메뉴 건너뛰기




Volumn 13, Issue 5, 2017, Pages 455-463

The chemical basis for electrical signaling

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM; SODIUM; VOLTAGE GATED CALCIUM CHANNEL; VOLTAGE GATED SODIUM CHANNEL; ION CHANNEL; POTASSIUM;

EID: 85017460367     PISSN: 15524450     EISSN: 15524469     Source Type: Journal    
DOI: 10.1038/nchembio.2353     Document Type: Review
Times cited : (149)

References (94)
  • 1
    • 84946221763 scopus 로고
    • Ion channels enable electrical communication in bacterial communities
    • Prindle, A., et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59-63 (1984).
    • (1984) Nature , vol.527 , pp. 59-63
    • Prindle, A.1
  • 2
    • 0018400806 scopus 로고
    • Ionic mechanisms of excitation in Parameciu
    • Eckert, P., & Brehm, P. Ionic mechanisms of excitation in Parameciu. Annu. Rev. Biophys. Bioeng 8, 353-383 (1979).
    • (1979) Annu. Rev. Biophys. Bioeng , vol.8 , pp. 353-383
    • Eckert, P.1    Brehm, P.2
  • 4
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin, A. L., Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond. ) 117, 500-544 (1952).
    • (1952) J. Physiol. (Lond. ) , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 5
    • 0021330126 scopus 로고
    • The molecular basis of neuronal excitability
    • Catterall, W. A. The molecular basis of neuronal excitability. Science 223, 653-661 (1984).
    • (1984) Science , vol.223 , pp. 653-661
    • Catterall, W.A.1
  • 7
    • 0021123234 scopus 로고
    • Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence
    • Noda, M., et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127 (1984).
    • (1984) Nature , vol.312 , pp. 121-127
    • Noda, M.1
  • 8
    • 0023261936 scopus 로고
    • Primary structure of the receptor for calcium channel blockers from skeletal muscle
    • Tanabe, T., et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313-318 (1987).
    • (1987) Nature , vol.328 , pp. 313-318
    • Tanabe, T.1
  • 9
    • 15244344363 scopus 로고    scopus 로고
    • The VGL-chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis
    • Yu, F. H., Catterall, W. A. The VGL-chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004).
    • (2004) Sci. STKE , vol.2004 , pp. 15
    • Yu, F.H.1    Catterall, W.A.2
  • 10
    • 84866152524 scopus 로고    scopus 로고
    • Adaptive evolution of voltage-gated sodium channels: The first 800 million years
    • Zakon, H. H. Adaptive evolution of voltage-gated sodium channels: The first 800 million years. Proc. Natl. Acad. Sci. USA 109 (Suppl. 1), 10619-10625 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 10619-10625
    • Zakon, H.H.1
  • 11
    • 0033694833 scopus 로고    scopus 로고
    • From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels
    • Catterall, W. A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26, 13-25 (2000).
    • (2000) Neuron , vol.26 , pp. 13-25
    • Catterall, W.A.1
  • 12
    • 84940467041 scopus 로고    scopus 로고
    • Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors
    • Catterall, W. A., Zheng, N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40, 526-534 (2015).
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 526-534
    • Catterall, W.A.1    Zheng, N.2
  • 13
    • 0035861457 scopus 로고    scopus 로고
    • A prokaryotic voltage-gated sodium channel
    • Ren, D., et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372-2375 (2001).
    • (2001) Science , vol.294 , pp. 2372-2375
    • Ren, D.1
  • 14
    • 1542364444 scopus 로고    scopus 로고
    • A superfamily of voltage-gated sodium channels in bacteria
    • Koishi, R., et al. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279, 9532-9538 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 9532-9538
    • Koishi, R.1
  • 15
    • 79960621367 scopus 로고    scopus 로고
    • The crystal structure of a voltage-gated sodium channel
    • Payandeh, J., Scheuer, T., Zheng, N., Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353-358 (2011).
    • (2011) Nature , vol.475 , pp. 353-358
    • Payandeh, J.1    Scheuer, T.2    Zheng, N.3    Catterall, W.A.4
  • 16
    • 0022499391 scopus 로고
    • Expression of functional sodium channels from cloned cDNA
    • Noda, M., et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826-828 (1986).
