cells
    • Yang W., Soares J., Greninger P.. Genomics of Drug Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker Discovery in Cancer Cells. Nucleic Acids Res. 2013, 41 (Database issue), D955–D961.
    • (2013) Nucleic Acids Res , vol.41 , Issue.Database issue , pp. D955-D961
    • Yang, W.1    Soares, J.2    Greninger, P.3
  • 65
    • 34147145974 scopus 로고    scopus 로고
    • Improved Prediction of Response to Antiretroviral Combination Therapy Using the Genetic Barrier to Drug Resistance
    • Altmann A., Beerenwinkel N., Sing T.. Improved Prediction of Response to Antiretroviral Combination Therapy Using the Genetic Barrier to Drug Resistance. Antivir. Ther. 2007, 12 (2), 169–178.
    • (2007) Antivir. Ther , vol.12 , Issue.2 , pp. 169-178
    • Altmann, A.1    Beerenwinkel, N.2    Sing, T.3
  • 66
    • 56449090551 scopus 로고    scopus 로고
    • Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland,. In, ;
    • Bickel S., Bogojeska J., Lengauer T.. In Multi-Task Learning for HIV Therapy Screening, Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008; pp 56–63.
    • (2008) Multi-Task Learning for HIV Therapy Screening , pp. 56-63
    • Bickel, S.1    Bogojeska, J.2    Lengauer, T.3
  • 67
    • 84856433482 scopus 로고    scopus 로고
    • Predicting Response to Antiretroviral Treatment by Machine Learning: The EuResist Project
    • Zazzi M., Incardona F., Rosen-Zvi M.. Predicting Response to Antiretroviral Treatment by Machine Learning: The EuResist Project. Intervirology 2012, 55 (2), 123–127.
    • (2012) Intervirology , vol.55 , Issue.2 , pp. 123-127
    • Zazzi, M.1    Incardona, F.2    Rosen-Zvi, M.3
  • 68
    • 46249127515 scopus 로고    scopus 로고
    • Selecting Anti-HIV Therapies Based on a Variety of Genomic and Clinical Factors
    • Rosen-Zvi M., Altmann A., Prosperi M.. Selecting Anti-HIV Therapies Based on a Variety of Genomic and Clinical Factors. Bioinformatics 2008, 24 (13), i399–i406.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i399-i406
    • Rosen-Zvi, M.1    Altmann, A.2    Prosperi, M.3
  • 69
    • 0034532446 scopus 로고    scopus 로고
    • PAPNET-Assisted Primary Screening of Conventional Cervical Smears
    • Cenci M., Nagar C., Vecchione A., PAPNET-Assisted Primary Screening of Conventional Cervical Smears. Anticancer Res. 2000, 20 (5C), 3887–3889.
    • (2000) Anticancer Res , vol.20 , Issue.5C , pp. 3887-3889
    • Cenci, M.1    Nagar, C.2    Vecchione, A.3
  • 70
    • 0028148549 scopus 로고
    • Artificial Neural Networks in the Diagnosis and Prognosis of Prostate Cancer: A Pilot Study
    • Snow P. B., Smith D. S., Catalona W. J., Artificial Neural Networks in the Diagnosis and Prognosis of Prostate Cancer: A Pilot Study. J. Urol. 1994, 152 (5 Pt 2), 1923–1926.
    • (1994) J. Urol , vol.152 , Issue.5 , pp. 1923-1926
    • Snow, P.B.1    Smith, D.S.2    Catalona, W.J.3
  • 71
    • 0025061132 scopus 로고
    • Direct Search Methods in the Optimisation of Cancer Chemotherapy Regimens
    • Berenbaum M. C., Direct Search Methods in the Optimisation of Cancer Chemotherapy Regimens. Br. J. Cancer 1990, 61 (1), 101–109.
    • (1990) Br. J. Cancer , vol.61 , Issue.1 , pp. 101-109
    • Berenbaum, M.C.1
  • 72
    • 0000238336 scopus 로고
    • A Simplex-Method for Function Minimization
    • Nelder J. A., Mead R., A Simplex-Method for Function Minimization. Comput. J. 1965, 7 (4), 308–313.
