메뉴 건너뛰기




Volumn 1818, Issue 9, 2012, Pages 2120-2125

Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel

Author keywords

Bacterial channel; Gating; NaChBac; Sodium channel; Voltage gated

Indexed keywords

ALANINE; GLYCINE; PHENYLALANINE; PROLINE; SODIUM ION; VOLTAGE GATED SODIUM CHANNEL; WATER;

EID: 84861732973     PISSN: 00052736     EISSN: 18792642     Source Type: Journal    
DOI: 10.1016/j.bbamem.2012.05.002     Document Type: Article
Times cited : (30)

References (64)
  • 1
    • 23644433670 scopus 로고    scopus 로고
    • Inherited disorders of voltage-gated sodium channels
    • A.L. George, Inherited disorders of voltage-gated sodium channels, J. Clin. Invest. 115 (2005) 1990-1999.
    • (2005) J. Clin. Invest. , vol.115 , pp. 1990-1999
    • George, A.L.1
  • 6
    • 0017332486 scopus 로고
    • Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction
    • B. Hille, Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction, J. Gen. Physiol. 69 (1977) 497-515. (Pubitemid 8086978)
    • (1977) Journal of General Physiology , vol.69 , Issue.4 , pp. 497-515
    • Hille, B.1
  • 7
    • 0015784454 scopus 로고
    • The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine
    • G.R. Strichartz, The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine, J. Gen. Physiol. 62 (1973) 37-57.
    • (1973) J. Gen. Physiol. , vol.62 , pp. 37-57
    • Strichartz, G.R.1
  • 8
    • 0016792109 scopus 로고
    • Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA
    • K.R. Courtney, Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA, J. Pharmacol. Exp. Ther. 195 (1975) 225-236.
    • (1975) J. Pharmacol. Exp. Ther. , vol.195 , pp. 225-236
    • Courtney, K.R.1
  • 10
    • 5144229327 scopus 로고    scopus 로고
    • Gating of the bacterial sodium channel, NaChBac: Voltage-dependent charge movement and gating currents
    • DOI 10.1085/jgp.200409139
    • A. Kuzmenkin, F. Bezanilla, A.M. Correa, Gating of the bacterial sodium channel, NaChBac: voltage-dependent chargemovement and gating currents, J. Gen. Physiol. 124 (2004) 349-356. (Pubitemid 39346639)
    • (2004) Journal of General Physiology , vol.124 , Issue.4 , pp. 349-356
    • Kuzmenkin, A.1    Bezanilla, F.2    Correa, A.M.3
  • 11
    • 34247880407 scopus 로고    scopus 로고
    • Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel
    • DOI 10.1529/biophysj.106.090464
    • J. Blanchet, S. Pilote, M. Chahine, Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel, Biophys. J. 92 (2007) 3513-3523. (Pubitemid 46698641)
    • (2007) Biophysical Journal , vol.92 , Issue.10 , pp. 3513-3523
    • Blanchet, J.1    Pilote, S.2    Chahine, M.3
  • 14
    • 77955142082 scopus 로고    scopus 로고
    • Coupling between residues on S4 and S1 defines the voltagesensor resting conformation in NaChBac
    • T. Paldi, M. Gurevitz, Coupling between residues on S4 and S1 defines the voltagesensor resting conformation in NaChBac, Biophys. J. 99 (2010) 456-463.
    • (2010) Biophys. J. , vol.99 , pp. 456-463
    • Paldi, T.1    Gurevitz, M.2
  • 15
    • 77956996917 scopus 로고    scopus 로고
    • Ion channel voltage sensors: Structure, function, and pathophysiology
    • W.A. Catterall, Ion channel voltage sensors: structure, function, and pathophysiology, Neuron 67 (2010) 915-928.
    • (2010) Neuron , vol.67 , pp. 915-928
    • Catterall, W.A.1
  • 16
    • 79953185756 scopus 로고    scopus 로고
    • Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels
    • T. Shimomura, K. Irie, H. Nagura, T. Imai, Y. Fujiyoshi, Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels, J. Biol. Chem. 286 (2011) 7409-7417.
    • (2011) J. Biol. Chem. , vol.286 , pp. 7409-7417
    • Shimomura, T.1    Irie, K.2    Nagura, H.3    Imai, T.4    Fujiyoshi, Y.5
  • 19
    • 0032920359 scopus 로고    scopus 로고
    • Interaction between the pore and a fast gate of the cardiac sodium channel
    • C. Townsend, R. Horn, Interaction between the pore and a fast gate of the cardiac sodium channel, J. Gen. Physiol. 113 (1999) 321-332.
    • (1999) J. Gen. Physiol. , vol.113 , pp. 321-332
    • Townsend, C.1    Horn, R.2
