메뉴 건너뛰기




Volumn 284, Issue 18, 2017, Pages 2932-2946

ADP-ribosylation: new facets of an ancient modification

Author keywords

ADP ribosylation; cellular pathways; metabolism of ADP ribosylation; poly(ADP ribose) polymerase; post translational modification

Indexed keywords

ADENOSINE DIPHOSPHATE; DNA; HYDROLASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 2; REV PROTEIN; RNA; SIRTUIN; ECTONUCLEOTIDE PYROPHOSPHATASE PHOSPHODIESTERASE 1; INORGANIC PYROPHOSPHATASE; ISOENZYME; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; NUDIX HYDROLASES; PHOSPHODIESTERASE; POLY(ADENOSINE DIPHOSPHATE RIBOSE);

EID: 85018947891     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/febs.14078     Document Type: Review
Times cited : (116)

References (175)
  • 3
    • 84916887602 scopus 로고    scopus 로고
    • Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life
    • Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R & Ahel I (2014) Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst) 23, 4–16.
    • (2014) DNA Repair (Amst) , vol.23 , pp. 4-16
    • Perina, D.1    Mikoč, A.2    Ahel, J.3    Ćetković, H.4    Žaja, R.5    Ahel, I.6
  • 5
    • 85008226645 scopus 로고    scopus 로고
    • The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA
    • Jankevicius G, Ariza A, Ahel M & Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64, 1109–1116.
    • (2016) Mol Cell , vol.64 , pp. 1109-1116
    • Jankevicius, G.1    Ariza, A.2    Ahel, M.3    Ahel, I.4
  • 8
    • 0034878448 scopus 로고    scopus 로고
    • Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century
    • Collier RJ (2001) Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39, 1793–1803.
    • (2001) Toxicon , vol.39 , pp. 1793-1803
    • Collier, R.J.1
  • 11
    • 85007524131 scopus 로고    scopus 로고
    • The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection
    • Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, Meyerholz DK, Ahel I & Perlman S (2016) The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. MBio 7, pii: e01721-16.
    • (2016) MBio , vol.7
    • Fehr, A.R.1    Channappanavar, R.2    Jankevicius, G.3    Fett, C.4    Zhao, J.5    Athmer, J.6    Meyerholz, D.K.7    Ahel, I.8    Perlman, S.9
  • 13
    • 85011419032 scopus 로고    scopus 로고
    • The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases
    • Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kümmerer BM, Rossetti G, Lüscher B et al. (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep 7, 41746.
    • (2017) Sci Rep , vol.7 , pp. 41746
    • Eckei, L.1    Krieg, S.2    Bütepage, M.3    Lehmann, A.4    Gross, A.5    Lippok, B.6    Grimm, A.R.7    Kümmerer, B.M.8    Rossetti, G.9    Lüscher, B.10
  • 14
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson BA & Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13, 411–424.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 15
    • 84937597366 scopus 로고    scopus 로고
    • PARPs and ADP-ribosylation: 50 years … and counting
    • Kraus WL (2015) PARPs and ADP-ribosylation: 50 years … and counting. Mol Cell 58, 902–910.
    • (2015) Mol Cell , vol.58 , pp. 902-910
    • Kraus, W.L.1
  • 16
    • 84937578418 scopus 로고    scopus 로고
    • Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation
    • Barkauskaite E, Jankevicius G & Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58, 935–946.
    • (2015) Mol Cell , vol.58 , pp. 935-946
    • Barkauskaite, E.1    Jankevicius, G.2    Ahel, I.3
  • 17
    • 0037881920 scopus 로고    scopus 로고
    • Functional aspects of protein mono-ADP-ribosylation
    • Corda D & Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22, 1953–1958.
    • (2003) EMBO J , vol.22 , pp. 1953-1958
    • Corda, D.1    Di Girolamo, M.2
  • 18
    • 84869094697 scopus 로고    scopus 로고
    • PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response
    • Jwa M & Chang P (2012) PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat Cell Biol 14, 1223–1230.
    • (2012) Nat Cell Biol , vol.14 , pp. 1223-1230
    • Jwa, M.1    Chang, P.2
  • 19
    • 85047693635 scopus 로고    scopus 로고
    • Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function
    • Chang P, Coughlin M & Mitchison TJ (2005) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7, 1133–1139.
    • (2005) Nat Cell Biol , vol.7 , pp. 1133-1139
    • Chang, P.1    Coughlin, M.2    Mitchison, T.J.3
  • 20
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA & Chang P (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42, 489–499.
    • (2011) Mol Cell , vol.42 , pp. 489-499
    • Leung, A.K.1    Vyas, S.2    Rood, J.E.3    Bhutkar, A.4    Sharp, P.A.5    Chang, P.6
  • 23
    • 84873524967 scopus 로고    scopus 로고
    • PARP-1 mechanisms for coupling DNA damage detection to poly(ADP-ribose) synthesis
    • Langelier MF & Pascal JM (2013) PARP-1 mechanisms for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol 23, 134–143.
    • (2013) Curr Opin Struct Biol , vol.23 , pp. 134-143
    • Langelier, M.F.1    Pascal, J.M.2
  • 24
    • 84880324619 scopus 로고    scopus 로고
    • Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology
    • Feijs KL, Verheugd P & Lüscher B (2013) Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. FEBS J 280, 3519–3529.
