메뉴 건너뛰기




Volumn 53, Issue 4, 2017, Pages 2786-2812

Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

Author keywords

artificial intelligence; climate indices; Danjiangkou Reservoir; data mining; reservoir inflow; Trinity Lake

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLIMATE MODELS; CLIMATOLOGY; DATA MINING; DECISION TREES; DEEP NEURAL NETWORKS; FORECASTING; NEURAL NETWORKS; STREAM FLOW; SURFACE WATERS;

EID: 85017285525     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1002/2017WR020482     Document Type: Article
Times cited : (255)

References (97)
  • 1
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araújo, M. B., and M. New (2007), Ensemble forecasting of species distributions, Trends Ecol. Evol., 22(1), 42–47.
    • (2007) Trends Ecol. Evol. , vol.22 , Issue.1 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 2
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • Asefa, T., M. Kemblowski, M. McKee, and A. Khalil (2006), Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318(1), 7–16.
    • (2006) J. Hydrol. , vol.318 , Issue.1 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 3
    • 85019807455 scopus 로고    scopus 로고
    • Forecasting model for the change of reservoir water level stage based on temporal pattern of reservoir water level, in, Proceedings of the 5th International Conference on Computing & Informatics, ICOCI, Istanbul, Turkey
    • Ashaary, N. A., W. H. W. Ishak, and K. R. Ku-Mahamud (2015), Forecasting model for the change of reservoir water level stage based on temporal pattern of reservoir water level, in Proceedings of the 5th International Conference on Computing & Informatics, pp. 692–697, ICOCI, Istanbul, Turkey.
    • (2015) , pp. 692-697
    • Ashaary, N.A.1    Ishak, W.H.W.2    Ku-Mahamud, K.R.3
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996), Bagging predictors, Mach. Learn., 24(2), 123–140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001), Random forests, Mach. Learn., 45(1), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • Buntine, W., and T. Niblett (1992), A further comparison of splitting rules for decision-tree induction, Mach. Learn., 8(1), 75–85.
    • (1992) Mach. Learn. , vol.8 , Issue.1 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 9
    • 84866077591 scopus 로고    scopus 로고
    • Re-Operation of Major Reservoirs for Flood and Environmental Management, Am. Soc. of Civ. Eng., Albuquerque, N. M
    • Burley, N., K. Maher, and J. Lund (2012), Re-Operation of Major Reservoirs for Flood and Environmental Management, pp. 2388–2394, Am. Soc. of Civ. Eng., Albuquerque, N. M.
    • (2012) , pp. 2388-2394
    • Burley, N.1    Maher, K.2    Lund, J.3
  • 10
    • 85019811164 scopus 로고    scopus 로고
    • System Reoperation Study Forecast-Based Operations Analysis System Reoperation Report Phase 2 Report Attachment A, Sacramento, Calif
    • CDWR (2014a), System Reoperation Study Forecast-Based Operations Analysis System Reoperation Report: Phase 2 Report Attachment A, Sacramento, Calif.
    • (2014)
  • 11
    • 85019828456 scopus 로고    scopus 로고
    • System Reoperation Study Strategy Formulation and Refinement. System Reoperation Report Phase 2 Report, Sacramento, Calif
    • CDWR (2014b), System Reoperation Study Strategy Formulation and Refinement. System Reoperation Report: Phase 2 Report, Sacramento, Calif.
    • (2014)
  • 12
    • 77951253366 scopus 로고    scopus 로고
    • A new node splitting measure for decision tree construction
    • Chandra, B., R. Kothari, and P. Paul (2010), A new node splitting measure for decision tree construction, Pattern Recognit., 43(8), 2725–2731.
    • (2010) Pattern Recognit. , vol.43 , Issue.8 , pp. 2725-2731
    • Chandra, B.1    Kothari, R.2    Paul, P.3
  • 13
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., A. Abraham, and J. P. Thomas (2005) Feature deduction and ensemble design of intrusion detection systems, Comput. Secur., 24(4), 295–307.