    • (1986) Nature , vol.322 , pp. 826-828
    • Noda, M.1
  • 17
    • 0035931906 scopus 로고    scopus 로고
    • The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities
    • Sato, C., et al. The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047-1051 (2001).
    • (2001) Nature , vol.409 , pp. 1047-1051
    • Sato, C.1
  • 18
    • 84950282257 scopus 로고    scopus 로고
    • Structure of the voltage-gated calcium channel Cav1. 1 complex
    • Wu, J., et al. Structure of the voltage-gated calcium channel Cav1. 1 complex. Science 350, aad2395 (2015).
    • (2015) Science , vol.350 , pp. 2395
    • Wu, J.1
  • 19
    • 84986575661 scopus 로고    scopus 로고
    • Structure of the voltage-gated calcium channel Cav1. 1 at 3. 6 Å resolution
    • Wu, J., et al. Structure of the voltage-gated calcium channel Cav1. 1 at 3. 6 Å resolution. Nature 537, 191-196 (2016).
    • (2016) Nature , vol.537 , pp. 191-196
    • Wu, J.1
  • 20
    • 2942615325 scopus 로고    scopus 로고
    • Structure of a complex between a voltage-gated calcium channel-subunit and an-subunit domain
    • Van Petegem, F., Clark, K. A., Chatelain, F. C., Minor, D. L. Jr. Structure of a complex between a voltage-gated calcium channel-subunit and an-subunit domain. Nature 429, 671-675 (2004).
    • (2004) Nature , vol.429 , pp. 671-675
    • Van Petegem, F.1    Clark, K.A.2    Chatelain, F.C.3    Minor, D.L.4
  • 21
    • 2942598131 scopus 로고    scopus 로고
    • Structural basis of the 1-subunit interaction of voltage-gated Ca2+ channels
    • Chen, Y. H., et al. Structural basis of the 1-subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675-680 (2004).
    • (2004) Nature , vol.429 , pp. 675-680
    • Chen, Y.H.1
  • 22
    • 2342666133 scopus 로고    scopus 로고
    • Structural analysis of the voltage-dependent calcium channel subunit functional core and its complex with the 1 interaction domain
    • Opatowsky, Y., Chen, C. C., Campbell, K. P., Hirsch, J. A. Structural analysis of the voltage-dependent calcium channel subunit functional core and its complex with the 1 interaction domain. Neuron 42, 387-399 (2004).
    • (2004) Neuron , vol.42 , pp. 387-399
    • Opatowsky, Y.1    Chen, C.C.2    Campbell, K.P.3    Hirsch, J.A.4
  • 23
    • 0015868742 scopus 로고
    • Currents related to movement of the gating particles of the sodium channels
    • Armstrong, C. M., Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459-461 (1973).
    • (1973) Nature , vol.242 , pp. 459-461
    • Armstrong, C.M.1    Bezanilla, F.2
  • 24
    • 0022555877 scopus 로고
    • Molecular properties of voltage-sensitive sodium channels
    • Catterall, W. A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953-985 (1986).
    • (1986) Annu. Rev. Biochem. , vol.55 , pp. 953-985
    • Catterall, W.A.1
  • 25
    • 0000882125 scopus 로고
    • Molecular model of the action potential sodium channel
    • Guy, H. R., Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83, 508-512 (1986).
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 508-512
    • Guy, H.R.1    Seetharamulu, P.2
  • 26
    • 77956996917 scopus 로고    scopus 로고
    • Ion channel voltage sensors: Structure, function, and pathophysiology
    • Catterall, W. A. Ion channel voltage sensors: Structure, function, and pathophysiology. Neuron 67, 915-928 (2010).
    • (2010) Neuron , vol.67 , pp. 915-928
    • Catterall, W.A.1
  • 27
    • 0024368695 scopus 로고
    • Structural parts involved in activation and inactivation of the sodium channel
    • Stühmer, W., et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597-603 (1989).