    • (2013) FEBS J , vol.280 , pp. 3519-3529
    • Feijs, K.L.1    Verheugd, P.2    Lüscher, B.3
  • 26
    • 84897541400 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response
    • Tallis M, Morra R, Barkauskaite E & Ahel I (2014) Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Chromosoma 123, 79–90.
    • (2014) Chromosoma , vol.123 , pp. 79-90
    • Tallis, M.1    Morra, R.2    Barkauskaite, E.3    Ahel, I.4
  • 27
    • 84937555760 scopus 로고    scopus 로고
    • Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance
    • Bai P (2015) Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell 58, 947–958.
    • (2015) Mol Cell , vol.58 , pp. 947-958
    • Bai, P.1
  • 28
    • 84964632208 scopus 로고    scopus 로고
    • New directions in poly(ADP-ribose) polymerase biology
    • Bock FJ & Chang P (2016) New directions in poly(ADP-ribose) polymerase biology. FEBS J 283, 4017–4031.
    • (2016) FEBS J , vol.283 , pp. 4017-4031
    • Bock, F.J.1    Chang, P.2
  • 31
    • 0030949354 scopus 로고    scopus 로고
    • A 2′-phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae
    • Culver GM, McCraith SM, Consaul SA, Stanford DR & Phizicky EM (1997) A 2′-phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae. J Biol Chem 272, 13203–13210.
    • (1997) J Biol Chem , vol.272 , pp. 13203-13210
    • Culver, G.M.1    McCraith, S.M.2    Consaul, S.A.3    Stanford, D.R.4    Phizicky, E.M.5
  • 32
    • 0014198717 scopus 로고
    • Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei
    • Nishizuka Y, Ueda K, Nakazawa K & Hayaishi O (1967) Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem 242, 3164–3171.
    • (1967) J Biol Chem , vol.242 , pp. 3164-3171
    • Nishizuka, Y.1    Ueda, K.2    Nakazawa, K.3    Hayaishi, O.4
  • 33
    • 0014198748 scopus 로고
    • Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer
    • Reeder RH, Ueda K, Honjo T, Nishizuka Y & Hayaishi O (1967) Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer. J Biol Chem 242, 3172–3179.
    • (1967) J Biol Chem , vol.242 , pp. 3172-3179
    • Reeder, R.H.1    Ueda, K.2    Honjo, T.3    Nishizuka, Y.4    Hayaishi, O.5
  • 34
    • 0014218010 scopus 로고
    • Polymerization of the adenosine 5′-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions
    • Fujimura S, Hasegawa S, Shimizu Y & Sugimura T (1967) Polymerization of the adenosine 5′-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim Biophys Acta 145, 247–259.
    • (1967) Biochim Biophys Acta , vol.145 , pp. 247-259
    • Fujimura, S.1    Hasegawa, S.2    Shimizu, Y.3    Sugimura, T.4
  • 39
    • 0032876380 scopus 로고    scopus 로고
    • Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex
    • Han S, Craig JA, Putnam CD, Carozzi NB & Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6, 932–936.
    • (1999) Nat Struct Biol , vol.6 , pp. 932-936
    • Han, S.1    Craig, J.A.2    Putnam, C.D.3    Carozzi, N.B.4    Tainer, J.A.5
  • 41
    • 33746855102 scopus 로고    scopus 로고
    • A steric antagonism of actin polymerization by a Salmonella virulence protein
    • Margarit SM, Davidson W, Frego L & Stebbins CE (2006) A steric antagonism of actin polymerization by a Salmonella virulence protein. Structure 14, 1219–1229.
    • (2006) Structure , vol.14 , pp. 1219-1229
    • Margarit, S.M.1    Davidson, W.2    Frego, L.3    Stebbins, C.E.4
  • 44
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273, 793–798.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 45
    • 84949036094 scopus 로고    scopus 로고
    • NAD⁺ in aging, metabolism, and neurodegeneration
    • Verdin E (2015) NAD⁺ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213.
    • (2015) Science , vol.350 , pp. 1208-1213
    • Verdin, E.1
  • 46
    • 81855170577 scopus 로고    scopus 로고
    • The human sirtuin family: evolutionary divergences and functions
    • Vassilopoulos A, Fritz KS, Petersen DR & Gius D (2011) The human sirtuin family: evolutionary divergences and functions. Hum Genomics 5, 485–496.
    • (2011) Hum Genomics , vol.5 , pp. 485-496
    • Vassilopoulos, A.1    Fritz, K.S.2    Petersen, D.R.3    Gius, D.4
  • 47
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: insights into their biological function
    • Michan S & Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404, 1–13.
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 50
    • 17544371482 scopus 로고    scopus 로고
    • Glycation and glycoxidation of histones by ADP-ribose
    • Cervantes-Laurean D, Jacobson EL & Jacobson MK (1996) Glycation and glycoxidation of histones by ADP-ribose. J Biol Chem 271, 10461–10469.