    • (1965) Comput. J , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 73
    • 0002606725 scopus 로고
    • A New Method of Constrained Optimization and a Comparison with Other Methods
    • Box M. J., A New Method of Constrained Optimization and a Comparison with Other Methods. Comput. J. 1965, 8 (1), 42–52.
    • (1965) Comput. J , vol.8 , Issue.1 , pp. 42-52
    • Box, M.J.1
  • 74
    • 0033979677 scopus 로고    scopus 로고
    • A Direct Search Procedure to Optimize Combinations of Epidural Bupivacaine, Fentanyl, and Clonidine for Postoperative Analgesia
    • Curatolo M., Schnider T. W., Petersen-Felix S.. A Direct Search Procedure to Optimize Combinations of Epidural Bupivacaine, Fentanyl, and Clonidine for Postoperative Analgesia. Anesthesiology 2000, 92 (2), 325–337.
    • (2000) Anesthesiology , vol.92 , Issue.2 , pp. 325-337
    • Curatolo, M.1    Schnider, T.W.2    Petersen-Felix, S.3
  • 75
    • 0036979815 scopus 로고    scopus 로고
    • Drug Combinations in Pain Treatment: A Review of the Published Evidence and a Method for Finding the Optimal Combination
    • Curatolo M., Sveticic G. Drug Combinations in Pain Treatment: A Review of the Published Evidence and a Method for Finding the Optimal Combination. Best Pract. Res. Clin. Anaesthesiol. 2002, 16 (4), 507–519.
    • (2002) Best Pract. Res. Clin. Anaesthesiol , vol.16 , Issue.4 , pp. 507-519
    • Curatolo, M.1    Sveticic, G.2
  • 76
    • 0242416963 scopus 로고    scopus 로고
    • Combinations of Morphine with Ketamine for Patient-Controlled Analgesia: A New Optimization Method
    • Sveticic G., Gentilini A., Eichenberger U.. Combinations of Morphine with Ketamine for Patient-Controlled Analgesia: A New Optimization Method. Anesthesiology 2003, 98 (5), 1195–1205.
    • (2003) Anesthesiology , vol.98 , Issue.5 , pp. 1195-1205
    • Sveticic, G.1    Gentilini, A.2    Eichenberger, U.3
  • 77
    • 58149166733 scopus 로고    scopus 로고
    • Search Algorithms as a Framework for the Optimization of Drug Combinations
    • Calzolari D., Bruschi S., Coquin L.. Search Algorithms as a Framework for the Optimization of Drug Combinations. PLoS Comput. Biol. 2008, 4 (12), e1000249.
    • (2008) PLoS Comput. Biol , vol.4 , Issue.12 , pp. e1000249
    • Calzolari, D.1    Bruschi, S.2    Coquin, L.3
  • 78
    • 84886714080 scopus 로고    scopus 로고
    • Bayesian Active Learning for Drug Combinations
    • Park M., Nassar M., Vikalo H., Bayesian Active Learning for Drug Combinations. IEEE Trans. Biomed. Eng. 2013, 60 (11), 3248–3255.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , Issue.11 , pp. 3248-3255
    • Park, M.1    Nassar, M.2    Vikalo, H.3
  • 79
    • 42449099889 scopus 로고    scopus 로고
    • Closed-Loop Control of Cellular Functions Using Combinatory Drugs Guided by a Stochastic Search Algorithm
    • Wong P. K., Yu F., Shahangian A.. Closed-Loop Control of Cellular Functions Using Combinatory Drugs Guided by a Stochastic Search Algorithm. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (13), 5105–5110.