    • (1989) Nature , vol.339 , pp. 597-603
    • Stühmer, W.1
  • 28
    • 0030037704 scopus 로고    scopus 로고
    • Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit
    • Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T., Catterall, W. A. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J. Biol. Chem. 271, 15950-15962 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 15950-15962
    • Rogers, J.C.1    Qu, Y.2    Tanada, T.N.3    Scheuer, T.4    Catterall, W.A.5
  • 29
    • 0032191111 scopus 로고    scopus 로고
    • Voltage sensor-trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II
    • Cestèle, S., et al. Voltage sensor-trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21, 919-931 (1998).
    • (1998) Neuron , vol.21 , pp. 919-931
    • Cestèle, S.1
  • 30
    • 0029084477 scopus 로고
    • Evidence for voltage-dependent S4 movement in sodium channels
    • Yang, N., Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213-218 (1995).
    • (1995) Neuron , vol.15 , pp. 213-218
    • Yang, N.1    Horn, R.2
  • 31
    • 0030731887 scopus 로고    scopus 로고
    • Probing the outer vestibule of a sodium channel voltage sensor
    • Yang, N., George, A. L. Jr., Horn, R. Probing the outer vestibule of a sodium channel voltage sensor. Biophys. J. 73, 2260-2268 (1997).
    • (1997) Biophys. J. , vol.73 , pp. 2260-2268
    • Yang, N.1    George, A.L.2    Horn, R.3
  • 32
    • 0030021584 scopus 로고    scopus 로고
    • Molecular basis of charge movement in voltage-gated sodium channels
    • Yang, N., George, A. L. Jr., Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113-122 (1996).
    • (1996) Neuron , vol.16 , pp. 113-122
    • Yang, N.1    George, A.L.2    Horn, R.3
  • 33
    • 54449100445 scopus 로고    scopus 로고
    • Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation
    • DeCaen, P. G., Yarov-Yarovoy, V., Zhao, Y., Scheuer, T., Catterall, W. A. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA 105, 15142-15147 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15142-15147
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Zhao, Y.3    Scheuer, T.4    Catterall, W.A.5
  • 35
    • 81755185839 scopus 로고    scopus 로고
    • Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor
    • DeCaen, P. G., Yarov-Yarovoy, V., Scheuer, T., Catterall, W. A. Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 108, 18825-18830 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 18825-18830
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Scheuer, T.3    Catterall, W.A.4
  • 36
    • 84855998904 scopus 로고    scopus 로고
    • Structural basis for gating charge movement in the voltage sensor of a sodium channel
    • Yarov-Yarovoy, V., et al. Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc. Natl. Acad. Sci. USA 109, E93-E102 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. E93-E102
    • Yarov-Yarovoy, V.1
  • 37
    • 36248982122 scopus 로고    scopus 로고
    • Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment
    • Long, S. B., Tao, X., Campbell, E. B., MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376-382 (2007).
    • (2007) Nature , vol.450 , pp. 376-382
    • Long, S.B.1    Tao, X.2    Campbell, E.B.3    MacKinnon, R.4
  • 38
    • 1142274549 scopus 로고    scopus 로고
    • A proton pore in a potassium channel voltage sensor reveals a focused electric field
    • Starace, D. M., Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548-553 (2004).
    • (2004) Nature , vol.427 , pp. 548-553
    • Starace, D.M.1    Bezanilla, F.2
  • 39
    • 84861952634 scopus 로고    scopus 로고
    • Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel
    • Zhang, X., et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486, 130-134 (2012).
    • (2012) Nature , vol.486 , pp. 130-134
    • Zhang, X.1
  • 40
    • 21744438625 scopus 로고    scopus 로고
    • Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor
    • Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239-1243 (2005).
    • (2005) Nature , vol.435 , pp. 1239-1243
    • Murata, Y.1    Iwasaki, H.2    Sasaki, M.3    Inaba, K.4    Okamura, Y.5
  • 41
    • 84895872710 scopus 로고    scopus 로고
    • Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain
    • Li, Q., et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat. Struct. Mol. Biol. 21, 244-252 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 244-252
    • Li, Q.1
  • 42
    • 84960906119 scopus 로고    scopus 로고
    • Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana
    • Guo, J., et al. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 196-201 (2016).