    • (2005) Comput. Secur. , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 14
    • 38649121509 scopus 로고    scopus 로고
    • Decision-tree analysis on optimal release of reservoir storage under typhoon warnings
    • Cheng, C. C., N. S. Hsu, and C. C. Wei (2008), Decision-tree analysis on optimal release of reservoir storage under typhoon warnings, Nat. Hazards, 44(1), 65–84.
    • (2008) Nat. Hazards , vol.44 , Issue.1 , pp. 65-84
    • Cheng, C.C.1    Hsu, N.S.2    Wei, C.C.3
  • 15
    • 84940391809 scopus 로고    scopus 로고
    • Heuristic methods for reservoir monthly inflow forecasting: A case study of Xinfengjiang Reservoir in Pearl River, China
    • Cheng, C. T., Z. K. Feng, W. J. Niu, and S. L. Liao (2015), Heuristic methods for reservoir monthly inflow forecasting: A case study of Xinfengjiang Reservoir in Pearl River, China, Water, 7(8), 4477–4495.
    • (2015) Water , vol.7 , Issue.8 , pp. 4477-4495
    • Cheng, C.T.1    Feng, Z.K.2    Niu, W.J.3    Liao, S.L.4
  • 17
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., F. Anctil, and B. Bobee (2001), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6(5), 367–376.
    • (2001) J. Hydrol. Eng. , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 18
    • 79957944343 scopus 로고    scopus 로고
    • Climate change, atmospheric riversfloods in California A multimodel analysis of storm frequency and magnitude change
    • Dettinger, M. (2011), Climate change, atmospheric rivers, and floods in California: A multimodel analysis of storm frequency and magnitude changes, J. Am. Water Resour. Assoc., 47(3), 514–523.
    • (2011) J. Am. Water Resour. Assoc., , vol.47 , Issue.3 , pp. 514-523
    • Dettinger, M.1
  • 19
    • 85092383404 scopus 로고    scopus 로고
    • Atmospheric rivers, floods and the water resources of California
    • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan (2011), Atmospheric rivers, floods and the water resources of California, Water, 3(2), 445–478.
    • (2011) Water , vol.3 , Issue.2 , pp. 445-478
    • Dettinger, M.D.1    Ralph, F.M.2    Das, T.3    Neiman, P.J.4    Cayan, D.R.5
  • 20
    • 84876157910 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks: A review
    • Ding, S., H. Li, C. Su, J. Yu, and F. Jin (2013), Evolutionary artificial neural networks: A review, Artif. Intell. Rev., 39(3), 251–260.
    • (2013) Artif. Intell. Rev. , vol.39 , Issue.3 , pp. 251-260
    • Ding, S.1    Li, H.2    Su, C.3    Yu, J.4    Jin, F.5
  • 21
    • 0036779091 scopus 로고    scopus 로고
    • Image processing with neural networks: A review
    • Egmont-Petersen, M., D. de Ridder, and H. Handels (2002), Image processing with neural networks: A review, Pattern Recognit., 35(10), 2279–2301.
    • (2002) Pattern Recognit. , vol.35 , Issue.10 , pp. 2279-2301
    • Egmont-Petersen, M.1    de Ridder, D.2    Handels, H.3
  • 22
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: Ecological explanation and prediction across space and time
    • Elith, J., and J. R. Leathwick (2009), Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40(1), 677–697.
    • (2009) Annu. Rev. Ecol. Evol. Syst. , vol.40 , Issue.1 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 23
    • 84871477245 scopus 로고    scopus 로고
    • Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
    • Erdal, H. I., and O. Karakurt (2013), Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms, J. Hydrol., 477, 119–128.
    • (2013) J. Hydrol. , vol.477 , pp. 119-128
    • Erdal, H.I.1    Karakurt, O.2
  • 24
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth (1996), From data mining to knowledge discovery in databases, AI Magaz., 17(3), 37.
