-
1
-
-
84883288177
-
What activates inactivation?
-
Ahern, C.A. 2013. What activates inactivation? J. Gen. Physiol. 142:97-100. http://dx.doi.org/10.1085/jgp.201311046
-
(2013)
J Gen. Physiol.
, vol.142
, pp. 97-100
-
-
Ahern, C.A.1
-
2
-
-
33947397646
-
Life among the axons
-
Armstrong, C.M. 2007. Life among the axons. Annu. Rev. Physiol. 69:1- 18. http://dx.doi.org/10.1146/annurev.physiol.69.120205.124448
-
(2007)
Annu. Rev. Physiol.
, vol.69
, pp. 1-18
-
-
Armstrong, C.M.1
-
3
-
-
0015868742
-
Currents related to movement of the gating particles of the sodium channels
-
Armstrong, C.M., and F. Bezanilla. 1973. Currents related to movement of the gating particles of the sodium channels. Nature. 242:459-461. http://dx.doi.org/10.1038/242459a0
-
(1973)
Nature
, vol.242
, pp. 459-461
-
-
Armstrong, C.M.1
Bezanilla, F.2
-
4
-
-
84884634287
-
Role of the C-terminal domain in the structure and function of tetrameric sodium channels
-
Bagnéris, C., P.G. DeCaen, B.A. Hall, C.E. Naylor, D.E. Clapham, C.W.M. Kay, and B.A. Wallace. 2013. Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat. Commun. 4:2465. http://dx.doi.org/10.1038/ncomms3465
-
(2013)
Nat. Commun.
, vol.4
, pp. 2465
-
-
Bagnéris, C.1
DeCaen, P.G.2
Hall, B.A.3
Naylor, C.E.4
Clapham, D.E.5
Kay, C.W.M.6
Wallace, B.A.7
-
5
-
-
84902161802
-
Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism
-
Bagnéris, C., P.G. DeCaen, C.E. Naylor, D.C. Pryde, I. Nobeli, D.E. Clapham, and B.A. Wallace. 2014. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc. Natl. Acad. Sci. USA. 111:8428-8433. http://dx.doi.org/10.1073/pnas.1406855111
-
(2014)
Proc. Natl. Acad. Sci. USA.
, vol.111
, pp. 8428-8433
-
-
Bagnéris, C.1
DeCaen, P.G.2
Naylor, C.E.3
Pryde, D.C.4
Nobeli, I.5
Clapham, D.E.6
Wallace, B.A.7
-
6
-
-
84861732973
-
Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel
-
Barber, A.F., V. Carnevale, S.G. Raju, C. Amaral, W. Treptow, and M.L. Klein. 2012. Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim. Biophys. Acta. 1818: 2120-2125. http://dx.doi.org/10.1016/j.bbamem.2012.05.002
-
(2012)
Biochim. Biophys. Acta.
, vol.1818
, pp. 2120-2125
-
-
Barber, A.F.1
Carnevale, V.2
Raju, S.G.3
Amaral, C.4
Treptow, W.5
Klein, M.L.6
-
7
-
-
84861716984
-
Voltage-gated sodium channels at 60 structure, function and pathophysiology
-
Catterall, W.A. 2012. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590:2577-2589. http://dx.doi.org/10.1113/jphysiol.2011.224204
-
(2012)
J. Physiol.
, vol.590
, pp. 2577-2589
-
-
Catterall, W.A.1
-
8
-
-
80051495437
-
NaChBac: The long lost sodium channel ancestor
-
Charalambous, K., and B.A. Wallace. 2011. NaChBac: The long lost sodium channel ancestor. Biochemistry. 50:6742-6752. http://dx.doi.org/10.1021/bi200942y
-
(2011)
Biochemistry
, vol.50
, pp. 6742-6752
-
-
Charalambous, K.1
Wallace, B.A.2
-
9
-
-
84868156224
-
CAVER 3 0: A tool for the analysis of transport pathways in dynamic protein structures
-
Chovancova, E., A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, et al. 2012. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 8:e1002708. http://dx.doi.org/10.1371/journal.pcbi.1002708
-
(2012)
PLOS Comput. Biol.