    • (2016) Nature , vol.531 , pp. 196-201
    • Guo, J.1
  • 43
    • 84960887968 scopus 로고    scopus 로고
    • Structure inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana
    • Kintzer, A. F., Stroud, R. M. Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531, 258-262 (2016).
    • (2016) Nature , vol.531 , pp. 258-262
    • Kintzer, A.F.1    Stroud, R.M.2
  • 44
    • 0015142234 scopus 로고
    • Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons
    • Armstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413-437 (1971).
    • (1971) J. Gen. Physiol. , vol.58 , pp. 413-437
    • Armstrong, C.M.1
  • 45
    • 0032478818 scopus 로고    scopus 로고
    • The structure of the potassium channel: Molecular basis of K+ conduction and selectivity
    • Doyle, D. A., et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69-77 (1998).
    • (1998) Science , vol.280 , pp. 69-77
    • Doyle, D.A.1
  • 46
    • 84861945912 scopus 로고    scopus 로고
    • Crystal structure of a voltage-gated sodium channel in two potentially inactivated states
    • Payandeh, J., Gamal El-Din, T. M., Scheuer, T., Zheng, N., Catterall, W. A. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486, 135-139 (2012).
    • (2012) Nature , vol.486 , pp. 135-139
    • Payandeh, J.1    Gamal El-Din, T.M.2    Scheuer, T.3    Zheng, N.4    Catterall, W.A.5
  • 47
    • 84869478035 scopus 로고    scopus 로고
    • Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing
    • McCusker, E. C., et al. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun. 3, 1102 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 1102
    • McCusker, E.C.1
  • 48
    • 84891835113 scopus 로고    scopus 로고
    • Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels
    • Shaya, D., et al. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J. Mol. Biol. 426, 467-483 (2014).
    • (2014) J. Mol. Biol. , vol.426 , pp. 467-483
    • Shaya, D.1
  • 49
    • 84975726435 scopus 로고    scopus 로고
    • Molecular basis of ion permeability in a voltage-gated sodium channel
    • Naylor, C. E., et al. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J. 35, 820-830 (2016).
    • (2016) EMBO J. , vol.35 , pp. 820-830
    • Naylor, C.E.1
  • 50
    • 84920431826 scopus 로고    scopus 로고
    • Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels
    • Bagnéris, C., Naylor, C. E., McCusker, E. C., Wallace, B. A. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. J. Gen. Physiol. 145, 5-16 (2015).
    • (2015) J. Gen. Physiol. , vol.145 , pp. 5-16
    • Bagnéris, C.1    Naylor, C.E.2    McCusker, E.C.3    Wallace, B.A.4
  • 51
    • 84884634287 scopus 로고    scopus 로고
    • Role of the C-terminal domain in the structure and function of tetrameric sodium channels
    • Bagnéris, C., et al. Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat. Commun. 4, 2465 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2465
    • Bagnéris, C.1
  • 52
    • 23244456428 scopus 로고    scopus 로고
    • Crystal structure of a mammalian voltage-dependent Shaker family K+ channel
    • Long, S. B., Campbell, E. B., Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897-903 (2005).
    • (2005) Science , vol.309 , pp. 897-903
    • Long, S.B.1    Campbell, E.B.2    MacKinnon, R.3
  • 53
    • 0001108519 scopus 로고
    • The molten helix: Effects of solvation on the to 310 helical transition
    • Smythe, M. L., Huston, S. E., Marshall, G. R. The molten helix: Effects of solvation on the to 310 helical transition. J. Am. Chem. Soc. 117, 5445-5452 (1995).
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 5445-5452
    • Smythe, M.L.1    Huston, S.E.2    Marshall, G.R.3
  • 54
    • 0036846886 scopus 로고    scopus 로고
    • Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation
    • Chanda, B., Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629-645 (2002).
    • (2002) J. Gen. Physiol. , vol.120 , pp. 629-645
    • Chanda, B.1    Bezanilla, F.2
  • 55
    • 84981510441 scopus 로고    scopus 로고
    • Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism
    • Whicher, J. R., MacKinnon, R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353, 664-669 (2016).