    • (2008) Proc. Natl. Acad. Sci. U.S.A , vol.105 , Issue.13 , pp. 5105-5110
    • Wong, P.K.1    Yu, F.2    Shahangian, A.3
  • 80
    • 79951529520 scopus 로고    scopus 로고
    • Enhanced Stochastic Optimization Algorithm for Finding Effective Multi-Target Therapeutics
    • Yoon B. J., Enhanced Stochastic Optimization Algorithm for Finding Effective Multi-Target Therapeutics. BMC Bioinformatics 2011, 12 (Suppl. 1), S18.
    • (2011) BMC Bioinformatics , vol.12 , pp. S18
    • Yoon, B.J.1
  • 81
    • 79251581252 scopus 로고    scopus 로고
    • An Optimized Small Molecule Inhibitor Cocktail Supports Long-Term Maintenance of Human Embryonic Stem Cells
    • Tsutsui H., Valamehr B., Hindoyan A.. An Optimized Small Molecule Inhibitor Cocktail Supports Long-Term Maintenance of Human Embryonic Stem Cells. Nat. Commun. 2011, 2, 167.
    • (2011) Nat. Commun , vol.2 , pp. 167
    • Tsutsui, H.1    Valamehr, B.2    Hindoyan, A.3
  • 82
    • 84870359899 scopus 로고    scopus 로고
    • Cascade Search for HSV-1 Combinatorial Drugs with High Antiviral Efficacy and Low Toxicity
    • Ding X., Sanchez D. J., Shahangian A.. Cascade Search for HSV-1 Combinatorial Drugs with High Antiviral Efficacy and Low Toxicity. Int. J. Nanomed. 2012, 7, 2281–2292.
    • (2012) Int. J. Nanomed , vol.7 , pp. 2281-2292
    • Ding, X.1    Sanchez, D.J.2    Shahangian, A.3
  • 83
    • 80755133473 scopus 로고    scopus 로고
    • Rapidly Optimizing an Aptamer Based BoNT Sensor by Feedback System Control (FSC) Scheme
    • Wei F., Bai B., Ho C. M., Rapidly Optimizing an Aptamer Based BoNT Sensor by Feedback System Control (FSC) Scheme. Biosens. Bioelectron. 2011, 30 (1), 174–179.
    • (2011) Biosens. Bioelectron , vol.30 , Issue.1 , pp. 174-179
    • Wei, F.1    Bai, B.2    Ho, C.M.3
  • 84
    • 84931563239 scopus 로고    scopus 로고
    • Rapid Optimization of Drug Combinations for the Optimal Angiostatic Treatment of Cancer
    • Weiss A., Ding X., van Beijnum J. R.. Rapid Optimization of Drug Combinations for the Optimal Angiostatic Treatment of Cancer. Angiogenesis 2015, 18 (3), 233–244.
    • (2015) Angiogenesis , vol.18 , Issue.3 , pp. 233-244
    • Weiss, A.1    Ding, X.2    van Beijnum, J.R.3
  • 85
    • 85019379075 scopus 로고    scopus 로고
    • Synergy between Ruthenium(II)-Arene Complex [Ru(ɳ6-p-Cymene)Cl2(pta)] (RAPTA-C) and the Epidermal Growth Factor Receptor Inhibitor Erlotinib Results in Angiostatic and Antitumor Activity
    • in press
    • Berndsen R. H., Weiss A., Wong T. J.. Synergy between Ruthenium(II)-Arene Complex [Ru(ɳ6-p-Cymene)Cl2(pta)] (RAPTA-C) and the Epidermal Growth Factor Receptor Inhibitor Erlotinib Results in Angiostatic and Antitumor Activity. Sci. Rep. 2016, in press.
    • (2016) Sci. Rep
    • Berndsen, R.H.1    Weiss, A.2    Wong, T.J.3
  • 86
    • 33847676312 scopus 로고    scopus 로고
    • A Memetic Algorithm for Multiple-Drug Cancer Chemotherapy Schedule Optimization
    • Tse S. M., Liang Y., Leung K. S.. A Memetic Algorithm for Multiple-Drug Cancer Chemotherapy Schedule Optimization. IEEE Trans. Syst. Man Cybern. B 2007, 37 (1), 84–91.