    • (1996) AI Magaz. , vol.17 , Issue.3 , pp. 37
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 25
    • 84880153684 scopus 로고    scopus 로고
    • Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
    • Galelli, S., and A. Castelletti (2013), Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling, Hydrol. Earth Syst. Sci., 17(7), 2669–2684.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , Issue.7 , pp. 2669-2684
    • Galelli, S.1    Castelletti, A.2
  • 26
    • 0027628297 scopus 로고
    • Revised surface-water supply index for western United States
    • Garen, D. C. (1993), Revised surface-water supply index for western United States, J. Water Resour. Plann. Manage., 119(4), 437–454.
    • (1993) J. Water Resour. Plann. Manage. , vol.119 , Issue.4 , pp. 437-454
    • Garen, D.C.1
  • 27
    • 84892765395 scopus 로고    scopus 로고
    • Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India
    • Goyal, M. K., C. Ojha, R. Singh, and P. Swamee (2013a), Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India, Water Sci. Technol., 68(12), 2521–2526.
    • (2013) Water Sci. Technol. , vol.68 , Issue.12 , pp. 2521-2526
    • Goyal, M.K.1    Ojha, C.2    Singh, R.3    Swamee, P.4
  • 28
    • 84872933573 scopus 로고    scopus 로고
    • Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules
    • Goyal, M. K., C. Ojha, R. Singh, P. Swamee, and R. Nema (2013b), Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules, Water Resour. Manage., 27(3), 911–925.
    • (2013) Water Resour. Manage. , vol.27 , Issue.3 , pp. 911-925
    • Goyal, M.K.1    Ojha, C.2    Singh, R.3    Swamee, P.4    Nema, R.5
  • 29
    • 79957986045 scopus 로고    scopus 로고
    • Monthly streamflow forecasting based on improved support vector machine model
    • Guo, J., J. Zhou, H. Qin, Q. Zou, and Q. Li (2011), Monthly streamflow forecasting based on improved support vector machine model, Exp. Syst. Appl., 38(10), 13,073–13,081.
    • (2011) Exp. Syst. Appl. , vol.38 , Issue.10 , pp. 13,073-13,081
    • Guo, J.1    Zhou, J.2    Qin, H.3    Zou, Q.4    Li, Q.5
  • 30
    • 70349272865 scopus 로고    scopus 로고
    • Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
    • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez (2009), Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377(1), 80–91.
    • (2009) J. Hydrol. , vol.377 , Issue.1 , pp. 80-91
    • Gupta, H.V.1    Kling, H.2    Yilmaz, K.K.3    Martinez, G.F.4
  • 31
    • 0035371540 scopus 로고    scopus 로고
    • An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators
    • Gutiérrez, F., and J. A. Dracup (2001), An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators, J. Hydrol., 246(1–4), 181–196.
    • (2001) J. Hydrol. , vol.246 , Issue.1-4 , pp. 181-196
    • Gutiérrez, F.1    Dracup, J.A.2
  • 32
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and A. Elisseeff (2003), An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157–1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 33
    • 0033382322 scopus 로고    scopus 로고
    • Columbia River streamflow forecasting based on ENSO and PDO climate signals
    • Hamlet, A. F., and D. P. Lettenmaier (1999), Columbia River streamflow forecasting based on ENSO and PDO climate signals, J. Water Resour. Plann. Manage., 125(6), 333–341.
    • (1999) J. Water Resour. Plann. Manage. , vol.125 , Issue.6 , pp. 333-341
    • Hamlet, A.F.1    Lettenmaier, D.P.2
  • 34
    • 0036497257 scopus 로고    scopus 로고
    • Economic value of long-lead streamflow forecasts for Columbia River hydropower
    • Hamlet, A. F., D. Huppert, and D. P. Lettenmaier (2002), Economic value of long-lead streamflow forecasts for Columbia River hydropower, J. Water Resour. Plann. Manage., 128(2), 91–101.