    • (2016) Science , vol.353 , pp. 664-669
    • Whicher, J.R.1    MacKinnon, R.2
  • 56
    • 84975688014 scopus 로고    scopus 로고
    • Crystal structure of the epithelial calcium channel TRPV6
    • Saotome, K., Singh, A. K., Yelshanskaya, M. V., Sobolevsky, A. I. Crystal structure of the epithelial calcium channel TRPV6. Nature 534, 506-511 (2016).
    • (2016) Nature , vol.534 , pp. 506-511
    • Saotome, K.1    Singh, A.K.2    Yelshanskaya, M.V.3    Sobolevsky, A.I.4
  • 57
    • 0015357133 scopus 로고
    • The permeability of the sodium channel to metal cations in myelinated nerve
    • Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 59, 637-658 (1972).
    • (1972) J. Gen. Physiol. , vol.59 , pp. 637-658
    • Hille, B.1
  • 58
    • 84893077319 scopus 로고    scopus 로고
    • Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy
    • Finol-Urdaneta, R. K., et al. Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy. J. Gen. Physiol. 143, 157-171 (2014).
    • (2014) J. Gen. Physiol. , vol.143 , pp. 157-171
    • Finol-Urdaneta, R.K.1
  • 59
    • 84855389998 scopus 로고    scopus 로고
    • A study of the hydration of the alkali metal ions in aqueous solution
    • Mähler, J., Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51, 425-438 (2012).
    • (2012) Inorg. Chem. , vol.51 , pp. 425-438
    • Mähler, J.1    Persson, I.2
  • 60
    • 0036014793 scopus 로고    scopus 로고
    • Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium
    • Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Crystallogr. D Biol. Crystallogr. 58, 872-874 (2002).
    • (2002) Acta Crystallogr. D Biol. Crystallogr. , vol.58 , pp. 872-874
    • Harding, M.M.1
  • 61
    • 0035499892 scopus 로고    scopus 로고
    • Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution
    • Zhou, Y., Morais-Cabral, J. H., Kaufman, A., MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2. 0 A resolution. Nature 414, 43-48 (2001).
    • (2001) Nature , vol.414 , pp. 43-48
    • Zhou, Y.1    Morais-Cabral, J.H.2    Kaufman, A.3    MacKinnon, R.4
  • 62
    • 84879912778 scopus 로고    scopus 로고
    • Catalysis of Na+ permeation in the bacterial sodium channel NaVAb
    • Chakrabarti, N., et al. Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc. Natl. Acad. Sci. USA 110, 11331-11336 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 11331-11336
    • Chakrabarti, N.1
  • 63
    • 84876228040 scopus 로고    scopus 로고
    • Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
    • Ulmschneider, M. B., et al. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110, 6364-6369 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 6364-6369
    • Ulmschneider, M.B.1
  • 64
    • 84861732973 scopus 로고    scopus 로고
    • Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel
    • Barber, A. F., et al. Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim. Biophys. Acta 1818, 2120-2125 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 2120-2125
    • Barber, A.F.1
  • 65
    • 84863393269 scopus 로고    scopus 로고
    • Mechanism of ion permeation and selectivity in a voltage gated sodium channel
    • Corry, B., Thomas, M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J. Am. Chem. Soc. 134, 1840-1846 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1840-1846
    • Corry, B.1    Thomas, M.2
  • 67
    • 0026517122 scopus 로고
    • Calcium channel characteristics conferred on the sodium channel by single mutations
    • Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K., Numa, S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441-443 (1992).
    • (1992) Nature , vol.356 , pp. 441-443
    • Heinemann, S.H.1    Terlau, H.2    Stühmer, W.3    Imoto, K.4    Numa, S.5
  • 68
    • 0029754658 scopus 로고    scopus 로고
    • On the structural basis for ionic selectivity among Na+ K+ and Ca2+ in the voltage-gated sodium channel
    • Favre, I., Moczydlowski, E., Schild, L. On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys. J. 71, 3110-3125 (1996).
