메뉴 건너뛰기




Volumn 55, Issue 8, 2017, Pages 4520-4533

Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks

Author keywords

Classification; convolutional neural network (CNN); feature learning; hyperspectral; spatial spectral

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); CONVOLUTION; NEURAL NETWORKS; SPECTROMETERS; SPECTROSCOPY; TARGET TRACKING;

EID: 85018902434     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2693346     Document Type: Article
Times cited : (281)

References (43)
  • 1
    • 85032750976 scopus 로고    scopus 로고
    • Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing
    • Jan.
    • A. Zare and K. Ho, "Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 95-104, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 95-104
    • Zare, A.1    Ho, K.2
  • 2
    • 1942424158 scopus 로고    scopus 로고
    • Principal component analysis for hyperspectral image classification
    • C. Rodarmel and J. Shan, "Principal component analysis for hyperspectral image classification," Surv. Land Inf. Sci., vol. 62, no. 2, p. 115, 2002.
    • (2002) Surv. Land Inf. Sci. , vol.62 , Issue.2 , pp. 115
    • Rodarmel, C.1    Shan, J.2
  • 3
    • 18844429782 scopus 로고    scopus 로고
    • On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
    • Apr.
    • M. D. Farrell and R. M. Mersereau, "On the impact of PCA dimension reduction for hyperspectral detection of difficult targets," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 192-195, Apr. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.2 , pp. 192-195
    • Farrell, M.D.1    Mersereau, R.M.2
  • 4
    • 34247332661 scopus 로고    scopus 로고
    • Hyperspectral image compression using JPEG2000 and principal component analysis
    • Apr.
    • Q. Du and J. E. Fowler, "Hyperspectral image compression using JPEG2000 and principal component analysis," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 201-205, Apr. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.2 , pp. 201-205
    • Du, Q.1    Fowler, J.E.2
  • 5
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan.
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 6
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jan.
    • X. Jia and J. A. Richards, "Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538-542, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 7
    • 70349610260 scopus 로고    scopus 로고
    • Research on segmented PCA based on band selection algorithm of hyperspectral image
    • Z. Yang, L. Guo, X. Luo, and X. Hu, "Research on segmented PCA based on band selection algorithm of hyperspectral image," Eng. Surv. Mapping, vol. 15, no. 3, pp. 15-18, 2006.
    • (2006) Eng. Surv. Mapping , vol.15 , Issue.3 , pp. 15-18
    • Yang, Z.1    Guo, L.2    Luo, X.3    Hu, X.4
  • 8
    • 2142661779 scopus 로고    scopus 로고
    • Segmented PCA-based compression for hyperspectral image analysis
    • Feb.
    • Q. Du and C.-I. Chang, "Segmented PCA-based compression for hyperspectral image analysis," Proc. SPIE, vol. 5268, pp. 274-281, Feb. 2004.
    • (2004) Proc. SPIE , vol.5268 , pp. 274-281
    • Du, Q.1    Chang, C.-I.2
  • 9
    • 70350300459 scopus 로고    scopus 로고
    • Segmented principal component analysis for parallel compression of hyperspectral imagery
    • Oct.
    • Q. Du, W. Zhu, H. Yang, and J. E. Fowler, "Segmented principal component analysis for parallel compression of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 713-717, Oct. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 713-717
    • Du, Q.1    Zhu, W.2    Yang, H.3    Fowler, J.E.4
  • 10
    • 84899875503 scopus 로고    scopus 로고
    • Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing
    • Jul.
    • J. Zabalza et al., "Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing," ISPRS J. Photogramm. Remote Sens., vol. 93, pp. 112-122, Jul. 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.93 , pp. 112-122
    • Zabalza, J.1
  • 11
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Jan.
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas," EURASIP J. Adv. Signal Process., vol. 2009, p. 11, Jan. 2009.
    • (2009) EURASIP J. Adv. Signal Process. , vol.2009 , pp. 11
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 12
    • 84858078312 scopus 로고    scopus 로고
    • Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles
    • May
    • G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, "Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 447-451, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 447-451
    • Licciardi, G.1    Marpu, P.R.2    Chanussot, J.3    Benediktsson, J.A.4
  • 13
    • 0035573991 scopus 로고    scopus 로고
    • Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images
    • Jul.
    • M. Lennon, G. Mercier, M. Mouchot, and L. Hubert-Moy, "Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 6. Jul. 2001, pp. 2893-2895.
    • (2001) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , vol.6 , pp. 2893-2895
    • Lennon, M.1    Mercier, G.2    Mouchot, M.3    Hubert-Moy, L.4
  • 14
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 15