    • (2002) J. Water Resour. Plann. Manage. , vol.128 , Issue.2 , pp. 91-101
    • Hamlet, A.F.1    Huppert, D.2    Lettenmaier, D.P.3
  • 35
    • 15744402095 scopus 로고    scopus 로고
    • A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies
    • Hancock, T., R. Put, D. Coomans, Y. Vander Heyden, and Y. Everingham (2005), A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemometr. Intell. Lab. Syst., 76(2), 185–196.
    • (2005) Chemometr. Intell. Lab. Syst. , vol.76 , Issue.2 , pp. 185-196
    • Hancock, T.1    Put, R.2    Coomans, D.3    Vander Heyden, Y.4    Everingham, Y.5
  • 36
    • 84904347710 scopus 로고    scopus 로고
    • Variable selection by Random Forests using data with missing values
    • Hapfelmeier, A., and K. Ulm (2014), Variable selection by Random Forests using data with missing values, Comput. Stat. Data Anal., 80, 129–139.
    • (2014) Comput. Stat. Data Anal. , vol.80 , pp. 129-139
    • Hapfelmeier, A.1    Ulm, K.2
  • 37
    • 62349086526 scopus 로고    scopus 로고
    • Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
    • Hejazi, M. I., and X. M. Cai (2009), Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm, Adv. Water Resour., 32(4), 582–593, doi:10.1016/j.advwatres.2009.01.009.
    • (2009) Adv. Water Resour. , vol.32 , Issue.4 , pp. 582-593
    • Hejazi, M.I.1    Cai, X.M.2
  • 38
    • 79955961266 scopus 로고    scopus 로고
    • Building more realistic reservoir optimization models using data mining: A case study of Shelbyville Reservoir
    • Hejazi, M. I., and X. M. Cai (2011), Building more realistic reservoir optimization models using data mining: A case study of Shelbyville Reservoir, Adv. Water Resour., 34(6), 701–717.
    • (2011) Adv. Water Resour. , vol.34 , Issue.6 , pp. 701-717
    • Hejazi, M.I.1    Cai, X.M.2
  • 39
    • 0030840544 scopus 로고    scopus 로고
    • Using decision analysis to include climate change in water resources decision making
    • Hobbs, B. F., P. T. Chao, and B. N. Venkatesh (1997), Using decision analysis to include climate change in water resources decision making, Clim. Change, 37(1), 177–202.
    • (1997) Clim. Change , vol.37 , Issue.1 , pp. 177-202
    • Hobbs, B.F.1    Chao, P.T.2    Venkatesh, B.N.3
  • 42
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural networks
    • Hsu, K.-l., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36(9), 1176–1190.
    • (1997) J. Appl. Meteorol. , vol.36 , Issue.9 , pp. 1176-1190
    • Hsu, K.-L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 43
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Ilonen, J., J.-K. Kamarainen, and J. Lampinen (2003), Differential evolution training algorithm for feed-forward neural networks, Neural Process. Lett., 17(1), 93–105.
    • (2003) Neural Process. Lett. , vol.17 , Issue.1 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.-K.2    Lampinen, J.3
  • 44
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • Jain, A. K., J. Mao, and K. Mohiuddin (1996), Artificial neural networks: A tutorial, Computer, 29(3), 31–44.
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.3
  • 46
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S., A. Das, and D. Srivastava (1999), Application of ANN for reservoir inflow prediction and operation, J. Water Resour. Plann. Manage., 125(5), 263–271.
    • (1999) J. Water Resour. Plann. Manage. , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.1    Das, A.2    Srivastava, D.3
  • 47
    • 84877681819 scopus 로고    scopus 로고
    • Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins
    • Kalra, A., W. P. Miller, K. W. Lamb, S. Ahmad, and T. Piechota (2013), Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins, Hydrol. Processes, 27(11), 1543–1559.
    • (2013) Hydrol. Processes , vol.27 , Issue.11 , pp. 1543-1559
    • Kalra, A.1    Miller, W.P.2    Lamb, K.W.3    Ahmad, S.4    Piechota, T.5
  • 48
    • 84880562590 scopus 로고    scopus 로고
    • A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
    • Khan, K., and A. Sahai (2012), A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context, Int. J. Intell. Syst. Appl., 4(7), 23–29.
