메뉴 건너뛰기




Volumn 145, Issue 1, 2015, Pages 5-16

Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; VOLTAGE GATED SODIUM CHANNEL;

EID: 84920431826     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201411242     Document Type: Review
Times cited : (46)

References (52)
  • 1
    • 84883288177 scopus 로고    scopus 로고
    • What activates inactivation?
    • Ahern, C.A. 2013. What activates inactivation? J. Gen. Physiol. 142:97-100. http://dx.doi.org/10.1085/jgp.201311046
    • (2013) J Gen. Physiol. , vol.142 , pp. 97-100
    • Ahern, C.A.1
  • 2
    • 33947397646 scopus 로고    scopus 로고
    • Life among the axons
    • Armstrong, C.M. 2007. Life among the axons. Annu. Rev. Physiol. 69:1- 18. http://dx.doi.org/10.1146/annurev.physiol.69.120205.124448
    • (2007) Annu. Rev. Physiol. , vol.69 , pp. 1-18
    • Armstrong, C.M.1
  • 3
    • 0015868742 scopus 로고
    • Currents related to movement of the gating particles of the sodium channels
    • Armstrong, C.M., and F. Bezanilla. 1973. Currents related to movement of the gating particles of the sodium channels. Nature. 242:459-461. http://dx.doi.org/10.1038/242459a0
    • (1973) Nature , vol.242 , pp. 459-461
    • Armstrong, C.M.1    Bezanilla, F.2
  • 4
    • 84884634287 scopus 로고    scopus 로고
    • Role of the C-terminal domain in the structure and function of tetrameric sodium channels
    • Bagnéris, C., P.G. DeCaen, B.A. Hall, C.E. Naylor, D.E. Clapham, C.W.M. Kay, and B.A. Wallace. 2013. Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat. Commun. 4:2465. http://dx.doi.org/10.1038/ncomms3465
    • (2013) Nat. Commun. , vol.4 , pp. 2465
    • Bagnéris, C.1    DeCaen, P.G.2    Hall, B.A.3    Naylor, C.E.4    Clapham, D.E.5    Kay, C.W.M.6    Wallace, B.A.7
  • 5
    • 84902161802 scopus 로고    scopus 로고
    • Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism
    • Bagnéris, C., P.G. DeCaen, C.E. Naylor, D.C. Pryde, I. Nobeli, D.E. Clapham, and B.A. Wallace. 2014. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc. Natl. Acad. Sci. USA. 111:8428-8433. http://dx.doi.org/10.1073/pnas.1406855111
    • (2014) Proc. Natl. Acad. Sci. USA. , vol.111 , pp. 8428-8433
    • Bagnéris, C.1    DeCaen, P.G.2    Naylor, C.E.3    Pryde, D.C.4    Nobeli, I.5    Clapham, D.E.6    Wallace, B.A.7
  • 6
    • 84861732973 scopus 로고    scopus 로고
    • Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel
    • Barber, A.F., V. Carnevale, S.G. Raju, C. Amaral, W. Treptow, and M.L. Klein. 2012. Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim. Biophys. Acta. 1818: 2120-2125. http://dx.doi.org/10.1016/j.bbamem.2012.05.002
    • (2012) Biochim. Biophys. Acta. , vol.1818 , pp. 2120-2125
    • Barber, A.F.1    Carnevale, V.2    Raju, S.G.3    Amaral, C.4    Treptow, W.5    Klein, M.L.6
  • 7
    • 84861716984 scopus 로고    scopus 로고
    • Voltage-gated sodium channels at 60 structure, function and pathophysiology
    • Catterall, W.A. 2012. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590:2577-2589. http://dx.doi.org/10.1113/jphysiol.2011.224204
    • (2012) J. Physiol. , vol.590 , pp. 2577-2589
    • Catterall, W.A.1
  • 8
    • 80051495437 scopus 로고    scopus 로고
    • NaChBac: The long lost sodium channel ancestor
    • Charalambous, K., and B.A. Wallace. 2011. NaChBac: The long lost sodium channel ancestor. Biochemistry. 50:6742-6752. http://dx.doi.org/10.1021/bi200942y
    • (2011) Biochemistry , vol.50 , pp. 6742-6752
    • Charalambous, K.1    Wallace, B.A.2
  • 10
    • 0037737799 scopus 로고    scopus 로고
    • Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation
    • Cronin, N.B., A. O'Reilly, H. Duclohier, and B.A. Wallace. 2003. Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation. J. Biol. Chem. 278:10675-10682. http://dx.doi.org/10.1074/jbc.M208356200
    • (2003) J. Biol. Chem. , vol.278 , pp. 10675-10682
    • Cronin, N.B.1    O'Reilly, A.2    Duclohier, H.3    Wallace, B.A.4
  • 11
    • 84876001741 scopus 로고    scopus 로고
    • Differential lipid dependence of the function of bacterial sodium channels
    • D'Avanzo, N., E.C. McCusker, A.M. Powl, A.J. Miles, C.G. Nichols, and B.A. Wallace. 2013. Differential lipid dependence of the function of bacterial sodium channels. PLoS ONE. 8:e61216. http://dx.doi.org/10.1371/journal.pone.0061216
    • (2013) PLoS ONE , vol.8 , pp. e61216
    • D'Avanzo, N.1    McCusker, E.C.2    Powl, A.M.3    Miles, A.J.4    Nichols, C.G.5    Wallace, B.A.6
  • 12
    • 54449100445 scopus 로고    scopus 로고
    • Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation
    • DeCaen, P.G., V. Yarov-Yarovoy, Y. Zhao, T. Scheuer, and W.A. Catterall. 2008. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA. 105:15142-15147. http://dx.doi.org/10.1073/pnas.0806486105
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , pp. 15142-15147
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Zhao, Y.3    Scheuer, T.4    Catterall, W.A.5
  • 13
    • 76049115811 scopus 로고    scopus 로고
    • Sequential formation of ion pairs during activation of a sodium channel voltage sensor
    • DeCaen, P.G., V. Yarov-Yarovoy, E.M. Sharp, T. Scheuer, and W.A. Catterall. 2009. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc. Natl. Acad. Sci. USA. 106:22498-22503. http://dx.doi.org/10.1073/pnas.0912307106
    • (2009) Proc. Natl. Acad. Sci. USA. , vol.106 , pp. 22498-22503
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Sharp, E.M.3    Scheuer, T.4    Catterall, W.A.5
  • 15
    • 84893077319 scopus 로고    scopus 로고
    • Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy
    • Finol-Urdaneta, R.K., Y. Wang, A. Al-Sabi, C. Zhao, S.Y. Noskov, and R.J. French. 2014. Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy. J. Gen. Physiol. 143:157-171. http://dx.doi.org/10.1085/jgp.201311037
    • (2014) J. Gen. Physiol. , vol.143 , pp. 157-171
    • Finol-Urdaneta, R.K.1    Wang, Y.2    Al-Sabi, A.3    Zhao, C.4    Noskov, S.Y.5    French, R.J.6
  • 16
    • 84879190086 scopus 로고    scopus 로고
    • Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel
    • Goldschen-Ohm, M.P., D.L. Capes, K.M. Oelstrom, and B. Chanda. 2013. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel. Nat. Commun. 4:1350. http://dx.doi.org/10.1038/ncomms2356
    • (2013) Nat. Commun. , vol.4 , pp. 1350
    • Goldschen-Ohm, M.P.1    Capes, D.L.2    Oelstrom, K.M.3    Chanda, B.4
  • 17
    • 0000882125 scopus 로고
    • Molecular model of the action potential sodium channel
    • Guy, H.R., and P. Seetharamulu. 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA. 83:508- 512. http://dx.doi.org/10.1073/pnas.83.2.508
    • (1986) Proc. Natl. Acad. Sci. USA. , vol.83 , pp. 508-512
    • Guy, H.R.1    Seetharamulu, P.2
  • 18
    • 0016710436 scopus 로고
    • Ionic selectivity, saturation, and block in sodium channels A four-barrier model
    • Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J. Gen. Physiol. 66:535-560. http://dx.doi.org/10.1085/jgp.66.5.535
    • (1975) J. Gen. Physiol. , vol.66 , pp. 535-560
    • Hille, B.1
  • 19
    • 0003443746 scopus 로고    scopus 로고
    • Ion Channels of Excitable Membranes
    • Sinauer Associates, Sunderland, MA
    • Hille, B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA. 814 pp.