    • (2007) IEEE Trans. Syst. Man Cybern. B , vol.37 , Issue.1 , pp. 84-91
    • Tse, S.M.1    Liang, Y.2    Leung, K.S.3
  • 87
    • 66449107566 scopus 로고    scopus 로고
    • Algorithmic Guided Screening of Drug Combinations of Arbitrary Size for Activity against Cancer Cells
    • Zinner R. G., Barrett B. L., Popova E.. Algorithmic Guided Screening of Drug Combinations of Arbitrary Size for Activity against Cancer Cells. Mol. Cancer Ther. 2009, 8 (3), 521–532.
    • (2009) Mol. Cancer Ther , vol.8 , Issue.3 , pp. 521-532
    • Zinner, R.G.1    Barrett, B.L.2    Popova, E.3
  • 89
    • 84941637635 scopus 로고    scopus 로고
    • Systematic Synergy Modeling: Understanding Drug Synergy from a Systems Biology Perspective
    • Chen D., Liu X., Yang Y.. Systematic Synergy Modeling: Understanding Drug Synergy from a Systems Biology Perspective. BMC Syst. Biol. 2015, 9, 56.
    • (2015) BMC Syst. Biol , vol.9 , pp. 56
    • Chen, D.1    Liu, X.2    Yang, Y.3
  • 90
    • 77956274693 scopus 로고    scopus 로고
    • Identification of Optimal Drug Combinations Targeting Cellular Networks: Integrating Phospho-Proteomics and Computational Network Analysis
    • Iadevaia S., Lu Y., Morales F. C.. Identification of Optimal Drug Combinations Targeting Cellular Networks: Integrating Phospho-Proteomics and Computational Network Analysis. Cancer Res. 2010, 70 (17), 6704–6714.
    • (2010) Cancer Res , vol.70 , Issue.17 , pp. 6704-6714
    • Iadevaia, S.1    Lu, Y.2    Morales, F.C.3
  • 91
    • 84897371312 scopus 로고    scopus 로고
    • Computational Analyses of Synergism in Small Molecular Network Motifs
    • Zhang Y., Smolen P., Baxter D. A.. Computational Analyses of Synergism in Small Molecular Network Motifs. PLoS Comput. Biol. 2014, 10 (3), e1003524.
    • (2014) PLoS Comput. Biol , vol.10 , Issue.3 , pp. e1003524
    • Zhang, Y.1    Smolen, P.2    Baxter, D.A.3
  • 92
    • 14644403608 scopus 로고    scopus 로고
    • A Mathematical Model of Combination Therapy Using the EGFR Signaling Network
    • Araujo R. P., Petricoin E. F., Liotta L. A., A Mathematical Model of Combination Therapy Using the EGFR Signaling Network. Bio Syst. 2005, 80 (1), 57–69.
    • (2005) Bio Syst , vol.80 , Issue.1 , pp. 57-69
    • Araujo, R.P.1    Petricoin, E.F.2    Liotta, L.A.3
  • 93
    • 84865425410 scopus 로고    scopus 로고
    • Predicting and Characterizing Selective Multiple Drug Treatments for Metabolic Diseases and Cancer
    • Facchetti G., Zampieri M., Altafini C., Predicting and Characterizing Selective Multiple Drug Treatments for Metabolic Diseases and Cancer. BMC Syst. Biol. 2012, 6.
    • (2012) BMC Syst. Biol , vol.6
    • Facchetti, G.1    Zampieri, M.2    Altafini, C.3
  • 94
    • 77749320898 scopus 로고    scopus 로고
    • What Is Flux Balance Analysis?
    • Orth J. D., Thiele I., Palsson B. O., What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28 (3), 245–248.
    • (2010) Nat. Biotechnol , vol.28 , Issue.3 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 95
    • 84924288734 scopus 로고    scopus 로고
    • Systems Biology Approaches for Advancing the Discovery of Effective Drug Combinations
    • Ryall K. A., Tan A. C., Systems Biology Approaches for Advancing the Discovery of Effective Drug Combinations. J. Cheminformatics 2015, 7, 7.
