메뉴 건너뛰기




Volumn 93, Issue , 2014, Pages 112-122

Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing

Author keywords

Data reduction; Feature extraction; Folded principal component analysis (F PCA); Hyperspectral imaging (HSI); Remote sensing; Support vector machine (SVM)

Indexed keywords

CLASSIFICATION (OF INFORMATION); COST BENEFIT ANALYSIS; COVARIANCE MATRIX; DATA REDUCTION; FEATURE EXTRACTION; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPECTROSCOPY; SYNTHETIC APERTURE RADAR;

EID: 84899875503     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2014.04.006     Document Type: Article
Times cited : (216)

References (40)
  • 2
    • 78650648433 scopus 로고    scopus 로고
    • The database of radar echoes from various targets with spectral analysis. In: 10th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Serbia, September, (doi: 10.1109/NEUREL.2010.5644074).
    • Andric, M., Bondzulic, B., Zrnic, B., The database of radar echoes from various targets with spectral analysis. In: 10th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Serbia, September, pp. 187-190, 2010. (doi: 10.1109/NEUREL.2010.5644074).
    • (2010) , pp. 187-190
    • Andric, M.1    Bondzulic, B.2    Zrnic, B.3
  • 3
    • 84899851846 scopus 로고    scopus 로고
    • Feature extraction related to target classification for a radar doppler echoes. In: 18th Telecommunications Forum TELFOR, Serbia, November, 2010.
    • Andric, M., Bondzulic, B., Zrnic, B., 2012. Feature extraction related to target classification for a radar doppler echoes. In: 18th Telecommunications Forum TELFOR, Serbia, November, 2010.
    • (2012)
    • Andric, M.1    Bondzulic, B.2    Zrnic, B.3
  • 4
    • 35348920168 scopus 로고    scopus 로고
    • Feature selection and classification of hyperspectral images with support vector machines
    • Archibald R., Fann G. Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci. Remote Sens. Lett. October 2007, 4(4):674-677. 10.1109/LGRS.2007.905116.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 5
    • 0041380907 scopus 로고    scopus 로고
    • Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality
    • Brando V.E., Dekker A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41:1378-1387. 10.1109/TGRS.2003.812907.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 1378-1387
    • Brando, V.E.1    Dekker, A.G.2
  • 6
    • 84899817174 scopus 로고    scopus 로고
    • bSVM Multiclass Classifier 2.08, Released on June 18, 2012. <>.
    • bSVM Multiclass Classifier 2.08, Released on June 18, 2012. <>. http://www.csie.ntu.edu.tw/~cjlin/bsvm/.
  • 7
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls G., Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. Jun. 2005, 43(6):1351-1362. 10.1109/TGRS.2005.846154.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 8
    • 73249149257 scopus 로고    scopus 로고
    • Dimension reduction of optical remote sensing images via minimum change rate deviation method
    • Dianat R., Kasaei S. Dimension reduction of optical remote sensing images via minimum change rate deviation method. IEEE Trans. Geosci. Remote Sens. Jan. 2010, 48(1):198-206. 10.1109/TGRS.2009.2024306.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 198-206
    • Dianat, R.1    Kasaei, S.2
  • 9
    • 34247332661 scopus 로고    scopus 로고
    • Hyperspectral image compression using JPEG2000 and principal component analysis
    • Du Q., Fowler J. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote Sens. Lett. 2007, 4(2):201-205. 10.1109/LGRS.2006.888109.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.2 , pp. 201-205
    • Du, Q.1    Fowler, J.2
  • 10
    • 84899803529 scopus 로고    scopus 로고
    • Quality-assured fingerprint image enhancement and extraction using hyperspectral imaging. In: 4th Int. Conf. Imaging for Crime Detection and Prevention (doi: 10.1049/ic.2011.0120).