    • (2001) , pp. 814
    • Hille, B.1
  • 20
    • 84860304780 scopus 로고    scopus 로고
    • The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate
    • Irie, K., T. Shimomura, and Y. Fujiyoshi. 2012. The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate. Nat. Commun. 3:793. http://dx.doi.org/10.1038/ncomms1797
    • (2012) Nat. Commun. , vol.3 , pp. 793
    • Irie, K.1    Shimomura, T.2    Fujiyoshi, Y.3
  • 21
    • 3242686755 scopus 로고    scopus 로고
    • The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus
    • Ito, M., H. Xu, A.A. Guffanti, Y. Wei, L. Zvi, D.E. Clapham, and T.A. Krulwich. 2004. The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA. 101:10566-10571. http://dx.doi.org/10.1073/pnas.0402692101
    • (2004) Proc. Natl. Acad. Sci. USA. , vol.101 , pp. 10566-10571
    • Ito, M.1    Xu, H.2    Guffanti, A.A.3    Wei, Y.4    Zvi, L.5    Clapham, D.E.6    Krulwich, T.A.7
  • 22
    • 0037198625 scopus 로고    scopus 로고
    • The open pore conformation of potassium channels
    • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. The open pore conformation of potassium channels. Nature. 417:523-526. http://dx.doi.org/10.1038/417523a
    • (2002) Nature , vol.417 , pp. 523-526
    • Jiang, Y.1    Lee, A.2    Chen, J.3    Cadene, M.4    Chait, B.T.5    MacKinnon, R.6
  • 23
    • 77957764152 scopus 로고    scopus 로고
    • 2Struc: the secondary structure server
    • Klose, D.P., B.A. Wallace, and R.W. Janes. 2010. 2Struc: the secondary structure server. Bioinformatics. 26:2624-2625. http://dx.doi.org/10.1093/bioinformatics/btq480
    • (2010) Bioinformatics , vol.26 , pp. 2624-2625
    • Klose, D.P.1    Wallace, B.A.2    Janes, R.W.3
  • 24
    • 1542364444 scopus 로고    scopus 로고
    • A superfamily of voltage-gated sodium channels in bacteria
    • Koishi, R., H. Xu, D. Ren, B. Navarro, B.W. Spiller, Q. Shi, and D.E. Clapham. 2004. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279:9532-9538. http://dx.doi.org/10.1074/jbc.M313100200
    • (2004) J. Biol. Chem. , vol.279 , pp. 9532-9538
    • Koishi, R.1    Xu, H.2    Ren, D.3    Navarro, B.4    Spiller, B.W.5    Shi, Q.6    Clapham, D.E.7
  • 25
    • 5144229327 scopus 로고    scopus 로고
    • Gating of the bacterial sodium channel, NaChBac: Voltage-dependent charge movement and gating currents.
    • Kuzmenkin, A., F. Bezanilla, and A.M. Correa. 2004. Gating of the bacterial sodium channel, NaChBac: Voltage-dependent charge movement and gating currents. J. Gen. Physiol. 124:349-356. http://dx.doi.org/10.1085/jgp.200409139
    • (2004) J. Gen. Physiol. , vol.124 , pp. 349-356
    • Kuzmenkin, A.1    Bezanilla, F.2    Correa, A.M.3
  • 26
    • 0032823307 scopus 로고    scopus 로고
    • Voltage-gated ion channels and hereditary disease
    • Lehmann-Horn, F., and K. Jurkat-Rott. 1999. Voltage-gated ion channels and hereditary disease. Physiol. Rev. 79:1317-1372.