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 16
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol. 10, no. 5, pp. 1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 17
    • 14644422171 scopus 로고    scopus 로고
    • Exploiting manifold geometry in hyperspectral imagery
    • Mar.
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Exploiting manifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 441-454
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 18
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
    • Sep.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 19
    • 84859784358 scopus 로고    scopus 로고
    • Localitypreserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Localitypreserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 20
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • Feb.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "Sparse transfer manifold embedding for hyperspectral target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.2 , pp. 1030-1043
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 21
    • 0034818997 scopus 로고    scopus 로고
    • A linear constrained distance-based discriminant analysis for hyperspectral image classification
    • Q. Du and C.-I. Chang, "A linear constrained distance-based discriminant analysis for hyperspectral image classification," Pattern Recognit., vol. 34, no. 2, pp. 361-373, 2001.
    • (2001) Pattern Recognit. , vol.34 , Issue.2 , pp. 361-373
    • Du, Q.1    Chang, C.-I.2
  • 22
    • 35348882054 scopus 로고    scopus 로고
    • Modified Fisher's linear discriminant analysis for hyperspectral imagery
    • Oct.
    • Q. Du, "Modified Fisher's linear discriminant analysis for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 503-507, Oct. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 503-507
    • Du, Q.1
  • 23
    • 70449433268 scopus 로고    scopus 로고
    • A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy
    • X. Huang and L. Zhang, "A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy," Int. J. Remote Sens., vol. 30, no. 12, pp. 3205-3221, 2009.
    • (2009) Int. J. Remote Sens , vol.30 , Issue.12 , pp. 3205-3221
    • Huang, X.1    Zhang, L.2
  • 24
    • 84877926149 scopus 로고    scopus 로고
    • Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification
    • Apr.
    • J. Wen, Z. Tian, X. Liu, and W. Lin, "Neighborhood preserving orthogonal PNMF feature extraction for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 759-768, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.6 , Issue.2 , pp. 759-768
    • Wen, J.1    Tian, Z.2    Liu, X.3    Lin, W.4
  • 25
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 26
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Mar.
    • A. Plaza, P. Martinez, J. Plaza, and R. Perez, "Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 466-479, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Adv. Neural Inf. Process. Syst., vol. 25, no. 2, pp. 1097-1105, 2012.
    • (2012) Adv. Neural Inf. Process. Syst. , vol.25 , Issue.2 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 29
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Jul.
    • W. Hu, Y. Huang, W. Li, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sens., vol. 2015, Jul. 2015, Art. no. 258619.
    • (2015) J. Sens , vol.2015
    • Hu, W.1    Huang, Y.2    Li, W.3    Zhang, F.4    Li, H.5
  • 30
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyperspectral data classification through convolutional neural networks
    • Jul.
    • K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through convolutional neural networks," in Proc. IEEE Geosci. Remote Sens. Symp., Jul. 2015, pp. 4959-4962.
    • (2015) Proc. IEEE Geosci. Remote Sens. Symp. , pp. 4959-4962
    • Makantasis, K.1    Karantzalos, K.2    Doulamis, A.3    Doulamis, N.4
  • 31
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 32
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel-pair features
    • Feb.
    • W. Li, G. Wu, F. Zhang, and Q. Du, "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 844-853, Feb. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.2 , pp. 844-853
    • Li, W.1    Wu, G.2    Zhang, F.3    Du, Q.4
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 38
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y. L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in visual recognition," in Proc. Int. Conf. Mach. Learn., 2010, pp. 111-118.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 111-118
    • Boureau, Y.L.1    Ponce, J.2    LeCun, Y.3
  • 40
    • 84905922440 scopus 로고    scopus 로고
    • Joint within-class collaborative representation for hyperspectral image classification
    • Jun.
    • W. Li and Q. Du, "Joint within-class collaborative representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2200-2208, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 2200-2208
    • Li, W.1    Du, Q.2
  • 41
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 43
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1-27:27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.