    • (2012) Int. J. Intell. Syst. Appl. , vol.4 , Issue.7 , pp. 23-29
    • Khan, K.1    Sahai, A.2
  • 49
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kişi, Ö. (2007), Streamflow forecasting using different artificial neural network algorithms, J. Hydrol. Eng., 12(5), 532–539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kişi, Ö.1
  • 51
    • 84892765395 scopus 로고    scopus 로고
    • Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India
    • Kumar, A. R. S., M. K. Goyal, C. S. P. Ojha, R. D. Singh, and P. K. Swamee (2013), Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India, Water Sci. Technol., 68(12), 2521–2526.
    • (2013) Water Sci. Technol. , vol.68 , Issue.12 , pp. 2521-2526
    • Kumar, A.R.S.1    Goyal, M.K.2    Ojha, C.S.P.3    Singh, R.D.4    Swamee, P.K.5
  • 52
    • 84960419088 scopus 로고    scopus 로고
    • Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western US extreme precipitation and flooding
    • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger (2016), Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western US extreme precipitation and flooding, Geophys. Res. Lett., 43, 2275–2282, doi:10.1002/2016GL067765.
    • (2016) Geophys. Res. Lett. , vol.43 , pp. 2275-2282
    • Lavers, D.A.1    Waliser, D.E.2    Ralph, F.M.3    Dettinger, M.D.4
  • 53
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek, S., and J.-F. Guégan (1999), Artificial neural networks as a tool in ecological modelling, an introduction, Ecol. Modell., 120(2), 65–73.
    • (1999) Ecol. Modell. , vol.120 , Issue.2 , pp. 65-73
    • Lek, S.1    Guégan, J.-F.2
  • 54
    • 65249189414 scopus 로고    scopus 로고
    • Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model
    • Leung, L. R., and Y. Qian (2009), Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model, Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.
    • (2009) Geophys. Res. Lett. , vol.36 , pp. L03820
    • Leung, L.R.1    Qian, Y.2
  • 55
    • 78149344974 scopus 로고    scopus 로고
    • Implicit Stochastic Optimization With Data Mining for Reservoir System Operation, IEEE, Qingdao, China
    • Li, X.-Z., L.-Z. Xu, and Y.-G. Chen (2010), Implicit Stochastic Optimization With Data Mining for Reservoir System Operation, pp. 2410–2415, IEEE, Qingdao, China.
    • (2010) , pp. 2410-2415
    • Li, X.-Z.1    Xu, L.-Z.2    Chen, Y.-G.3
  • 56
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random
    • Liaw, A., and M. Wiener (2002), Classification and regression by random, Forest. R News, 2(3), 18–22.
    • (2002) Forest. R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 57
    • 84962783538 scopus 로고    scopus 로고
    • Forecasting daily streamflow using online sequential extreme learning machines
    • Lima, A. R., A. J. Cannon, and W. W. Hsieh (2016), Forecasting daily streamflow using online sequential extreme learning machines, J. Hydrol., 537, 431–443.
    • (2016) J. Hydrol. , vol.537 , pp. 431-443
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 58
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.-Y., C.-T. Cheng, and K.-W. Chau (2006), Using support vector machines for long-term discharge prediction, Hydrol. Sci. J., 51(4), 599–612.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.-Y.1    Cheng, C.-T.2    Chau, K.-W.3
  • 59
    • 84939249695 scopus 로고    scopus 로고
    • One-day-ahead streamflow forecasting using artificial neural networks and a meteorological mesoscale model
    • Linares-Rodriguez, A., V. Lara-Fanego, D. Pozo-Vazquez, and J. Tovar-Pescador (2015), One-day-ahead streamflow forecasting using artificial neural networks and a meteorological mesoscale model, J. Hydrol. Eng., 20(9), 05015001.