    • (1999) Physiol. Rev. , vol.79 , pp. 1317-1372
    • Lehmann-Horn, F.1    Jurkat-Rott, K.2
  • 27
    • 36248982122 scopus 로고    scopus 로고
    • Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment
    • Long, S.B., X. Tao, E.B. Campbell, and R. MacKinnon. 2007. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 450:376-382. http://dx.doi.org/10.1038/nature06265
    • (2007) Nature , vol.450 , pp. 376-382
    • Long, S.B.1    Tao, X.2    Campbell, E.B.3    MacKinnon, R.4
  • 28
    • 79955549892 scopus 로고    scopus 로고
    • Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels
    • McCusker, E.C., N. D'Avanzo, C.G. Nichols, and B.A. Wallace. 2011. Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels. J. Biol. Chem. 286:16386-16391. http://dx.doi.org/10.1074/jbc.C111.228122
    • (2011) J. Biol. Chem. , vol.286 , pp. 16386-16391
    • McCusker, E.C.1    D'Avanzo, N.2    Nichols, C.G.3    Wallace, B.A.4
  • 29
    • 84869478035 scopus 로고    scopus 로고
    • Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing
    • McCusker, E.C., C. Bagnéris, C.E. Naylor, A.R. Cole, N. D'Avanzo, C.G. Nichols, and B.A. Wallace. 2012. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun. 3:1102. http://dx.doi.org/10.1038/ncomms2077
    • (2012) Nat. Commun. , vol.3 , pp. 1102
    • McCusker, E.C.1    Bagnéris, C.2    Naylor, C.E.3    Cole, A.R.4    D'Avanzo, N.5    Nichols, C.G.6    Wallace, B.A.7
  • 30
    • 77955269299 scopus 로고    scopus 로고
    • The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions
    • Mio, K., M. Mio, F. Arisaka, M. Sato, and C. Sato. 2010. The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog. Biophys. Mol. Biol. 103:111- 121. http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.002
    • (2010) Prog. Biophys. Mol. Biol. , vol.103 , pp. 111-121
    • Mio, K.1    Mio, M.2    Arisaka, F.3    Sato, M.4    Sato, C.5
  • 32
    • 48649087167 scopus 로고    scopus 로고
    • Tetrameric bacterial sodium channels: Characterization of structure, stability, and drug binding
    • Nurani, G., M. Radford, K. Charalambous, A.O. O'Reilly, N.B. Cronin, S. Haque, and B.A. Wallace. 2008. Tetrameric bacterial sodium channels: Characterization of structure, stability, and drug binding. Biochemistry. 47:8114-8121. http://dx.doi.org/10.1021/bi800645w
    • (2008) Biochemistry , vol.47 , pp. 8114-8121
    • Nurani, G.1    Radford, M.2    Charalambous, K.3    O'Reilly, A.O.4    Cronin, N.B.5    Haque, S.6    Wallace, B.A.7
  • 33
    • 57049128880 scopus 로고    scopus 로고
    • G219S mutagenesis as a means of stabilizing conformational flexibility in the bacterial sodium channel NaChBac
    • O'Reilly, A.O., K. Charalambous, G. Nurani, A.M. Powl, and B.A. Wallace. 2008. G219S mutagenesis as a means of stabilizing conformational flexibility in the bacterial sodium channel NaChBac. Mol. Membr. Biol. 25:670-676. http://dx.doi.org/10.1080/09687680802508754
    • (2008) Mol. Membr. Biol. , vol.25 , pp. 670-676
    • O'Reilly, A.O.1    Charalambous, K.2    Nurani, G.3    Powl, A.M.4    Wallace, B.A.5
  • 34
    • 84896299188 scopus 로고    scopus 로고
    • Evolutionarily conserved intracellular gate of voltage-dependent sodium channels
    • Oelstrom, K., M.P. Goldschen-Ohm, M. Holmgren, and B. Chanda. 2014. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun. 5:3420. http://dx.doi.org/10.1038/ncomms4420
    • (2014) Nat. Commun. , vol.5 , pp. 3420
    • Oelstrom, K.1    Goldschen-Ohm, M.P.2    Holmgren, M.3    Chanda, B.4
  • 35
    • 23244467740 scopus 로고    scopus 로고
    • The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
    • Pavlov, E., C. Bladen, R. Winkfein, C. Diao, P. Dhaliwal, and R.J. French. 2005. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89:232-242. http://dx.doi.org/10.1529/biophysj.104.056994
    • (2005) Biophys. J. , vol.89 , pp. 232-242
    • Pavlov, E.1    Bladen, C.2    Winkfein, R.3    Diao, C.4    Dhaliwal, P.5    French, R.J.6
  • 36
    • 79960621367 scopus 로고    scopus 로고
    • The crystal structure of a voltage-gated sodium channel
    • Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. 2011. The crystal structure of a voltage-gated sodium channel. Nature. 475:353-358. http://dx.doi.org/10.1038/nature10238
    • (2011) Nature , vol.475 , pp. 353-358
    • Payandeh, J.1    Scheuer, T.2    Zheng, N.3    Catterall, W.A.4
  • 37
    • 84861945912 scopus 로고    scopus 로고
    • Crystal structure of a voltage-gated sodium channel in two potentially inactivated states
    • Payandeh, J., T.M. Gamal El-Din, T. Scheuer, N. Zheng, and W.A. Catterall. 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. 486:135-139.