, vol.8
, pp. e1002708
-
-
Chovancova, E.1
Pavelka, A.2
Benes, P.3
Strnad, O.4
Brezovsky, J.5
Kozlikova, B.6
Gora, A.7
Sustr, V.8
Klvana, M.9
Medek, P.10
-
10
-
-
0037737799
-
Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation
-
Cronin, N.B., A. O'Reilly, H. Duclohier, and B.A. Wallace. 2003. Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation. J. Biol. Chem. 278:10675-10682. http://dx.doi.org/10.1074/jbc.M208356200
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 10675-10682
-
-
Cronin, N.B.1
O'Reilly, A.2
Duclohier, H.3
Wallace, B.A.4
-
11
-
-
84876001741
-
Differential lipid dependence of the function of bacterial sodium channels
-
D'Avanzo, N., E.C. McCusker, A.M. Powl, A.J. Miles, C.G. Nichols, and B.A. Wallace. 2013. Differential lipid dependence of the function of bacterial sodium channels. PLoS ONE. 8:e61216. http://dx.doi.org/10.1371/journal.pone.0061216
-
(2013)
PLoS ONE
, vol.8
, pp. e61216
-
-
D'Avanzo, N.1
McCusker, E.C.2
Powl, A.M.3
Miles, A.J.4
Nichols, C.G.5
Wallace, B.A.6
-
12
-
-
54449100445
-
Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation
-
DeCaen, P.G., V. Yarov-Yarovoy, Y. Zhao, T. Scheuer, and W.A. Catterall. 2008. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA. 105:15142-15147. http://dx.doi.org/10.1073/pnas.0806486105
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, pp. 15142-15147
-
-
DeCaen, P.G.1
Yarov-Yarovoy, V.2
Zhao, Y.3
Scheuer, T.4
Catterall, W.A.5
-
13
-
-
76049115811
-
Sequential formation of ion pairs during activation of a sodium channel voltage sensor
-
DeCaen, P.G., V. Yarov-Yarovoy, E.M. Sharp, T. Scheuer, and W.A. Catterall. 2009. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc. Natl. Acad. Sci. USA. 106:22498-22503. http://dx.doi.org/10.1073/pnas.0912307106
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 22498-22503
-
-
DeCaen, P.G.1
Yarov-Yarovoy, V.2
Sharp, E.M.3
Scheuer, T.4
Catterall, W.A.5
-
14
-
-
0032478818
-
The structure of the potassium channel: Molecular basis of K+ conduction and selectivity
-
Doyle, D.A., J. Morais Cabral, R.A. Pfeutzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science. 280:69-77. http://dx.doi.org/10.1126/science.280.5360.69
-
(1998)
Science
, vol.280
, pp. 69-77
-
-
Doyle, D.A.1
Morais Cabral, J.2
Pfeutzner, R.A.3
Kuo, A.4
Gulbis, J.M.5
Cohen, S.L.6
Chait, B.T.7
MacKinnon, R.8
-
15
-
-
84893077319
-
Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy
-
Finol-Urdaneta, R.K., Y. Wang, A. Al-Sabi, C. Zhao, S.Y. Noskov, and R.J. French. 2014. Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy. J. Gen. Physiol. 143:157-171. http://dx.doi.org/10.1085/jgp.201311037
-
(2014)
J. Gen. Physiol.
, vol.143
, pp. 157-171
-
-
Finol-Urdaneta, R.K.1
Wang, Y.2
Al-Sabi, A.3
Zhao, C.4
Noskov, S.Y.5
French, R.J.6
-
16
-
-
84879190086
-
Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel
-
Goldschen-Ohm, M.P., D.L. Capes, K.M. Oelstrom, and B. Chanda. 2013. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel. Nat. Commun. 4:1350. http://dx.doi.org/10.1038/ncomms2356
-
(2013)
Nat. Commun.
, vol.4
, pp. 1350
-
-
Goldschen-Ohm, M.P.1
Capes, D.L.2
Oelstrom, K.M.3
Chanda, B.4
-
17
-
-
0000882125
-
Molecular model of the action potential sodium channel
-
Guy, H.R., and P. Seetharamulu. 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA. 83:508- 512. http://dx.doi.org/10.1073/pnas.83.2.508
-
(1986)
Proc. Natl. Acad. Sci. USA.