    • Gill, K., Ren, J., et al. 2011. Quality-assured fingerprint image enhancement and extraction using hyperspectral imaging. In: 4th Int. Conf. Imaging for Crime Detection and Prevention (doi: 10.1049/ic.2011.0120).
    • (2011)
    • Gill, K.1    Ren, J.2
  • 11
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Green A., Berman M., Switzer P., Craig M. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26(1):65-74. 10.1109/36.3001.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.1    Berman, M.2    Switzer, P.3    Craig, M.4
  • 12
    • 0000624844 scopus 로고    scopus 로고
    • Incremental eigenanalysis for classification
    • Hall P., Martin R. Incremental eigenanalysis for classification. Proc. Br. Mach. Vision Confer. 1998, 1:286-295. 10.5244/C.12.29.
    • (1998) Proc. Br. Mach. Vision Confer. , vol.1 , pp. 286-295
    • Hall, P.1    Martin, R.2
  • 13
    • 77956019861 scopus 로고    scopus 로고
    • Dimension reduction by random projection for endmember extraction.(doi: 10.1109/ICIEA.2010.5516724).
    • He, M., Mei, S., 2010. Dimension reduction by random projection for endmember extraction. In: Proc. IEEE Conf. Ind. Electron. Appl., pp. 2323-2327, (doi: 10.1109/ICIEA.2010.5516724).
    • (2010) Proc. IEEE Conf. Ind. Electron. Appl. , pp. 2323-2327
    • He, M.1    Mei, S.2
  • 14
    • 84952631932 scopus 로고    scopus 로고
    • Semi-supervised marginal fisher analysis for hyperspectral image classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress (doi: 10.5194/isprsannals-I-3-377-2012).
    • Huang, H., Liu, J., Pan, Y., 2012. Semi-supervised marginal fisher analysis for hyperspectral image classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 1-3, XXII ISPRS Congress (doi: 10.5194/isprsannals-I-3-377-2012).
    • (2012) , vol.1 , Issue.3
    • Huang, H.1    Liu, J.2    Pan, Y.3
  • 15
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory January 1968, 14(1):55-63. 10.1109/TIT.1968.1054102.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 16
    • 84899849390 scopus 로고    scopus 로고
    • Hyperspectral Remote Sensing Scenes. <>.
    • Hyperspectral Remote Sensing Scenes. <>. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
  • 17
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification
    • Jia X., Richards J.A. Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification. IEEE Trans. Geosci. Remote Sens. 1999, 37:538-542. 10.1109/36.739109.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 18
    • 67349125767 scopus 로고    scopus 로고
    • Human activity classification based on microdoppler signatures using a support vector machine
    • Kim Y., Ling H. Human activity classification based on microdoppler signatures using a support vector machine. IEEE Trans. Geosci. Remote Sens. 2009, 47(5):1328-1337. 10.1109/TGRS.2009.2012849.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.5 , pp. 1328-1337
    • Kim, Y.1    Ling, H.2
  • 19
    • 27744538589 scopus 로고    scopus 로고
    • Generalized 2D principal component analysis for face image representation and recognition", Neural Networks, Elsevier, (doi: 10.1016/j.neunet.2005.06.041).
    • Kong, H., Wang, L., Teoh, E.K., Li, X., Wang, J.-G., Venkateswarlu, R. 2005. Generalized 2D principal component analysis for face image representation and recognition", Neural Networks, Elsevier, vol. 18, pp. 585-594, (doi: 10.1016/j.neunet.2005.06.041).
    • (2005) , vol.18 , pp. 585-594
    • Kong, H.1    Wang, L.2    Teoh, E.K.3    Li, X.4    Wang, J.-G.5    Venkateswarlu, R.6
  • 20
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42(8):1778-1790. 10.1109/TGRS.2004.831865.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 21
    • 84864258999 scopus 로고    scopus 로고
    • Classification of ground moving radar targets by using joint time-frequency analysis. In: IEEE 2012 Radar Conference, (doi: 10.1109/RADAR.2012.6212166).
    • Molchanov, P., Astola, J., Egiazarian, K., Totsky, A., 2012. Classification of ground moving radar targets by using joint time-frequency analysis. In: IEEE 2012 Radar Conference, pp. 0366-0371 (doi: 10.1109/RADAR.2012.6212166).