    • (1996) J Biol Chem , vol.271 , pp. 10461-10469
    • Cervantes-Laurean, D.1    Jacobson, E.L.2    Jacobson, M.K.3
  • 53
    • 84879415959 scopus 로고    scopus 로고
    • Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation
    • Feijs KL, Forst AH, Verheugd P & Lüscher B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14, 443–451.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 443-451
    • Feijs, K.L.1    Forst, A.H.2    Verheugd, P.3    Lüscher, B.4
  • 54
    • 84974663169 scopus 로고    scopus 로고
    • Macrodomains: structure, function, evolution, and catalytic activities
    • Rack JG, Perina D & Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85, 431–454.
    • (2016) Annu Rev Biochem , vol.85 , pp. 431-454
    • Rack, J.G.1    Perina, D.2    Ahel, I.3
  • 57
    • 57749190795 scopus 로고    scopus 로고
    • Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites
    • Neuvonen M & Ahola T (2009) Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385, 212–225.
    • (2009) J Mol Biol , vol.385 , pp. 212-225
    • Neuvonen, M.1    Ahola, T.2
  • 63
    • 84863010981 scopus 로고    scopus 로고
    • Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination
    • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F & Xu W (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26, 235–240.
    • (2012) Genes Dev , vol.26 , pp. 235-240
    • Wang, Z.1    Michaud, G.A.2    Cheng, Z.3    Zhang, Y.4    Hinds, T.R.5    Fan, E.6    Cong, F.7    Xu, W.8
  • 64
    • 84901044576 scopus 로고    scopus 로고
    • The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response
    • Zhang F, Chen Y, Li M & Yu X (2014) The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Proc Natl Acad Sci USA 111, 7278–7283.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 7278-7283
    • Zhang, F.1    Chen, Y.2    Li, M.3    Yu, X.4
  • 65
    • 0034731455 scopus 로고    scopus 로고
    • Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins
    • Pleschke JM, Kleczkowska ME, Strohm M & Althaus FR (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275, 40974–40980.
    • (2000) J Biol Chem , vol.275 , pp. 40974-40980
    • Pleschke, J.M.1    Kleczkowska, M.E.2    Strohm, M.3    Althaus, F.R.4
  • 68
    • 70149101122 scopus 로고    scopus 로고
    • Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG
    • Berthold CL, Wang H, Nordlund S & Högbom M (2009) Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG. Proc Natl Acad Sci USA 106, 14247–14252.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 14247-14252
    • Berthold, C.L.1    Wang, H.2    Nordlund, S.3    Högbom, M.4
  • 72
    • 2942707644 scopus 로고    scopus 로고
    • Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments
    • Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL & Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297, 521–532.
    • (2004) Exp Cell Res , vol.297 , pp. 521-532
    • Meyer-Ficca, M.L.1    Meyer, R.G.2    Coyle, D.L.3    Jacobson, E.L.4    Jacobson, M.K.5
  • 73
    • 84860844237 scopus 로고    scopus 로고
    • ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose)
    • Niere M, Mashimo M, Agledal L, Dölle C, Kasamatsu A, Kato J, Moss J & Ziegler M (2012) ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose). J Biol Chem 287, 16088–16102.
    • (2012) J Biol Chem , vol.287 , pp. 16088-16102
    • Niere, M.1    Mashimo, M.2    Agledal, L.3    Dölle, C.4    Kasamatsu, A.5    Kato, J.6    Moss, J.7    Ziegler, M.8
  • 74
    • 80053928939 scopus 로고    scopus 로고
    • Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties
    • Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM & Volkman BF (2011) Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. J Biol Chem 286, 35955–35965.
    • (2011) J Biol Chem , vol.286 , pp. 35955-35965
    • Peterson, F.C.1    Chen, D.2    Lytle, B.L.3    Rossi, M.N.4    Ahel, I.5    Denu, J.M.6    Volkman, B.F.7
  • 75
    • 13844312497 scopus 로고    scopus 로고
    • A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae
    • Shull NP, Spinelli SL & Phizicky EM (2005) A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res 33, 650–660.
    • (2005) Nucleic Acids Res , vol.33 , pp. 650-660
    • Shull, N.P.1    Spinelli, S.L.2    Phizicky, E.M.3
  • 76
    • 84880332128 scopus 로고    scopus 로고
    • ADP-ribosylation, a mechanism regulating nitrogenase activity
    • Nordlund S & Högbom M (2013) ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J 280, 3484–3490.
    • (2013) FEBS J , vol.280 , pp. 3484-3490
    • Nordlund, S.1    Högbom, M.2
  • 77
    • 34547207148 scopus 로고    scopus 로고
    • Enhanced sensitivity to cholera toxin in ADP-ribosylarginine hydrolase-deficient mice
    • Kato J, Zhu J, Liu C & Moss J (2007) Enhanced sensitivity to cholera toxin in ADP-ribosylarginine hydrolase-deficient mice. Mol Cell Biol 27, 5534–5543.
    • (2007) Mol Cell Biol , vol.27 , pp. 5534-5543
    • Kato, J.1    Zhu, J.2    Liu, C.3    Moss, J.4
  • 79
    • 33644849513 scopus 로고    scopus 로고
    • Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase
    • Oka S, Kato J & Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281, 705–713.