, vol.83
, pp. 508-512
-
-
Guy, H.R.1
Seetharamulu, P.2
-
18
-
-
0016710436
-
Ionic selectivity, saturation, and block in sodium channels A four-barrier model
-
Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J. Gen. Physiol. 66:535-560. http://dx.doi.org/10.1085/jgp.66.5.535
-
(1975)
J. Gen. Physiol.
, vol.66
, pp. 535-560
-
-
Hille, B.1
-
19
-
-
0003443746
-
Ion Channels of Excitable Membranes
-
Sinauer Associates, Sunderland, MA
-
Hille, B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA. 814 pp.
-
(2001)
, pp. 814
-
-
Hille, B.1
-
20
-
-
84860304780
-
The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate
-
Irie, K., T. Shimomura, and Y. Fujiyoshi. 2012. The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate. Nat. Commun. 3:793. http://dx.doi.org/10.1038/ncomms1797
-
(2012)
Nat. Commun.
, vol.3
, pp. 793
-
-
Irie, K.1
Shimomura, T.2
Fujiyoshi, Y.3
-
21
-
-
3242686755
-
The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus
-
Ito, M., H. Xu, A.A. Guffanti, Y. Wei, L. Zvi, D.E. Clapham, and T.A. Krulwich. 2004. The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA. 101:10566-10571. http://dx.doi.org/10.1073/pnas.0402692101
-
(2004)
Proc. Natl. Acad. Sci. USA.
, vol.101
, pp. 10566-10571
-
-
Ito, M.1
Xu, H.2
Guffanti, A.A.3
Wei, Y.4
Zvi, L.5
Clapham, D.E.6
Krulwich, T.A.7
-
22
-
-
0037198625
-
The open pore conformation of potassium channels
-
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. The open pore conformation of potassium channels. Nature. 417:523-526. http://dx.doi.org/10.1038/417523a
-
(2002)
Nature
, vol.417
, pp. 523-526
-
-
Jiang, Y.1
Lee, A.2
Chen, J.3
Cadene, M.4
Chait, B.T.5
MacKinnon, R.6
-
23
-
-
77957764152
-
2Struc: the secondary structure server
-
Klose, D.P., B.A. Wallace, and R.W. Janes. 2010. 2Struc: the secondary structure server. Bioinformatics. 26:2624-2625. http://dx.doi.org/10.1093/bioinformatics/btq480
-
(2010)
Bioinformatics
, vol.26
, pp. 2624-2625
-
-
Klose, D.P.1
Wallace, B.A.2
Janes, R.W.3
-
24
-
-
1542364444
-
A superfamily of voltage-gated sodium channels in bacteria
-
Koishi, R., H. Xu, D. Ren, B. Navarro, B.W. Spiller, Q. Shi, and D.E. Clapham. 2004. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279:9532-9538. http://dx.doi.org/10.1074/jbc.M313100200
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 9532-9538
-
-
Koishi, R.1
Xu, H.2
Ren, D.3
Navarro, B.4
Spiller, B.W.5
Shi, Q.6
Clapham, D.E.7
-
25
-
-
5144229327
-
Gating of the bacterial sodium channel, NaChBac: Voltage-dependent charge movement and gating currents.
-
Kuzmenkin, A., F. Bezanilla, and A.M. Correa. 2004. Gating of the bacterial sodium channel, NaChBac: Voltage-dependent charge movement and gating currents. J. Gen. Physiol. 124:349-356. http://dx.doi.org/10.1085/jgp.200409139
-
(2004)
J. Gen. Physiol.
, vol.124
, pp. 349-356
-
-
Kuzmenkin, A.1
Bezanilla, F.2
Correa, A.M.3
-
26
-
-
0032823307
-
Voltage-gated ion channels and hereditary disease
-
Lehmann-Horn, F., and K. Jurkat-Rott. 1999. Voltage-gated ion channels and hereditary disease. Physiol. Rev. 79:1317-1372.
-
(1999)
Physiol. Rev.