    • (1996) Biophys. J. , vol.71 , pp. 3110-3125
    • Favre, I.1    Moczydlowski, E.2    Schild, L.3
  • 69
    • 84930640541 scopus 로고    scopus 로고
    • Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels
    • Stephens, R. F., Guan, W., Zhorov, B. S., Spafford, J. D. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front. Physiol. 6, 153 (2015).
    • (2015) Front. Physiol. , vol.6 , pp. 153
    • Stephens, R.F.1    Guan, W.2    Zhorov, B.S.3    Spafford, J.D.4
  • 70
    • 0021284545 scopus 로고
    • A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions
    • Almers, W., McCleskey, E. W., Palade, P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (Lond. ) 353, 565-583 (1984).
    • (1984) J. Physiol. (Lond. ) , vol.353 , pp. 565-583
    • Almers, W.1    McCleskey, E.W.2    Palade, P.T.3
  • 71
    • 0021284546 scopus 로고
    • Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore
    • Almers, W., McCleskey, E. W. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol. (Lond. ) 353, 585-608 (1984).
    • (1984) J. Physiol. (Lond. ) , vol.353 , pp. 585-608
    • Almers, W.1    McCleskey, E.W.2
  • 72
    • 0021280815 scopus 로고
    • Mechanism of ion permeation through calcium channels
    • Hess, P., Tsien, R. W. Mechanism of ion permeation through calcium channels. Nature 309, 453-456 (1984).
    • (1984) Nature , vol.309 , pp. 453-456
    • Hess, P.1    Tsien, R.W.2
  • 73
    • 84892370435 scopus 로고    scopus 로고
    • Structural basis for Ca2+ selectivity of a voltage-gated calcium channel
    • Tang, L., et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56-61 (2014).
    • (2014) Nature , vol.505 , pp. 56-61
    • Tang, L.1
  • 75
    • 0031992163 scopus 로고    scopus 로고
    • Ion channel selectivity through stepwise changes in binding affinity
    • Dang, T. X., McCleskey, E. W. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111, 185-193 (1998).
    • (1998) J. Gen. Physiol. , vol.111 , pp. 185-193
    • Dang, T.X.1    McCleskey, E.W.2
  • 76
    • 0014608851 scopus 로고
    • The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid Loligo pealei
    • Adelman, W. J. Jr., Palti, Y. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J. Gen. Physiol. 54, 589-606 (1969).
    • (1969) J. Gen. Physiol. , vol.54 , pp. 589-606
    • Adelman, W.J.1    Palti, Y.2
  • 77
    • 0035754168 scopus 로고    scopus 로고
    • Slow inactivation in voltage-gated sodium channels: Molecular substrates and contributions to channelopathies
    • Vilin, Y. Y., Ruben, P. C. Slow inactivation in voltage-gated sodium channels: Molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35, 171-190 (2001).
    • (2001) Cell Biochem. Biophys. , vol.35 , pp. 171-190
    • Vilin, Y.Y.1    Ruben, P.C.2
  • 78
    • 0018196425 scopus 로고
    • Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance
    • Rudy, B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. (Lond. ) 283, 1-21 (1978).
    • (1978) J. Physiol. (Lond. ) , vol.283 , pp. 1-21
    • Rudy, B.1
  • 79
    • 23244467740 scopus 로고    scopus 로고
    • The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
    • Pavlov, E., et al. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89, 232-242 (2005).
    • (2005) Biophys. J. , vol.89 , pp. 232-242
    • Pavlov, E.1
  • 80
    • 84895794573 scopus 로고    scopus 로고
    • Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel
    • Boiteux, C., Vorobyov, I., Allen, T. W. Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 111, 3454-3459 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 3454-3459
    • Boiteux, C.1    Vorobyov, I.2    Allen, T.W.3
  • 81
    • 0021891171 scopus 로고
    • Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium
    • Hennessey, T. M., Kung, C. Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J. Physiol. (Lond. ) 365, 165-179 (1985).
    • (1985) J. Physiol. (Lond. ) , vol.365 , pp. 165-179
    • Hennessey, T.M.1    Kung, C.2
  • 82
    • 0018270088 scopus 로고
    • Calcium entry leads to inactivation of calcium channel in Paramecium
    • Brehm, P., Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203-1206 (1978).