    • (2012) Nature , vol.486 , pp. 135-139
    • Payandeh, J.1    Gamal El-Din, T.M.2    Scheuer, T.3    Zheng, N.4    Catterall, W.A.5
  • 38
    • 77956294944 scopus 로고    scopus 로고
    • Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly
    • Powl, A.M., A.O. O'Reilly, A.J. Miles, and B.A. Wallace. 2010. Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly. Proc. Natl. Acad. Sci. USA. 107:14064-14069. http://dx.doi.org/10.1073/pnas.1001793107
    • (2010) Proc. Natl. Acad. Sci. USA. , vol.107 , pp. 14064-14069
    • Powl, A.M.1    O'Reilly, A.O.2    Miles, A.J.3    Wallace, B.A.4
  • 39
    • 0035861457 scopus 로고    scopus 로고
    • A prokaryotic voltage-gated sodium channel
    • Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science. 294:2372- 2375. http://dx.doi.org/10.1126/science.1065635
    • (2001) Science , vol.294 , pp. 2372-2375
    • Ren, D.1    Navarro, B.2    Xu, H.3    Yue, L.4    Shi, Q.5    Clapham, D.E.6
  • 40
    • 56049083760 scopus 로고    scopus 로고
    • Models of voltage-dependent conformational changes in NaChBac channels
    • Shafrir, Y., S.R. Durell, and H.R. Guy. 2008. Models of voltage-dependent conformational changes in NaChBac channels. Biophys. J. 95:3663-3676. http://dx.doi.org/10.1529/biophysj.108.135335
    • (2008) Biophys. J. , vol.95 , pp. 3663-3676
    • Shafrir, Y.1    Durell, S.R.2    Guy, H.R.3
  • 41
    • 79961050460 scopus 로고    scopus 로고
    • Voltage-gated sodium channel (NaV) protein dissection creates a set of functional poreonly proteins
    • Shaya, D., M. Kreir, R.A. Robbins, S. Wong, J. Hammon, A. Brüggemann, and D.L. Minor Jr. 2011. Voltage-gated sodium channel (NaV) protein dissection creates a set of functional poreonly proteins. Proc. Natl. Acad. Sci. USA. 108:12313-12318. http://dx.doi.org/10.1073/pnas.1106811108
    • (2011) Proc. Natl. Acad. Sci. USA. , vol.108 , pp. 12313-12318
    • Shaya, D.1    Kreir, M.2    Robbins, R.A.3    Wong, S.4    Hammon, J.5    Brüggemann, A.6    Minor Jr., D.L.7
  • 42
    • 84891835113 scopus 로고    scopus 로고
    • Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels
    • Shaya, D., F. Findeisen, F. Abderemane-Ali, C. Arrigoni, S. Wong, S.R. Nurva, G. Loussouarn, and D.L. Minor Jr. 2014. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J. Mol. Biol. 426:467-483. http://dx.doi.org/10.1016/j.jmb.2013.10.010
    • (2014) J. Mol. Biol. , vol.426 , pp. 467-483
    • Shaya, D.1    Findeisen, F.2    Abderemane-Ali, F.3    Arrigoni, C.4    Wong, S.5    Nurva, S.R.6    Loussouarn, G.7    Minor Jr., D.L.8
  • 47
    • 0242488935 scopus 로고    scopus 로고
    • Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy
    • Unwin, N. 2003. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555:91-95. http://dx.doi.org/10.1016/S0014-5793(03)01084-6
    • (2003) FEBS Lett , vol.555 , pp. 91-95
    • Unwin, N.1
  • 49
    • 29844433234 scopus 로고    scopus 로고
    • Overview of molecular relationships in the voltage-gated ion channel superfamily
    • Yu, F.H., V. Yarov-Yarovoy, G.A. Gutman, and W.A. Catterall. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387-395. http://dx.doi.org/10.1124/pr.57.4.13
    • (2005) Pharmacol. Rev. , vol.57 , pp. 387-395
    • Yu, F.H.1    Yarov-Yarovoy, V.2    Gutman, G.A.3    Catterall, W.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.