, vol.79
, pp. 1317-1372
-
-
Lehmann-Horn, F.1
Jurkat-Rott, K.2
-
27
-
-
36248982122
-
Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment
-
Long, S.B., X. Tao, E.B. Campbell, and R. MacKinnon. 2007. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 450:376-382. http://dx.doi.org/10.1038/nature06265
-
(2007)
Nature
, vol.450
, pp. 376-382
-
-
Long, S.B.1
Tao, X.2
Campbell, E.B.3
MacKinnon, R.4
-
28
-
-
79955549892
-
Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels
-
McCusker, E.C., N. D'Avanzo, C.G. Nichols, and B.A. Wallace. 2011. Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels. J. Biol. Chem. 286:16386-16391. http://dx.doi.org/10.1074/jbc.C111.228122
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16386-16391
-
-
McCusker, E.C.1
D'Avanzo, N.2
Nichols, C.G.3
Wallace, B.A.4
-
29
-
-
84869478035
-
Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing
-
McCusker, E.C., C. Bagnéris, C.E. Naylor, A.R. Cole, N. D'Avanzo, C.G. Nichols, and B.A. Wallace. 2012. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun. 3:1102. http://dx.doi.org/10.1038/ncomms2077
-
(2012)
Nat. Commun.
, vol.3
, pp. 1102
-
-
McCusker, E.C.1
Bagnéris, C.2
Naylor, C.E.3
Cole, A.R.4
D'Avanzo, N.5
Nichols, C.G.6
Wallace, B.A.7
-
30
-
-
77955269299
-
The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions
-
Mio, K., M. Mio, F. Arisaka, M. Sato, and C. Sato. 2010. The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog. Biophys. Mol. Biol. 103:111- 121. http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.002
-
(2010)
Prog. Biophys. Mol. Biol.
, vol.103
, pp. 111-121
-
-
Mio, K.1
Mio, M.2
Arisaka, F.3
Sato, M.4
Sato, C.5
-
31
-
-
0021123234
-
Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence
-
Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, et al. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312:121-127. http://dx.doi.org/10.1038/312121a0
-
(1984)
Nature
, vol.312
, pp. 121-127
-
-
Noda, M.1
Shimizu, S.2
Tanabe, T.3
Takai, T.4
Kayano, T.5
Ikeda, T.6
Takahashi, H.7
Nakayama, H.8
Kanaoka, Y.9
Minamino, N.10
-
32
-
-
48649087167
-
Tetrameric bacterial sodium channels: Characterization of structure, stability, and drug binding
-
Nurani, G., M. Radford, K. Charalambous, A.O. O'Reilly, N.B. Cronin, S. Haque, and B.A. Wallace. 2008. Tetrameric bacterial sodium channels: Characterization of structure, stability, and drug binding. Biochemistry. 47:8114-8121. http://dx.doi.org/10.1021/bi800645w
-
(2008)
Biochemistry
, vol.47
, pp. 8114-8121
-
-
Nurani, G.1
Radford, M.2
Charalambous, K.3
O'Reilly, A.O.4
Cronin, N.B.5
Haque, S.6
Wallace, B.A.7
-
33
-
-
57049128880
-
G219S mutagenesis as a means of stabilizing conformational flexibility in the bacterial sodium channel NaChBac
-
O'Reilly, A.O., K. Charalambous, G. Nurani, A.M. Powl, and B.A. Wallace. 2008. G219S mutagenesis as a means of stabilizing conformational flexibility in the bacterial sodium channel NaChBac. Mol. Membr. Biol. 25:670-676. http://dx.doi.org/10.1080/09687680802508754
-
(2008)
Mol. Membr. Biol.
, vol.25
, pp. 670-676
-
-
O'Reilly, A.O.1
Charalambous, K.2
Nurani, G.3
Powl, A.M.4
Wallace, B.A.5
-
34
-
-
84896299188
-
Evolutionarily conserved intracellular gate of voltage-dependent sodium channels
-
Oelstrom, K., M.P. Goldschen-Ohm, M. Holmgren, and B. Chanda. 2014. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun. 5:3420. http://dx.doi.org/10.1038/ncomms4420
-
(2014)
Nat. Commun.
, vol.5
, pp. 3420
-
-
Oelstrom, K.1
Goldschen-Ohm, M.P.2
Holmgren, M.3
Chanda, B.4
-
35
-
-
23244467740
-
The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
-
Pavlov, E., C. Bladen, R. Winkfein, C. Diao, P. Dhaliwal, and R.J. French. 2005. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89:232-242. http://dx.doi.org/10.1529/biophysj.104.056994
-
(2005)
Biophys. J.