    • (2006) J Biol Chem , vol.281 , pp. 705-713
    • Oka, S.1    Kato, J.2    Moss, J.3
  • 80
    • 0030920874 scopus 로고    scopus 로고
    • Sequence and structural links between distant ADP-ribosyltransferase families
    • Bazan JF & Koch-Nolte F (1997) Sequence and structural links between distant ADP-ribosyltransferase families. Adv Exp Med Biol 419, 99–107.
    • (1997) Adv Exp Med Biol , vol.419 , pp. 99-107
    • Bazan, J.F.1    Koch-Nolte, F.2
  • 82
    • 84864474310 scopus 로고    scopus 로고
    • Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites
    • Matic I, Ahel I & Hay RT (2012) Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nat Methods 9, 771–772.
    • (2012) Nat Methods , vol.9 , pp. 771-772
    • Matic, I.1    Ahel, I.2    Hay, R.T.3
  • 84
    • 84917680186 scopus 로고    scopus 로고
    • Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases
    • Mashimo M, Kato J & Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23, 88–94.
    • (2014) DNA Repair (Amst) , vol.23 , pp. 88-94
    • Mashimo, M.1    Kato, J.2    Moss, J.3
  • 85
    • 33750940806 scopus 로고    scopus 로고
    • The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases
    • Ono T, Kasamatsu A, Oka S & Moss J (2006) The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Proc Natl Acad Sci USA 103, 16687–16691.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 16687-16691
    • Ono, T.1    Kasamatsu, A.2    Oka, S.3    Moss, J.4
  • 88
    • 30744470374 scopus 로고    scopus 로고
    • The Nudix hydrolase superfamily
    • McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63, 123–143.
    • (2006) Cell Mol Life Sci , vol.63 , pp. 123-143
    • McLennan, A.G.1
  • 94
    • 0017873724 scopus 로고
    • Snake venom phosphodiesterase: simple purification with Blue Sepharose and its application to poly(ADP-ribose) study
    • Oka J, Ueda K & Hayaishi O (1978) Snake venom phosphodiesterase: simple purification with Blue Sepharose and its application to poly(ADP-ribose) study. Biochem Biophys Res Commun 80, 841–848.
    • (1978) Biochem Biophys Res Commun , vol.80 , pp. 841-848
    • Oka, J.1    Ueda, K.2    Hayaishi, O.3
  • 95
    • 85001889664 scopus 로고    scopus 로고
    • Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination
    • Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I & Dikic I (2016) Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649.
    • (2016) Cell , vol.167 , pp. 1636-1649
    • Bhogaraju, S.1    Kalayil, S.2    Liu, Y.3    Bonn, F.4    Colby, T.5    Matic, I.6    Dikic, I.7
  • 97
    • 0344875495 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination
    • Schultz N, Lopez E, Saleh-Gohari N & Helleday T (2003) Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 31, 4959–4964.
    • (2003) Nucleic Acids Res , vol.31 , pp. 4959-4964
    • Schultz, N.1    Lopez, E.2    Saleh-Gohari, N.3    Helleday, T.4
  • 98
    • 84861231399 scopus 로고    scopus 로고
    • The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art
    • De Vos M, Schreiber V & Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84, 137–146.
    • (2012) Biochem Pharmacol , vol.84 , pp. 137-146
    • De Vos, M.1    Schreiber, V.2    Dantzer, F.3
  • 99
    • 84860806404 scopus 로고    scopus 로고
    • Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1
    • Langelier MF, Planck JL, Roy S & Pascal JM (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728–732.
    • (2012) Science , vol.336 , pp. 728-732
    • Langelier, M.F.1    Planck, J.L.2    Roy, S.3    Pascal, J.M.4
  • 103
    • 85009915392 scopus 로고    scopus 로고
    • Metabolic roles of poly(ADP-ribose) polymerases
    • Vida A, Márton J, Mikó E & Bai P (2017) Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 63, 135–143.
    • (2017) Semin Cell Dev Biol , vol.63 , pp. 135-143
    • Vida, A.1    Márton, J.2    Mikó, E.3    Bai, P.4
  • 106
    • 70350502857 scopus 로고    scopus 로고
    • PARsing the phrase “all in for Axin”- Wnt pathway targets in cancer
    • Fearon ER (2009) PARsing the phrase “all in for Axin”- Wnt pathway targets in cancer. Cancer Cell 16, 366–368.
    • (2009) Cancer Cell , vol.16 , pp. 366-368
    • Fearon, E.R.1
  • 108
    • 84911462377 scopus 로고    scopus 로고
    • Tankyrases: structure, function and therapeutic implications in cancer
    • Haikarainen T, Krauss S & Lehtio L (2014) Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 20, 6472–6488.
    • (2014) Curr Pharm Des , vol.20 , pp. 6472-6488
    • Haikarainen, T.1    Krauss, S.2    Lehtio, L.3
  • 109
    • 0032553473 scopus 로고    scopus 로고
    • Tankyrase, a poly(ADP-ribose) polymerase at human telomeres
    • Smith S, Giriat I, Schmitt A & de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487.