    • (1978) Science , vol.202 , pp. 1203-1206
    • Brehm, P.1    Eckert, R.2
  • 83
    • 29844439240 scopus 로고    scopus 로고
    • International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels
    • Catterall, W. A., Perez-Reyes, E., Snutch, T. P., Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411-425 (2005).
    • (2005) Pharmacol. Rev. , vol.57 , pp. 411-425
    • Catterall, W.A.1    Perez-Reyes, E.2    Snutch, T.P.3    Striessnig, J.4
  • 84
    • 0022461855 scopus 로고
    • Joint voltage-A nd calcium dependent inactivation of Ca channels in frog atrial myocardium
    • Nilius, B., Benndorf, K. Joint voltage-A nd calcium dependent inactivation of Ca channels in frog atrial myocardium. Biomed. Biochim. Acta 45, 795-811 (1986).
    • (1986) Biomed. Biochim. Acta , vol.45 , pp. 795-811
    • Nilius, B.1    Benndorf, K.2
  • 85
    • 0039552118 scopus 로고    scopus 로고
    • Solution structure of the sodium channel inactivation gate
    • Rohl, C. A., et al. Solution structure of the sodium channel inactivation gate. Biochemistry 38, 855-861 (1999).
    • (1999) Biochemistry , vol.38 , pp. 855-861
    • Rohl, C.A.1
  • 86
    • 84871004046 scopus 로고    scopus 로고
    • An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations
    • Vargas, E., et al. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol. 140, 587-594 (2012).
    • (2012) J. Gen. Physiol. , vol.140 , pp. 587-594
    • Vargas, E.1
  • 87
    • 0842326191 scopus 로고    scopus 로고
    • The Na+ channel inactivation gate is a molecular complex: A novel role of the COOH-terminal domain
    • Motoike, H. K., et al. The Na+ channel inactivation gate is a molecular complex: A novel role of the COOH-terminal domain. J. Gen. Physiol. 123, 155-165 (2004).
    • (2004) J. Gen. Physiol. , vol.123 , pp. 155-165
    • Motoike, H.K.1
  • 88
    • 33646009667 scopus 로고    scopus 로고
    • Sodium channel inactivation in heart: A novel role of the carboxy-terminal domain
    • Kass, R. S. Sodium channel inactivation in heart: A novel role of the carboxy-terminal domain. J. Cardiovasc. Electrophysiol. 17 (Suppl. 1), S21-S25 (2006).
    • (2006) J. Cardiovasc. Electrophysiol. , vol.17 , pp. S21-S25
    • Kass, R.S.1
  • 89
    • 84861653161 scopus 로고    scopus 로고
    • Voltage-gated potassium channels and the diversity of electrical signalling
    • Jan, L. Y., Jan, Y. N. Voltage-gated potassium channels and the diversity of electrical signalling. J. Physiol. (Lond. ) 590, 2591-2599 (2012).
    • (2012) J. Physiol. (Lond. ) , vol.590 , pp. 2591-2599
    • Jan, L.Y.1    Jan, Y.N.2
  • 91
    • 0025224223 scopus 로고
    • Biophysical and molecular mechanisms of Shaker potassium channel inactivation
    • Hoshi, T., Zagotta, W. N., Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533-538 (1990).
    • (1990) Science , vol.250 , pp. 533-538
    • Hoshi, T.1    Zagotta, W.N.2    Aldrich, R.W.3
  • 92
    • 0035822048 scopus 로고    scopus 로고
    • Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors
    • Zhou, M., Morais-Cabral, J. H., Mann, S., MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657-661 (2001).
    • (2001) Nature , vol.411 , pp. 657-661
    • Zhou, M.1    Morais-Cabral, J.H.2    Mann, S.3    MacKinnon, R.4
  • 93
    • 77954485089 scopus 로고    scopus 로고
    • Structural mechanism of C-type inactivation in K+ channels
    • Cuello, L. G., Jogini, V., Cortes, D. M., Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203-208 (2010).
    • (2010) Nature , vol.466 , pp. 203-208
    • Cuello, L.G.1    Jogini, V.2    Cortes, D.M.3    Perozo, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.