    • (2012) , pp. 0366-0371
    • Molchanov, P.1    Astola, J.2    Egiazarian, K.3    Totsky, A.4
  • 22
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal M., Foody G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. May 2010, 48(5):2297-2307. 10.1109/TGRS.2009.2039484.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 23
    • 84871406718 scopus 로고    scopus 로고
    • 2D-SPP: a two-dimensional extension of sparsity preserving projections
    • Pang E., Wang S., Qu M., et al. 2D-SPP: a two-dimensional extension of sparsity preserving projections. J. Inform. Comput. Sci. 2012, 9(13):3683-3692.
    • (2012) J. Inform. Comput. Sci. , vol.9 , Issue.13 , pp. 3683-3692
    • Pang, E.1    Wang, S.2    Qu, M.3
  • 24
    • 58149186655 scopus 로고    scopus 로고
    • Feature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier
    • Phillips R.D., Watson W.T., Wynne R.H., Blinn C.E. Feature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier. ISPRS J. Photogramm. Remote Sensing January 2009, 64(1):107-116. 10.1016/j.isprsjprs.2008.03.004.
    • (2009) ISPRS J. Photogramm. Remote Sensing , vol.64 , Issue.1 , pp. 107-116
    • Phillips, R.D.1    Watson, W.T.2    Wynne, R.H.3    Blinn, C.E.4
  • 25
    • 84899807745 scopus 로고
    • Pursue's univeristy multispecsite: June 12, aviris image north-south flightline, indiana. <>.
    • Pursue's univeristy multispecsite: June 12, 1992 aviris image north-south flightline, indiana. <>. http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
    • (1992)
  • 26
    • 70350754467 scopus 로고    scopus 로고
    • Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method
    • Qin J., Burks T.F., Kim M.S., Chao K., Ritenour M.A. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens. Instrum. Food Qual. Saf. 2008, 2(3):168-177. 10.1007/s11694-008-9043-3.
    • (2008) Sens. Instrum. Food Qual. Saf. , vol.2 , Issue.3 , pp. 168-177
    • Qin, J.1    Burks, T.F.2    Kim, M.S.3    Chao, K.4    Ritenour, M.A.5
  • 27
    • 85032778398 scopus 로고    scopus 로고
    • Effective feature extraction and data reduction in remote sensing using hyperspectral imaging
    • Ren J., Zabalza J., Marshall S., Zheng J. Effective feature extraction and data reduction in remote sensing using hyperspectral imaging. IEEE Signal Proc. Mag. 2014, 31(7).
    • (2014) IEEE Signal Proc. Mag. , vol.31 , Issue.7
    • Ren, J.1    Zabalza, J.2    Marshall, S.3    Zheng, J.4
  • 28
    • 77957854773 scopus 로고    scopus 로고
    • Comparison of support vector machine-based processing chains for hyperspectral image classification. In: Proceedings of SPIE, (doi: 10.1117/12.860413).
    • Rojas, M., Dǐopido, I., Plaza, A., Gamba, P., 2010. Comparison of support vector machine-based processing chains for hyperspectral image classification. In: Proceedings of SPIE, vol. 7810, (doi: 10.1117/12.860413).
    • (2010) , vol.7810
    • Rojas, M.1    Dǐopido, I.2    Plaza, A.3    Gamba, P.4
  • 29
    • 84899872117 scopus 로고    scopus 로고
    • The database of radar echoes from various targets.
    • The database of radar echoes from various targets. <. http://cid-3aaf3e18829259c0.skydrive.live.com/home.aspx.
  • 30
    • 34548206628 scopus 로고    scopus 로고
    • Variable-number variable-band selection for feature characterization in hyperspectral signatures
    • Wang S., Chang C.-I. Variable-number variable-band selection for feature characterization in hyperspectral signatures. IEEE Trans. Geosci. Remote Sens. Sept. 2007, 45(9):2979-2992. 10.1109/TGRS.2007.901051.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.9 , pp. 2979-2992
    • Wang, S.1    Chang, C.-I.2
  • 31
    • 0242540554 scopus 로고    scopus 로고
    • Modified principal component analysis (mpca) for feature selection of hyperspectral imagery
    • Wang C., Pasteur L., Menenti M., Li Z.-L. Modified principal component analysis (mpca) for feature selection of hyperspectral imagery. Geosci. Remote Sens. Symp. (IGARSS) 2003, 6:3781-3783. 10.1109/IGARSS.2003.1295268.