    • (1998) Science , vol.282 , pp. 1484-1487
    • Smith, S.1    Giriat, I.2    Schmitt, A.3    de Lange, T.4
  • 110
    • 84959894091 scopus 로고    scopus 로고
    • Tankyrases promote homologous recombination and check point activation in response to DSBs
    • Nagy Z, Kalousi A, Furst A, Koch M, Fischer B & Soutoglou E (2016) Tankyrases promote homologous recombination and check point activation in response to DSBs. PLoS Genet 12, e1005791.
    • (2016) PLoS Genet , vol.12
    • Nagy, Z.1    Kalousi, A.2    Furst, A.3    Koch, M.4    Fischer, B.5    Soutoglou, E.6
  • 112
    • 84937622587 scopus 로고    scopus 로고
    • RNA regulation by poly(ADP-ribose) polymerases
    • Bock FJ, Todorova TT & Chang P (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol Cell 58, 959–969.
    • (2015) Mol Cell , vol.58 , pp. 959-969
    • Bock, F.J.1    Todorova, T.T.2    Chang, P.3
  • 113
    • 84981694383 scopus 로고    scopus 로고
    • Intracellular mono-ADP-ribosylation in signaling and disease
    • Bütepage M, Eckei L, Verheugd P & Lüscher B (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cells 4, 569–595.
    • (2015) Cells , vol.4 , pp. 569-595
    • Bütepage, M.1    Eckei, L.2    Verheugd, P.3    Lüscher, B.4
  • 118
    • 84928325791 scopus 로고    scopus 로고
    • Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice
    • Meyer-Ficca ML, Ihara M, Bader JJ, Leu NA, Beneke S & Meyer RG (2015) Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice. Biol Reprod 92, 80.
    • (2015) Biol Reprod , vol.92 , pp. 80
    • Meyer-Ficca, M.L.1    Ihara, M.2    Bader, J.J.3    Leu, N.A.4    Beneke, S.5    Meyer, R.G.6
  • 119
    • 84953223672 scopus 로고    scopus 로고
    • Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach
    • Carter-O'Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I & Cohen MS (2016) Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep 14, 621–631.
    • (2016) Cell Rep , vol.14 , pp. 621-631
    • Carter-O'Connell, I.1    Jin, H.2    Morgan, R.K.3    Zaja, R.4    David, L.L.5    Ahel, I.6    Cohen, M.S.7
  • 120
    • 85009817261 scopus 로고    scopus 로고
    • Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress
    • Westcott NP, Fernandez JP, Molina H & Hang HC (2017) Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress. Nat Chem Biol 13, 302–308.
    • (2017) Nat Chem Biol , vol.13 , pp. 302-308
    • Westcott, N.P.1    Fernandez, J.P.2    Molina, H.3    Hang, H.C.4
  • 121
    • 84875939839 scopus 로고    scopus 로고
    • Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry
    • Chapman JD, Gagné JP, Poirier GG & Goodlett DR (2013) Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J Proteome Res 12, 1868–1880.
    • (2013) J Proteome Res , vol.12 , pp. 1868-1880
    • Chapman, J.D.1    Gagné, J.P.2    Poirier, G.G.3    Goodlett, D.R.4
  • 122
    • 84884906084 scopus 로고    scopus 로고
    • Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome
    • Zhang Y, Wang J, Ding M & Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10, 981–984.
    • (2013) Nat Methods , vol.10 , pp. 981-984
    • Zhang, Y.1    Wang, J.2    Ding, M.3    Yu, Y.4
  • 123
    • 84937604540 scopus 로고    scopus 로고
    • The promise of proteomics for the study of ADP-ribosylation
    • Daniels CM, Ong SE & Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58, 911–924.
    • (2015) Mol Cell , vol.58 , pp. 911-924
    • Daniels, C.M.1    Ong, S.E.2    Leung, A.K.3
  • 124
    • 84905366697 scopus 로고    scopus 로고
    • Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells
    • Daniels CM, Ong SE & Leung AK (2014) Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 13, 3510–3522.
    • (2014) J Proteome Res , vol.13 , pp. 3510-3522
    • Daniels, C.M.1    Ong, S.E.2    Leung, A.K.3
  • 126
    • 85026781386 scopus 로고    scopus 로고
    • Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteome wide ADP-Ribose Acceptor Sites
    • Bilan V, Leutert M, Nanni P, Panse C & Hottiger MO (2017) Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteome wide ADP-Ribose Acceptor Sites. Anal Chem 89, 1523-1530.
    • (2017) Anal Chem , vol.89 , pp. 1523-1530
    • Bilan, V.1    Leutert, M.2    Nanni, P.3    Panse, C.4    Hottiger, M.O.5
  • 128
    • 84962696787 scopus 로고    scopus 로고
    • HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity
    • Gibbs-Seymour I, Fontana P, Rack JG & Ahel I (2016) HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 62, 432–442.
    • (2016) Mol Cell , vol.62 , pp. 432-442
    • Gibbs-Seymour, I.1    Fontana, P.2    Rack, J.G.3    Ahel, I.4
  • 129
    • 33749387471 scopus 로고    scopus 로고
    • A family of killer toxins – exploring the mechanism of ADP-ribosylating toxins
    • Holbourn KP, Shone CC & Acharya KR (2006) A family of killer toxins – exploring the mechanism of ADP-ribosylating toxins. FEBS J 273, 4579–4593.