    • (2015) J. Cheminformatics , vol.7 , pp. 7
    • Ryall, K.A.1    Tan, A.C.2
  • 96
    • 78349284050 scopus 로고    scopus 로고
    • Modeling Cardiac Beta-Adrenergic Signaling with Normalized-Hill Differential Equations: Comparison with a Biochemical Model
    • Kraeutler M. J., Soltis A. R., Saucerman J. J., Modeling Cardiac Beta-Adrenergic Signaling with Normalized-Hill Differential Equations: Comparison with a Biochemical Model. BMC Syst. Biol. 2010, 4, 157.
    • (2010) BMC Syst. Biol , vol.4 , pp. 157
    • Kraeutler, M.J.1    Soltis, A.R.2    Saucerman, J.J.3
  • 97
    • 58049164511 scopus 로고    scopus 로고
    • Boolean Network Simulations for Life Scientists
    • Albert I., Thakar J., Li S.. Boolean Network Simulations for Life Scientists. Source Code Biol. Med. 2008, 3, 16.
    • (2008) Source Code Biol. Med , vol.3 , pp. 16
    • Albert, I.1    Thakar, J.2    Li, S.3
  • 98
    • 0015609281 scopus 로고
    • The Logical Analysis of Continuous, Non-Linear Biochemical Control Networks
    • Glass L., Kauffman S. A., The Logical Analysis of Continuous, Non-Linear Biochemical Control Networks. J. Theor. Biol. 1973, 39 (1), 103–129.
    • (1973) J. Theor. Biol , vol.39 , Issue.1 , pp. 103-129
    • Glass, L.1    Kauffman, S.A.2
  • 99
    • 70449481350 scopus 로고    scopus 로고
    • Transforming Boolean Models to Continuous Models: Methodology and Application to T-Cell Receptor Signaling
    • Wittmann D. M., Krumsiek J., Saez-Rodriguez J.. Transforming Boolean Models to Continuous Models: Methodology and Application to T-Cell Receptor Signaling. BMC Syst. Biol. 2009, 3, 98.
    • (2009) BMC Syst. Biol , vol.3 , pp. 98
    • Wittmann, D.M.1    Krumsiek, J.2    Saez-Rodriguez, J.3
  • 100
    • 65349179556 scopus 로고    scopus 로고
    • Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling
    • Aldridge B. B., Saez-Rodriguez J., Muhlich J. L.. Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling. PLoS Comput. Biol. 2009, 5 (4), e1000340.
    • (2009) PLoS Comput. Biol , vol.5 , Issue.4 , pp. e1000340
    • Aldridge, B.B.1    Saez-Rodriguez, J.2    Muhlich, J.L.3
  • 101
    • 84901236111 scopus 로고    scopus 로고
    • Phenotypic Screen Quantifying Differential Regulation of Cardiac Myocyte Hypertrophy Identifies CITED4 Regulation of Myocyte Elongation
    • Ryall K. A., Bezzerides V. J., Rosenzweig A.. Phenotypic Screen Quantifying Differential Regulation of Cardiac Myocyte Hypertrophy Identifies CITED4 Regulation of Myocyte Elongation. J. Mol. Cell. Cardiol. 2014, 72, 74–84.
    • (2014) J. Mol. Cell. Cardiol , vol.72 , pp. 74-84
    • Ryall, K.A.1    Bezzerides, V.J.2    Rosenzweig, A.3
  • 102
    • 84892763562 scopus 로고    scopus 로고
    • Biology: Inferring Signaling Networks in Cellular Systems
    • Molinelli E. J., Korkut A., Wang W.. Biology: Inferring Signaling Networks in Cellular Systems. PLoS Comput. Biol. 2013, 9 (12), e1003290.