    • (2003) Geosci. Remote Sens. Symp. (IGARSS) , vol.6 , pp. 3781-3783
    • Wang, C.1    Pasteur, L.2    Menenti, M.3    Li, Z.-L.4
  • 32
    • 9644281039 scopus 로고    scopus 로고
    • The equivalence of two-dimensional pca to line-based pca
    • Wang L., Wang X., Zhang X., Feng J. The equivalence of two-dimensional pca to line-based pca. Pattern Recognition Lett. Elsevier 2005, 26:57-60. 10.1016/j.patrec.2004.08.016.
    • (2005) Pattern Recognition Lett. Elsevier , vol.26 , pp. 57-60
    • Wang, L.1    Wang, X.2    Zhang, X.3    Feng, J.4
  • 33
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional pca: a new approach to appearance-based face representation and recognition"
    • Yang J., Zhang D., Frangi A.F., Yang J.-Y. Two-dimensional pca: a new approach to appearance-based face representation and recognition". IEEE Trans. Pattern Anal. Mach. Intell. January 2004, 26(1):131-137. 10.1109/TPAMI.2004.1261097.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.F.3    Yang, J.-Y.4
  • 34
    • 84899876988 scopus 로고    scopus 로고
    • Probabilistic interpretations and extensions for a family of 2D PCA-style algorithms. In: Proc. The KDD'2008 workshop on Data Mining using Matrices and Tensors.
    • Yu, S., Bi, J., Ye, J., 2008. Probabilistic interpretations and extensions for a family of 2D PCA-style algorithms. In: Proc. The KDD'2008 workshop on Data Mining using Matrices and Tensors.
    • (2008)
    • Yu, S.1    Bi, J.2    Ye, J.3
  • 35
    • 84882256957 scopus 로고    scopus 로고
    • Embedded svm on tms320c6713 for signal prediction in classification and regression applications. In: in 5th European DSP Education and Research Conf., Amsterdam (doi: 10.1109/EDERC.2012.6532232).
    • Zabalza, J, Ren, J., Clemente, C., Di Caterina, G., Soraghan, J.J. 2012. Embedded svm on tms320c6713 for signal prediction in classification and regression applications. In: in 5th European DSP Education and Research Conf., Amsterdam (doi: 10.1109/EDERC.2012.6532232).
    • (2012)
    • Zabalza, J.1    Ren, J.2    Clemente, C.3    Di Caterina, G.4    Soraghan, J.J.5
  • 37
    • 84901819841 scopus 로고    scopus 로고
    • Singular Spectrum Analysis for Effective Feature Extraction in Hyperspectral Imaging
    • Zabalza J., Ren J., Wang Z., Marshall S., Wang J. Singular Spectrum Analysis for Effective Feature Extraction in Hyperspectral Imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11(12). 10.1109/LGRS.2014.2312754.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.12
    • Zabalza, J.1    Ren, J.2    Wang, Z.3    Marshall, S.4    Wang, J.5
  • 38
    • 79551633146 scopus 로고    scopus 로고
    • An algorithm of face recognition based on the variation of 2DPCA
    • Zeng Y., Feng D., Xiong L. An algorithm of face recognition based on the variation of 2DPCA. J. Comput. Inform. Syst. 2011, 7(1):303-310.
    • (2011) J. Comput. Inform. Syst. , vol.7 , Issue.1 , pp. 303-310
    • Zeng, Y.1    Feng, D.2    Xiong, L.3
  • 39
    • 27844449908 scopus 로고    scopus 로고
    • (2d)2 PCA: 2-directional 2-dimensional PCA for efficient face representation and recognition
    • doi: 10.1016/j.neucom.2005.06.004
    • Zhang D., Zhou Z.-H. (2d)2 PCA: 2-directional 2-dimensional PCA for efficient face representation and recognition. J. Neurocomp. 2005, 69(1-3):224-231. doi: 10.1016/j.neucom.2005.06.004.
    • (2005) J. Neurocomp. , vol.69 , Issue.1-3 , pp. 224-231
    • Zhang, D.1    Zhou, Z.-H.2
  • 40
    • 79151469566 scopus 로고    scopus 로고
    • Band-subset-based clustering and fusion for hyperspectral imagery classification
    • Zhao Y., Zhang L., Kong S. Band-subset-based clustering and fusion for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49(2):747-756. 10.1109/TGRS.2010.2059707.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 747-756
    • Zhao, Y.1    Zhang, L.2    Kong, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.