  • 20
    • 0034255239 scopus 로고    scopus 로고
    • +and location of the activation gate in neuronal Na+ channels
    • + and location of the activation gate in neuronal Na+ channels, J. Neurosci. 20 (2000) 5639-5646.
    • (2000) J. Neurosci. , vol.20 , pp. 5639-5646
    • Kuo, C.C.1    Liao, S.Y.2
  • 21
    • 33646135082 scopus 로고    scopus 로고
    • Environment of the gating charges in the Kv1.2 Shaker potassium channel
    • W. Treptow, M. Tarek, Environment of the gating charges in the Kv1.2 Shaker potassium channel, Biophys. J. 90 (2006) L64-L66.
    • (2006) Biophys. J. , vol.90
    • Treptow, W.1    Tarek, M.2
  • 24
    • 77950463390 scopus 로고    scopus 로고
    • Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels
    • K. Irie, K. Kitagawa, H. Nagura, T. Imai, T. Shimomura, Y. Fujiyoshi, Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels, J. Biol. Chem. 285 (2010) 3685-3694.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3685-3694
    • Irie, K.1    Kitagawa, K.2    Nagura, H.3    Imai, T.4    Shimomura, T.5    Fujiyoshi, Y.6
  • 26
    • 80051495437 scopus 로고    scopus 로고
    • NaChBac: The long lost sodium channel ancestor
    • K. Charalambous, B.A. Wallace, NaChBac: the long lost sodium channel ancestor, Biochemistry 50 (2011) 6742-6752.
    • (2011) Biochemistry , vol.50 , pp. 6742-6752
    • Charalambous, K.1    Wallace, B.A.2
  • 28
    • 0033694833 scopus 로고    scopus 로고
    • From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels
    • W.A. Catterall, From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels, Neuron 26 (2000) 13-25.
    • (2000) Neuron , vol.26 , pp. 13-25
    • Catterall, W.A.1
  • 29
    • 0035861457 scopus 로고    scopus 로고
    • A prokaryotic voltage-gated sodium channel
    • DOI 10.1126/science.1065635
    • D. Ren, B. Navarro, H. Xu, L. Yue, Q. Shi, D.E. Clapham, A prokaryotic voltage-gated sodium channel, Science 294 (2001) 2372-2375. (Pubitemid 33140564)
    • (2001) Science , vol.294 , Issue.5550 , pp. 2372-2375
    • Ren, D.1    Navarro, B.2    Xu, H.3    Yue, L.4    Shi, Q.5    Clapham, D.E.6
  • 32
    • 56049102613 scopus 로고    scopus 로고
    • Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel
    • Y. Shafrir, S.R. Durell, H.R. Guy, Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel, Biophys. J. 95 (2008) 3650-3662.
    • (2008) Biophys. J. , vol.95 , pp. 3650-3662
    • Shafrir, Y.1    Durell, S.R.2    Guy, H.R.3
  • 33
    • 56049083760 scopus 로고    scopus 로고
    • Models of voltage-dependent conformational changes in NaChBac channels
    • Y. Shafrir, S.R. Durell, H.R. Guy, Models of voltage-dependent conformational changes in NaChBac channels, Biophys. J. 95 (2008) 3663-3676.
    • (2008) Biophys. J. , vol.95 , pp. 3663-3676
    • Shafrir, Y.1    Durell, S.R.2    Guy, H.R.3
  • 34
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • DOI 10.1006/jmbi.1999.3091
    • D.T. Jones, Protein secondary structure prediction based on position-specific scoring matrices1, J. Mol. Biol. 292 (1999) 195-202. (Pubitemid 29435759)
    • (1999) Journal of Molecular Biology , vol.292 , Issue.2 , pp. 195-202
    • Jones, D.T.1
  • 35
    • 0347383758 scopus 로고    scopus 로고
    • MODELLER: Generation and Refinement of Homology-Based Protein Structure Models
    • DOI 10.1016/S0076-6879(03)74020-8
    • A. Fiser, A. Sali, Modeller: generation and refinement of homology-based protein structure models, Methods Enzymol. 374 (2003) 461-491. (Pubitemid 37531821)
    • (2003) Methods in Enzymology , vol.374 , pp. 461-491
    • Fiser, A.1    Sali, A.2
  • 36
    • 84856737491 scopus 로고    scopus 로고
    • Sodium ion binding sites and hydration in the lumen of a bacterial ion channel frommolecular dynamic simulations
    • V. Carnevale,W. Treptow, M.L. Klein, Sodium ion binding sites and hydration in the lumen of a bacterial ion channel frommolecular dynamic simulations, J. Phys. Chem. Lett. 109 (2011) E93-E102.
    • (2011) J. Phys. Chem. Lett. , vol.109
    • Carnevale, V.1    Treptow, W.2    Klein, M.L.3
  • 38
    • 0242593434 scopus 로고    scopus 로고