    • (2013) PLoS Comput. Biol , vol.9 , Issue.12 , pp. e1003290
    • Molinelli, E.J.1    Korkut, A.2    Wang, W.3
  • 103
    • 51049117937 scopus 로고    scopus 로고
    • Models from Experiments: Combinatorial Drug Perturbations of Cancer Cells
    • Nelander S., Wang W., Nilsson B.. Models from Experiments: Combinatorial Drug Perturbations of Cancer Cells. Mol. Syst. Biol. 2008, 4, 216.
    • (2008) Mol. Syst. Biol , vol.4 , pp. 216
    • Nelander, S.1    Wang, W.2    Nilsson, B.3
  • 104
    • 84940527513 scopus 로고    scopus 로고
    • Perturbation Biology Nominates Upstream-Downstream Drug Combinations in RAF Inhibitor Resistant Melanoma Cells
    • Korkut A., Wang W., Demir E.. Perturbation Biology Nominates Upstream-Downstream Drug Combinations in RAF Inhibitor Resistant Melanoma Cells. eLife 2015, 4.
    • (2015) eLife , vol.4
    • Korkut, A.1    Wang, W.2    Demir, E.3
  • 105
    • 84871982053 scopus 로고    scopus 로고
    • Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening
    • Tyner J. W., Yang W. F., Bankhead A., 3rd. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening. Cancer Res. 2013, 73 (1), 285–296.
    • (2013) Cancer Res , vol.73 , Issue.1 , pp. 285-296
    • Tyner, J.W.1    Yang, W.F.2    Bankhead, A.3
  • 106
    • 84891424303 scopus 로고    scopus 로고
    • A Kinase Inhibition Map Approach for Tumor Sensitivity Prediction and Combination Therapy Design for Targeted Drugs
    • Pal R., Berlow N. A Kinase Inhibition Map Approach for Tumor Sensitivity Prediction and Combination Therapy Design for Targeted Drugs. Pac. Symp. Biocomput. 2012, 351–362.
    • (2012) Pac. Symp. Biocomput , pp. 351-362
    • Pal, R.1    Berlow, N.2
  • 107
    • 84884688446 scopus 로고    scopus 로고
    • Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways
    • Tang J., Karhinen L., Xu T.. Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways. PLoS Comput. Biol. 2013, 9 (9), e1003226.
    • (2013) PLoS Comput. Biol , vol.9 , Issue.9 , pp. e1003226
    • Tang, J.1    Karhinen, L.2    Xu, T.3
  • 108
    • 84897548931 scopus 로고    scopus 로고
    • Exploiting Polypharmacology for Drug Target Deconvolution
    • Gujral T. S., Peshkin L., Kirschner M. W., Exploiting Polypharmacology for Drug Target Deconvolution. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (13), 5048–5053.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , Issue.13 , pp. 5048-5053
    • Gujral, T.S.1    Peshkin, L.2    Kirschner, M.W.3
  • 109
    • 84855272311 scopus 로고    scopus 로고
    • Prediction of Drug Combinations by Integrating Molecular and Pharmacological Data
    • Zhao X. M., Iskar M., Zeller G.. Prediction of Drug Combinations by Integrating Molecular and Pharmacological Data. PLoS Comput. Biol. 2011, 7 (12), e1002323.
    • (2011) PLoS Comput. Biol , vol.7 , Issue.12 , pp. e1002323
    • Zhao, X.M.1    Iskar, M.2    Zeller, G.3
  • 110
  • 111
    • 84872815592 scopus 로고    scopus 로고
    • Exploring Drug Combinations in Genetic Interaction Network
    • Wang Y. Y., Xu K. J., Song J.. Exploring Drug Combinations in Genetic Interaction Network. BMC Bio-informatics 2012, 13 (Suppl. 7), S7.
    • (2012) BMC Bio-informatics , vol.13 , pp. S7
    • Wang, Y.Y.1    Xu, K.J.2    Song, J.3
  • 113
    • 84871347956 scopus 로고    scopus 로고
    • Application of Fractional Factorial Designs to Study Drug Combinations
    • Jaynes J., Ding X., Xu H.. Application of Fractional Factorial Designs to Study Drug Combinations. Stat. Med. 2013, 32 (2), 307–318.