, vol.89
, pp. 232-242
-
-
Pavlov, E.1
Bladen, C.2
Winkfein, R.3
Diao, C.4
Dhaliwal, P.5
French, R.J.6
-
36
-
-
79960621367
-
The crystal structure of a voltage-gated sodium channel
-
Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. 2011. The crystal structure of a voltage-gated sodium channel. Nature. 475:353-358. http://dx.doi.org/10.1038/nature10238
-
(2011)
Nature
, vol.475
, pp. 353-358
-
-
Payandeh, J.1
Scheuer, T.2
Zheng, N.3
Catterall, W.A.4
-
37
-
-
84861945912
-
Crystal structure of a voltage-gated sodium channel in two potentially inactivated states
-
Payandeh, J., T.M. Gamal El-Din, T. Scheuer, N. Zheng, and W.A. Catterall. 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. 486:135-139.
-
(2012)
Nature
, vol.486
, pp. 135-139
-
-
Payandeh, J.1
Gamal El-Din, T.M.2
Scheuer, T.3
Zheng, N.4
Catterall, W.A.5
-
38
-
-
77956294944
-
Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly
-
Powl, A.M., A.O. O'Reilly, A.J. Miles, and B.A. Wallace. 2010. Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly. Proc. Natl. Acad. Sci. USA. 107:14064-14069. http://dx.doi.org/10.1073/pnas.1001793107
-
(2010)
Proc. Natl. Acad. Sci. USA.
, vol.107
, pp. 14064-14069
-
-
Powl, A.M.1
O'Reilly, A.O.2
Miles, A.J.3
Wallace, B.A.4
-
39
-
-
0035861457
-
A prokaryotic voltage-gated sodium channel
-
Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science. 294:2372- 2375. http://dx.doi.org/10.1126/science.1065635
-
(2001)
Science
, vol.294
, pp. 2372-2375
-
-
Ren, D.1
Navarro, B.2
Xu, H.3
Yue, L.4
Shi, Q.5
Clapham, D.E.6
-
40
-
-
56049083760
-
Models of voltage-dependent conformational changes in NaChBac channels
-
Shafrir, Y., S.R. Durell, and H.R. Guy. 2008. Models of voltage-dependent conformational changes in NaChBac channels. Biophys. J. 95:3663-3676. http://dx.doi.org/10.1529/biophysj.108.135335
-
(2008)
Biophys. J.
, vol.95
, pp. 3663-3676
-
-
Shafrir, Y.1
Durell, S.R.2
Guy, H.R.3
-
41
-
-
79961050460
-
Voltage-gated sodium channel (NaV) protein dissection creates a set of functional poreonly proteins
-
Shaya, D., M. Kreir, R.A. Robbins, S. Wong, J. Hammon, A. Brüggemann, and D.L. Minor Jr. 2011. Voltage-gated sodium channel (NaV) protein dissection creates a set of functional poreonly proteins. Proc. Natl. Acad. Sci. USA. 108:12313-12318. http://dx.doi.org/10.1073/pnas.1106811108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 12313-12318
-
-
Shaya, D.1
Kreir, M.2
Robbins, R.A.3
Wong, S.4
Hammon, J.5
Brüggemann, A.6
Minor Jr., D.L.7
-
42
-
-
84891835113
-
Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels
-
Shaya, D., F. Findeisen, F. Abderemane-Ali, C. Arrigoni, S. Wong, S.R. Nurva, G. Loussouarn, and D.L. Minor Jr. 2014. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J. Mol. Biol. 426:467-483. http://dx.doi.org/10.1016/j.jmb.2013.10.010
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 467-483
-
-
Shaya, D.1
Findeisen, F.2
Abderemane-Ali, F.3
Arrigoni, C.4
Wong, S.5
Nurva, S.R.6
Loussouarn, G.7
Minor Jr., D.L.8
-
43
-
-
80054078476
-
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
-
Sievers, F., A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. http://dx.doi.org/10.1038/msb.2011.75
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 539