    • (2006) FEBS J , vol.273 , pp. 4579-4593
    • Holbourn, K.P.1    Shone, C.C.2    Acharya, K.R.3
  • 130
    • 0029767410 scopus 로고    scopus 로고
    • ADP-ribosylation of proteins in Bacillus subtilis and its possible importance in sporulation
    • Huh JW, Shima J & Ochi K (1996) ADP-ribosylation of proteins in Bacillus subtilis and its possible importance in sporulation. J Bacteriol 178, 4935–4941.
    • (1996) J Bacteriol , vol.178 , pp. 4935-4941
    • Huh, J.W.1    Shima, J.2    Ochi, K.3
  • 131
    • 0028116726 scopus 로고
    • Endogenous Adp-ribosylation during development of the prokaryote Myxococcus xanthus
    • Eastman D & Dworkin M (1994) Endogenous Adp-ribosylation during development of the prokaryote Myxococcus xanthus. Microbiology 140, 3167–3176.
    • (1994) Microbiology , vol.140 , pp. 3167-3176
    • Eastman, D.1    Dworkin, M.2
  • 132
    • 0031024605 scopus 로고    scopus 로고
    • ADP-ribosylation by the extracellular fibrils of Myxococcus xanthus
    • Hildebrandt K, Eastman D & Dworkin M (1997) ADP-ribosylation by the extracellular fibrils of Myxococcus xanthus. Mol Microbiol 23, 231–235.
    • (1997) Mol Microbiol , vol.23 , pp. 231-235
    • Hildebrandt, K.1    Eastman, D.2    Dworkin, M.3
  • 133
    • 0026746388 scopus 로고
    • The possible role of ADP-ribosylation in sporulation and streptomycin production by Streptomyces griseus
    • Ochi K, Penyige A & Barabas G (1992) The possible role of ADP-ribosylation in sporulation and streptomycin production by Streptomyces griseus. J Gen Microbiol 138, 1745–1750.
    • (1992) J Gen Microbiol , vol.138 , pp. 1745-1750
    • Ochi, K.1    Penyige, A.2    Barabas, G.3
  • 134
    • 0029820402 scopus 로고    scopus 로고
    • Evidence of a role for NAD(+)-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces griseus NRRL B-2682: inhibition by m-aminophenylboronic acid
    • Penyige A, Deak E, Kalmanczhelyi A & Barabas G (1996) Evidence of a role for NAD(+)-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces griseus NRRL B-2682: inhibition by m-aminophenylboronic acid. Microbiology 142, 1937–1944.
    • (1996) Microbiology , vol.142 , pp. 1937-1944
    • Penyige, A.1    Deak, E.2    Kalmanczhelyi, A.3    Barabas, G.4
  • 136
    • 84863300262 scopus 로고    scopus 로고
    • Disruption of SCO5461 gene coding for a mono-ADP-ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in Streptomyces coelicolor
    • Szirak K, Keseru J, Biro S, Schmelczer I, Barabas G & Penyige A (2012) Disruption of SCO5461 gene coding for a mono-ADP-ribosyltransferase enzyme produces a conditional pleiotropic phenotype affecting morphological differentiation and antibiotic production in Streptomyces coelicolor. J Microbiol 50, 409–418.
    • (2012) J Microbiol , vol.50 , pp. 409-418
    • Szirak, K.1    Keseru, J.2    Biro, S.3    Schmelczer, I.4    Barabas, G.5    Penyige, A.6
  • 137
    • 0025290963 scopus 로고
    • ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1
    • Penyige A, Barabás G, Szabó I & Ensign JC (1990) ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1. FEMS Microbiol Lett 57, 293–297.
    • (1990) FEMS Microbiol Lett , vol.57 , pp. 293-297
    • Penyige, A.1    Barabás, G.2    Szabó, I.3    Ensign, J.C.4
  • 138
    • 0344264394 scopus 로고    scopus 로고
    • Endogenous ADP-ribosylation of proteins during development of Streptomyces griseus
    • Penyige A, Saido-Sakanaka H & Ochi K (1996) Endogenous ADP-ribosylation of proteins during development of Streptomyces griseus. Actinomycetologica 10, 98–103.
    • (1996) Actinomycetologica , vol.10 , pp. 98-103
    • Penyige, A.1    Saido-Sakanaka, H.2    Ochi, K.3
  • 139
    • 0029884413 scopus 로고    scopus 로고
    • Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its developmental mutants
    • Shima J, Penyige A & Ochi K (1996) Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its developmental mutants. J Bacteriol 178, 3785–3790.
    • (1996) J Bacteriol , vol.178 , pp. 3785-3790
    • Shima, J.1    Penyige, A.2    Ochi, K.3
  • 142
    • 11144324460 scopus 로고    scopus 로고
    • Structure-function analysis of the yeast NAD+-dependent tRNA 2′-phosphotransferase Tpt1
    • Sawaya R, Schwer B & Shuman S (2005) Structure-function analysis of the yeast NAD+-dependent tRNA 2′-phosphotransferase Tpt1. RNA 11, 107–113.
    • (2005) RNA , vol.11 , pp. 107-113
    • Sawaya, R.1    Schwer, B.2    Shuman, S.3
  • 144
    • 79960576123 scopus 로고    scopus 로고
    • Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response
    • Stallings CL, Chu LD, Li LX & Glickman MS (2011) Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. PLoS One 6, e21807.