    • (2013) Stat. Med , vol.32 , Issue.2 , pp. 307-318
    • Jaynes, J.1    Ding, X.2    Xu, H.3
  • 114
    • 84924777867 scopus 로고    scopus 로고
    • Angiostatic Treatment Prior to Chemo- or Photodynamic Therapy Improves Anti-Tumor Efficacy
    • Weiss A., Bonvin D., Berndsen B.. Angiostatic Treatment Prior to Chemo- or Photodynamic Therapy Improves Anti-Tumor Efficacy. Sci. Rep. 2015, 5, 8990.
    • (2015) Sci. Rep , vol.5 , pp. 8990
    • Weiss, A.1    Bonvin, D.2    Berndsen, B.3
  • 115
    • 79957535629 scopus 로고    scopus 로고
    • Systematic Quantitative Characterization of Cellular Responses Induced by Multiple Signals
    • Al-Shyoukh I., Yu F., Feng J.. Systematic Quantitative Characterization of Cellular Responses Induced by Multiple Signals. BMC Syst. Biol. 2011, 5, 88.
    • (2011) BMC Syst. Biol , vol.5 , pp. 88
    • Al-Shyoukh, I.1    Yu, F.2    Feng, J.3
  • 116
    • 79959593989 scopus 로고    scopus 로고
    • Control of Kaposi’s Sarcoma-Associated Herpesvirus Reactivation Induced by Multiple Signals
    • Yu F., Al-Shyoukh I., Feng J.. Control of Kaposi’s Sarcoma-Associated Herpesvirus Reactivation Induced by Multiple Signals. PLoS One 2011, 6 (6), e20998.
    • (2011) PLoS One , vol.6 , Issue.6 , pp. e20998
    • Yu, F.1    Al-Shyoukh, I.2    Feng, J.3
  • 117
    • 84918767654 scopus 로고    scopus 로고
    • Discovery of a Low Order Drug-Cell Response Surface for Applications in Personalized Medicine
    • Ding X., Liu W., Weiss A.. Discovery of a Low Order Drug-Cell Response Surface for Applications in Personalized Medicine. Phys. Biol. 2014, 11 (6), 065003.
    • (2014) Phys. Biol , vol.11 , Issue.6 , pp. 065003
    • Ding, X.1    Liu, W.2    Weiss, A.3
  • 118
    • 0003100554 scopus 로고
    • Robustness in the Strategy of Scientific Model Building
    • Launer, Wilkinson, (eds), Elsevier, Amsterdam,. In,., Eds.;, ;
    • Box G. E. P., Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics; Launer R. L., Wilkinson G. N., Eds.; Elsevier: Amsterdam, 1979; pp 201–236.
    • (1979) Robustness in Statistics , pp. 201-236
    • Box, G.E.P.1
  • 119
    • 85056805154 scopus 로고    scopus 로고
    • Response Surface Analysis and Non-Linear Optimization Algorithm for Maximization of Clinical Drug Performance: Application to Extended Release and Long-Acting-Injectable Paliperidone
    • Gomeni R., Bressolle F., Fava M., Response Surface Analysis and Non-Linear Optimization Algorithm for Maximization of Clinical Drug Performance: Application to Extended Release and Long-Acting-Injectable Paliperidone. J. Clin. Pharmacol. 2016, 38 (10S), e4.
    • (2016) J. Clin. Pharmacol , vol.38 , Issue.10S , pp. e4
    • Gomeni, R.1    Bressolle, F.2    Fava, M.3
  • 120
    • 33746901239 scopus 로고    scopus 로고
    • The Use of Artificial Neural Networks in Decision Support in Cancer: A Systematic Review
    • Lisboa P. J., Taktak A. F., The Use of Artificial Neural Networks in Decision Support in Cancer: A Systematic Review. Neural Netw. 2006, 19 (4), 408–415.
    • (2006) Neural Netw , vol.19 , Issue.4 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.