    • Development and current status of the CHARMM force field for nucleic acids
    • DOI 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
    • A.D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the CHARMM force field for nucleic acids, Biopolymers 56 (2000) 257-265. (Pubitemid 34105873)
    • (2000) Biopolymers , vol.56 , Issue.4 , pp. 257-265
    • MacKerell Jr., A.D.1    Banavali, N.2    Foloppe, N.3
  • 39
    • 3142714765 scopus 로고    scopus 로고
    • Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamic simulations
    • A.D. Mackerell, M. Feig, C.L. Brooks, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamic simulations, J. Comput. Chem. 25 (2004) 1400-1415.
    • (2004) J. Comput. Chem. , vol.25 , pp. 1400-1415
    • Mackerell, A.D.1    Feig, M.2    Brooks, C.L.3
  • 40
    • 48549102871 scopus 로고    scopus 로고
    • United-atom acyl chains for CHARMM phospholipids
    • J. Hénin, W. Shinoda, M.L. Klein, United-atom acyl chains for CHARMM phospholipids, J. Phys. Chem. B 112 (2008) 7008-7015.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 7008-7015
    • Hénin, J.1    Shinoda, W.2    Klein, M.L.3
  • 42
    • 42149194240 scopus 로고    scopus 로고
    • Adaptive biasing force method for scalar and vector free energy calculations
    • E. Darve, D. Rodríguez-Gómez, A. Pohorille, Adaptive biasing force method for scalar and vector free energy calculations, J. Chem. Phys. 128 (2008) 144120.
    • (2008) J. Chem. Phys. , vol.128 , pp. 144120
    • Darve, E.1    Rodríguez-Gómez, D.2    Pohorille, A.3
  • 44
    • 33646940952 scopus 로고
    • Numerical integration of the cartesian equations of motion of a systemwith constraints:Molecular dynamics of n-alkanes
    • J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a systemwith constraints:molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977) 327-341.
    • (1977) J. Comput. Phys. , vol.23 , pp. 327-341
    • Ryckaert, J.P.1    Ciccotti, G.2    Berendsen, H.J.C.3
  • 46
    • 77950102787 scopus 로고    scopus 로고
    • Exploring multidimensional free energy landscapes using time-dependent biases on collective variables
    • J. Henin, G. Fiorin, C. Chipot, M.L. Klein, Exploring multidimensional free energy landscapes using time-dependent biases on collective variables, J. Chem. Theory Comput. 6 (2009) 35-47.
    • (2009) J. Chem. Theory Comput. , vol.6 , pp. 35-47
    • Henin, J.1    Fiorin, G.2    Chipot, C.3    Klein, M.L.4
  • 47
    • 79960621367 scopus 로고    scopus 로고
    • The crystal structure of a voltage-gated sodium channel
    • J. Payandeh, T. Scheuer, N. Zheng, W.A. Catterall, The crystal structure of a voltage-gated sodium channel, Nature 475 (2011) 353-358.
    • (2011) Nature , vol.475 , pp. 353-358
    • Payandeh, J.1    Scheuer, T.2    Zheng, N.3    Catterall, W.A.4
  • 48
    • 0042213113 scopus 로고    scopus 로고
    • + channel in a bilayer membrane
    • + channel in a bilayer membrane, Biophys. J. 78 (2000) 2900-2917.
    • (2000) Biophys. J. , vol.78 , pp. 2900-2917
    • Berneche, S.1    Roux, B.2
  • 49
    • 0034036372 scopus 로고    scopus 로고
    • Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer
    • I.H. Shrivastava, M.S.P. Sansom, Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer, Biophys. J. 78 (2000) 557-570. (Pubitemid 30211816)
    • (2000) Biophysical Journal , vol.78 , Issue.2 , pp. 557-570
    • Shrivastava, I.H.1    Sansom, M.S.P.2
  • 50
    • 23244467740 scopus 로고    scopus 로고
    • The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
    • DOI 10.1529/biophysj.104.056994
    • E. Pavlov, C. Bladen, R. Winkfein, C. Diao, P. Dhaliwal, R.J. French, The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel, Biophys. J. 89 (2005) 232-242. (Pubitemid 41098278)
    • (2005) Biophysical Journal , vol.89 , Issue.1 , pp. 232-242
    • Pavlov, E.1    Bladen, C.2    Winkfein, R.3    Diao, C.4    Dhaliwal, P.5    French, R.J.6
  • 51
    • 0036899251 scopus 로고    scopus 로고
    • The cation selectivity filter of the bacterial sodium channel, NaChBac
    • L. Yue, B. Navarro, D. Ren, A. Ramos, D.E. Clapham, The cation selectivity filter of the bacterial sodium channel, NaChBac, J. Gen. Physiol. 120 (2002) 845.