-
-
Sievers, F.1
Wilm, A.2
Dineen, D.3
Gibson, T.J.4
Karplus, K.5
Li, W.6
Lopez, R.7
McWilliam, H.8
Remmert, M.9
Söding, J.10
-
44
-
-
84892370435
-
2+ selectivity of a voltage-gated calcium channel
-
2+ selectivity of a voltage-gated calcium channel. Nature. 505:56-61. http://dx.doi.org/10.1038/nature12775
-
(2014)
Nature
, vol.505
, pp. 56-61
-
-
Tang, L.1
Gamal El-Din, T.M.2
Payandeh, J.3
Martinez, G.Q.4
Heard, T.M.5
Scheuer, T.6
Zheng, N.7
Catterall, W.A.8
-
45
-
-
84886719951
-
Two alternative conformations of a voltage-gated sodium channel
-
Tsai, C.-J., K. Tani, K. Irie, Y. Hiroaki, T. Shimomura, D.G. McMillan, G.M. Cook, G.F.X. Schertler, Y. Fujiyoshi, and X.-D. Li. 2013. Two alternative conformations of a voltage-gated sodium channel. J. Mol. Biol. 425:4074-4088. http://dx.doi.org/10.1016/j.jmb.2013.06.036
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4074-4088
-
-
Tsai, C.-J.1
Tani, K.2
Irie, K.3
Hiroaki, Y.4
Shimomura, T.5
McMillan, D.G.6
Cook, G.M.7
Schertler, G.F.X.8
Fujiyoshi, Y.9
Li, X.-D.10
-
46
-
-
84876228040
-
Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
-
Ulmschneider, M.B., C. Bagnéris, E.C. McCusker, P.G. DeCaen, M. Delling, D.E. Clapham, J.P. Ulmschneider, and B.A. Wallace. 2013. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA. 110:6364-6369. http://dx.doi.org/10.1073/pnas.1214667110
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. 6364-6369
-
-
Ulmschneider, M.B.1
Bagnéris, C.2
McCusker, E.C.3
DeCaen, P.G.4
Delling, M.5
Clapham, D.E.6
Ulmschneider, J.P.7
Wallace, B.A.8
-
47
-
-
0242488935
-
Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy
-
Unwin, N. 2003. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555:91-95. http://dx.doi.org/10.1016/S0014-5793(03)01084-6
-
(2003)
FEBS Lett
, vol.555
, pp. 91-95
-
-
Unwin, N.1
-
49
-
-
29844433234
-
Overview of molecular relationships in the voltage-gated ion channel superfamily
-
Yu, F.H., V. Yarov-Yarovoy, G.A. Gutman, and W.A. Catterall. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387-395. http://dx.doi.org/10.1124/pr.57.4.13
-
(2005)
Pharmacol. Rev.
, vol.57
, pp. 387-395
-
-
Yu, F.H.1
Yarov-Yarovoy, V.2
Gutman, G.A.3
Catterall, W.A.4
-
50
-
-
78649873947
-
A molecular switch between the outer and the inner vestibules of the voltage-gated Na+ channel
-
Zarrabi, T., R. Cervenka, W. Sandtner, P. Lukacs, X. Koenig, K. Hilber, M. Mille, G.M. Lipkind, H.A. Fozzard, and H. Todt. 2010. A molecular switch between the outer and the inner vestibules of the voltage-gated Na+ channel. J. Biol. Chem. 285:39458-39470. http://dx.doi.org/10.1074/jbc.M110.132886
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39458-39470
-
-
Zarrabi, T.1
Cervenka, R.2
Sandtner, W.3
Lukacs, P.4
Koenig, X.5
Hilber, K.6
Mille, M.7
Lipkind, G.M.8
Fozzard, H.A.9
Todt, H.10
-
51
-
-
84861952634
-
Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel
-
Zhang, X., W. Ren, P. DeCaen, C. Yan, X. Tao, L. Tang, J. Wang, K. Hasegawa, T. Kumasaka, J. He, et al. 2012. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 486:130-134.
-
(2012)
Nature
, vol.486
, pp. 130-134
-
-
Zhang, X.1
Ren, W.2
DeCaen, P.3
Yan, C.4
Tao, X.5
Tang, L.6
Wang, J.7
Hasegawa, K.8
Kumasaka, T.9
He, J.10
|