    • (2011) PLoS One , vol.6
    • Stallings, C.L.1    Chu, L.D.2    Li, L.X.3    Glickman, M.S.4
  • 146
    • 58049193963 scopus 로고    scopus 로고
    • YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity
    • Kim KS, Manasherob R & Cohen SN (2008) YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev 22, 3497–3508.
    • (2008) Genes Dev , vol.22 , pp. 3497-3508
    • Kim, K.S.1    Manasherob, R.2    Cohen, S.N.3
  • 147
    • 84887872083 scopus 로고    scopus 로고
    • Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator
    • Kim T, Lee J & Kim KS (2013) Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator. BMC Microbiol 13, 266.
    • (2013) BMC Microbiol , vol.13 , pp. 266
    • Kim, T.1    Lee, J.2    Kim, K.S.3
  • 149
    • 0037133749 scopus 로고    scopus 로고
    • Transcriptional analysis of the recA gene in Streptomyces rimosus: identification of the new type of promoter
    • Ahel I, Vujaklija D, Mikoc A & Gamulin V (2002) Transcriptional analysis of the recA gene in Streptomyces rimosus: identification of the new type of promoter. FEMS Microbiol Lett 209, 133–137.
    • (2002) FEMS Microbiol Lett , vol.209 , pp. 133-137
    • Ahel, I.1    Vujaklija, D.2    Mikoc, A.3    Gamulin, V.4
  • 150
    • 4444220904 scopus 로고    scopus 로고
    • Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis
    • Gamulin V, Cetkovic H & Ahel I (2004) Identification of a promoter motif regulating the major DNA damage response mechanism of Mycobacterium tuberculosis. FEMS Microbiol Lett 238, 57–63.
    • (2004) FEMS Microbiol Lett , vol.238 , pp. 57-63
    • Gamulin, V.1    Cetkovic, H.2    Ahel, I.3
  • 152
    • 84960444399 scopus 로고    scopus 로고
    • A SIRT4-like auto ADP-ribosyltransferase is essential for the environmental growth of Mycobacterium smegmatis
    • Tan Y, Xu Z, Tao J, Ni J, Zhao W, Lu J & Yao YF (2016) A SIRT4-like auto ADP-ribosyltransferase is essential for the environmental growth of Mycobacterium smegmatis. Acta Biochim Biophys Sin (Shanghai) 48, 145–152.
    • (2016) Acta Biochim Biophys Sin (Shanghai) , vol.48 , pp. 145-152
    • Tan, Y.1    Xu, Z.2    Tao, J.3    Ni, J.4    Zhao, W.5    Lu, J.6    Yao, Y.F.7
  • 153
    • 84867642336 scopus 로고    scopus 로고
    • Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria
    • Moore JM, Bradshaw E, Seipke RF, Hutchings MI & McArthur M (2012) Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol 517, 367–385.
    • (2012) Methods Enzymol , vol.517 , pp. 367-385
    • Moore, J.M.1    Bradshaw, E.2    Seipke, R.F.3    Hutchings, M.I.4    McArthur, M.5
  • 154
    • 85006247350 scopus 로고    scopus 로고
    • Mechanisms of bacterial persistence during stress and antibiotic exposure
    • Harms A, Maisonneuve E & Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, pii: aaf4268, doi: 10.1126/science.aaf4268.
    • (2016) Science , vol.354
    • Harms, A.1    Maisonneuve, E.2    Gerdes, K.3
  • 155
    • 84876095374 scopus 로고    scopus 로고
    • Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning
    • Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U & Sorek R (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 50, 136–148.
    • (2013) Mol Cell , vol.50 , pp. 136-148
    • Sberro, H.1    Leavitt, A.2    Kiro, R.3    Koh, E.4    Peleg, Y.5    Qimron, U.6    Sorek, R.7
  • 156
    • 70350244434 scopus 로고    scopus 로고
    • The amidase domain of lipoamidase specifically inactivates lipoylated proteins in vivo
    • Spalding MD & Prigge ST (2009) The amidase domain of lipoamidase specifically inactivates lipoylated proteins in vivo. PLoS One 4, e7392.
    • (2009) PLoS One , vol.4
    • Spalding, M.D.1    Prigge, S.T.2
  • 157
    • 23144449208 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins as multifunctional signals
    • Welchman RL, Gordon C & Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6, 599–609.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 599-609
    • Welchman, R.L.1    Gordon, C.2    Mayer, R.J.3
  • 159
    • 0037023326 scopus 로고    scopus 로고
    • The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation
    • Bell SD, Botting CH, Wardleworth BN, Jackson SP & White MF (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296, 148–151.
    • (2002) Science , vol.296 , pp. 148-151
    • Bell, S.D.1    Botting, C.H.2    Wardleworth, B.N.3    Jackson, S.P.4    White, M.F.5
  • 160
    • 0032532020 scopus 로고    scopus 로고
    • Purification and biochemical characterization of a poly(ADP-ribose) polymerase-like enzyme from the thermophilic archaeon Sulfolobus solfataricus
    • Faraone-Mennella MR, Gambacorta A, Nicolaus B & Farina B (1998) Purification and biochemical characterization of a poly(ADP-ribose) polymerase-like enzyme from the thermophilic archaeon Sulfolobus solfataricus. Biochem J 335, 441–447.