    • (2002) J. Gen. Physiol. , vol.120 , pp. 845
    • Yue, L.1    Navarro, B.2    Ren, D.3    Ramos, A.4    Clapham, D.E.5
  • 53
    • 5144223114 scopus 로고    scopus 로고
    • v channel through modification of a hydrophobic seal
    • DOI 10.1085/jgp.200409098
    • T. Kitaguchi, M. Sukhareva, K.J. Swartz, Stabilizing the closed S6 gate in the Shaker Kv channel through modification of a hydrophobic seal, J. Gen. Physiol. 124 (2004) 319-332. (Pubitemid 39346637)
    • (2004) Journal of General Physiology , vol.124 , Issue.4 , pp. 319-332
    • Kitaguchi, T.1    Sukhareva, M.2    Swartz, K.J.3
  • 54
    • 0037198625 scopus 로고    scopus 로고
    • The open pore conformation of potassium channels
    • DOI 10.1038/417523a
    • Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels, Nature 417 (2002) 523-526. (Pubitemid 34595913)
    • (2002) Nature , vol.417 , Issue.6888 , pp. 523-526
    • Jiang, Y.1    Lee, A.2    Chen, J.3    Cadene, M.4    Chait, B.T.5    MacKinnon, R.6
  • 55
    • 0036343993 scopus 로고    scopus 로고
    • Conformational dynamics of helix S6 from Shaker potassium channel: Simulation studies
    • J.N. Bright, I.H. Shrivastava, F.S. Cordes, M.S. Sansom, Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies, Biopolymers 64 (2002) 303-313.
    • (2002) Biopolymers , vol.64 , pp. 303-313
    • Bright, J.N.1    Shrivastava, I.H.2    Cordes, F.S.3    Sansom, M.S.4
  • 56
    • 33646200263 scopus 로고    scopus 로고
    • Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance
    • S.A. Spronk, D.E. Elmore, D.A. Dougherty, Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance, Biophys. J. 90 (2006) 3555-3569.
    • (2006) Biophys. J. , vol.90 , pp. 3555-3569
    • Spronk, S.A.1    Elmore, D.E.2    Dougherty, D.A.3
  • 57
    • 33646187879 scopus 로고    scopus 로고
    • An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics
    • B. Corry, An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics, Biophys. J. 90 (2006) 799-810.
    • (2006) Biophys. J. , vol.90 , pp. 799-810
    • Corry, B.1
  • 60
    • 67650716519 scopus 로고    scopus 로고
    • Sodium channels and the synaptic mechanisms of inhaled anaesthetics
    • H.C. Hemmings, Sodium channels and the synaptic mechanisms of inhaled anaesthetics, Br. J. Anaesth. 103 (2009) 61-69.
    • (2009) Br. J. Anaesth. , vol.103 , pp. 61-69
    • Hemmings, H.C.1
  • 61
    • 73949096000 scopus 로고    scopus 로고
    • Voltage-gated sodium channels: Therapeutic targets for pain
    • S.D. Dib-Hajj, J.A. Black, S.G. Waxman, Voltage-gated sodium channels: therapeutic targets for pain, Pain Med. 10 (2009) 1260-1269.
    • (2009) Pain Med. , vol.10 , pp. 1260-1269
    • Dib-Hajj, S.D.1    Black, J.A.2    Waxman, S.G.3
  • 62
    • 77949300922 scopus 로고    scopus 로고
    • Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders
    • M. Mantegazza, G. Curia, G. Biagini, D.S. Ragsdale, M. Avoli, Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders, Lancet Neurol. 9 (2010) 413-424.
    • (2010) Lancet Neurol. , vol.9 , pp. 413-424
    • Mantegazza, M.1    Curia, G.2    Biagini, G.3    Ragsdale, D.S.4    Avoli, M.5
  • 63
    • 80053493423 scopus 로고    scopus 로고
    • Targeting voltage-gated sodium channels for treating neuropathic and inflammatory pain
    • C.J. Cohen, Targeting voltage-gated sodium channels for treating neuropathic and inflammatory pain, Curr. Pharm. Biotechnol. 10 (2011) 1715-1719.
    • (2011) Curr. Pharm. Biotechnol. , vol.10 , pp. 1715-1719
    • Cohen, C.J.1
  • 64
    • 80054955595 scopus 로고    scopus 로고
    • Voltage-gated sodium channel gating modifiers: Valuable targets for multiple sclerosis treatment
    • S. Mahdavi, S. Gharibzadeh, B. Ranjbar, M. Javan, Voltage-gated sodium channel gating modifiers: valuable targets for multiple sclerosis treatment, J. Neuropsychiatry Clin. Neurosci. 23 (2011) E17.
    • (2011) J. Neuropsychiatry Clin. Neurosci. , vol.23
    • Mahdavi, S.1    Gharibzadeh, S.2    Ranjbar, B.3    Javan, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.