    • (1998) Biochem J , vol.335 , pp. 441-447
    • Faraone-Mennella, M.R.1    Gambacorta, A.2    Nicolaus, B.3    Farina, B.4
  • 161
    • 63149116496 scopus 로고    scopus 로고
    • Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome
    • Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D & Di Girolamo M (2009) Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Proc Natl Acad Sci USA 106, 4243–4248.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 4243-4248
    • Dani, N.1    Stilla, A.2    Marchegiani, A.3    Tamburro, A.4    Till, S.5    Ladurner, A.G.6    Corda, D.7    Di Girolamo, M.8
  • 162
    • 78649595657 scopus 로고    scopus 로고
    • Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation
    • Uzan M & Miller ES (2010) Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 7, 360.
    • (2010) Virol J , vol.7 , pp. 360
    • Uzan, M.1    Miller, E.S.2
  • 163
    • 84955183951 scopus 로고    scopus 로고
    • An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module
    • Alawneh AM, Qi D, Yonesaki T & Otsuka Y (2016) An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module. Mol Microbiol 99, 188–198.
    • (2016) Mol Microbiol , vol.99 , pp. 188-198
    • Alawneh, A.M.1    Qi, D.2    Yonesaki, T.3    Otsuka, Y.4
  • 164
    • 84947236129 scopus 로고    scopus 로고
    • A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex
    • Kusov Y, Tan J, Alvarez E, Enjuanes L & Hilgenfeld R (2015) A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 484, 313–322.
    • (2015) Virology , vol.484 , pp. 313-322
    • Kusov, Y.1    Tan, J.2    Alvarez, E.3    Enjuanes, L.4    Hilgenfeld, R.5
  • 165
    • 84962429901 scopus 로고    scopus 로고
    • Virus-host interactions and the ARTD/PARP family of enzymes
    • Kuny CV & Sullivan CS (2016) Virus-host interactions and the ARTD/PARP family of enzymes. PLoS Pathog 12, e1005453.
    • (2016) PLoS Pathog , vol.12
    • Kuny, C.V.1    Sullivan, C.S.2
  • 166
    • 84893442958 scopus 로고    scopus 로고
    • Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication
    • Atasheva S, Frolova EI & Frolov I (2014) Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88, 2116–2130.
    • (2014) J Virol , vol.88 , pp. 2116-2130
    • Atasheva, S.1    Frolova, E.I.2    Frolov, I.3
  • 167
    • 33846083772 scopus 로고    scopus 로고
    • The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA
    • Guo X, Ma J, Sun J & Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 104, 151–156.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 151-156
    • Guo, X.1    Ma, J.2    Sun, J.3    Gao, G.4
  • 168
    • 84901594799 scopus 로고    scopus 로고
    • Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts
    • Daugherty MD, Young JM, Kerns JA & Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10, e1004403.
    • (2014) PLoS Genet , vol.10
    • Daugherty, M.D.1    Young, J.M.2    Kerns, J.A.3    Malik, H.S.4
  • 169
    • 77951455708 scopus 로고    scopus 로고
    • Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1
    • Tempera I, Deng Z, Atanasiu C, Chen CJ, D'Erme M & Lieberman PM (2010) Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J Virol 84, 4988–4997.
    • (2010) J Virol , vol.84 , pp. 4988-4997
    • Tempera, I.1    Deng, Z.2    Atanasiu, C.3    Chen, C.J.4    D'Erme, M.5    Lieberman, P.M.6
  • 170
    • 84864381495 scopus 로고    scopus 로고
    • Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase
    • Grady SL, Hwang J, Vastag L, Rabinowitz JD & Shenk T (2012) Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase. J Virol 86, 8259–8268.
    • (2012) J Virol , vol.86 , pp. 8259-8268
    • Grady, S.L.1    Hwang, J.2    Vastag, L.3    Rabinowitz, J.D.4    Shenk, T.5
  • 171
    • 84995918084 scopus 로고    scopus 로고
    • Identifying direct protein targets of poly-ADP-ribose polymerases (PARPs) using engineered PARP variants-orthogonal nicotinamide adenine dinucleotide (NAD+) analog pairs
    • Carter-O'Connell I & Cohen MSI (2015) Identifying direct protein targets of poly-ADP-ribose polymerases (PARPs) using engineered PARP variants-orthogonal nicotinamide adenine dinucleotide (NAD+) analog pairs. Curr Protoc Chem Biol 7, 121–139.
    • (2015) Curr Protoc Chem Biol , vol.7 , pp. 121-139
    • Carter-O'Connell, I.1    Cohen, M.S.I.2
  • 172
    • 84957668538 scopus 로고    scopus 로고
    • Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP
    • Bartolomei G, Leutert M, Manzo M, Baubec T & Hottiger MO (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61, 474–485.
    • (2016) Mol Cell , vol.61 , pp. 474-485
    • Bartolomei, G.1    Leutert, M.2    Manzo, M.3    Baubec, T.4    Hottiger, M.O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.