    • (2015) J. Hydrol. Eng. , vol.20 , Issue.9 , pp. 05015001
    • Linares-Rodriguez, A.1    Lara-Fanego, V.2    Pozo-Vazquez, D.3    Tovar-Pescador, J.4
  • 60
    • 79955389787 scopus 로고    scopus 로고
    • El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: Links and potential for forecasting
    • Lü, A., S. Jia, W. Zhu, H. Yan, S. Duan, and Z. Yao (2011), El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: Links and potential for forecasting, Hydrol. Earth Syst. Sci., 15(4), 1273–1281.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , Issue.4 , pp. 1273-1281
    • Lü, A.1    Jia, S.2    Zhu, W.3    Yan, H.4    Duan, S.5    Yao, Z.6
  • 61
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity, R., P. P. Bhagwat, and A. Bhatnagar (2010), Potential of support vector regression for prediction of monthly streamflow using endogenous property, Hydrol. Processes, 24(7), 917–923.
    • (2010) Hydrol. Processes , vol.24 , Issue.7 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 62
    • 0031465646 scopus 로고    scopus 로고
    • A Pacific interdecadal climate oscillation with impacts on salmon production
    • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis (1997), A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78(6), 1069–1079.
    • (1997) Bull. Am. Meteorol. Soc. , vol.78 , Issue.6 , pp. 1069-1079
    • Mantua, N.J.1    Hare, S.R.2    Zhang, Y.3    Wallace, J.M.4    Francis, R.C.5
  • 63
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers, J. (1989) An empirical comparison of selection measures for decision-tree induction, Mach. Learn., 3(4), 319–342.
    • (1989) Mach. Learn. , vol.3 , Issue.4 , pp. 319-342
    • Mingers, J.1
  • 64
    • 84906001005 scopus 로고    scopus 로고
    • Biases of April 1 snow water equivalent records in the Sierra Nevada and their associations with large-scale climate indices
    • Montoya, E., J. Dozier, and W. Meiring (2014), Biases of April 1 snow water equivalent records in the Sierra Nevada and their associations with large-scale climate indices, Geophys. Res. Lett., 41, 5912–5918, doi:10.1002/2014GL060588.
    • (2014) Geophys. Res. Lett. , vol.41 , pp. 5912-5918
    • Montoya, E.1    Dozier, J.2    Meiring, W.3
  • 65
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50(3), 885–900.
    • (2007) Trans. ASABE , vol.50 , Issue.3 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 66
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I: A discussion of principles
    • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I: A discussion of principles, J. Hydrol., 10(3), 282–290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 67
    • 85019822342 scopus 로고    scopus 로고
    • World Water and Environmental Resources Congress 2003, American Society of Civil Engineers, Philadelphia, Pa
    • Pagano, T., and D. Garen (2003), World Water and Environmental Resources Congress 2003, pp. 1–9, American Society of Civil Engineers, Philadelphia, Pa.
    • (2003) , pp. 1-9
    • Pagano, T.1    Garen, D.2
  • 68
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986), Induction of decision trees, Mach. Learn., 1(1), 81–106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 69
    • 0025405266 scopus 로고
    • Decision trees and decision-making
    • Quinlan, J. R. (1990), Decision trees and decision-making, IEEE Trans. Syst. Man Cybern., 20(2), 339–346.
    • (1990) IEEE Trans. Syst. Man Cybern. , vol.20 , Issue.2 , pp. 339-346
    • Quinlan, J.R.1
  • 70
    • 84863681553 scopus 로고    scopus 로고
    • Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010
    • Ralph, F., and M. Dettinger (2012), Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010, Bull. Am. Meteorol. Soc., 93(6), 783–790.
    • (2012) Bull. Am. Meteorol. Soc. , vol.93 , Issue.6 , pp. 783-790
    • Ralph, F.1    Dettinger, M.2
  • 71
    • 0026358733 scopus 로고
    • Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices
    • Redmond, K. T., and R. W. Koch (1991), Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices, Water Resour. Res., 27(9), 2381–2399.
    • (1991) Water Resour. Res. , vol.27 , Issue.9 , pp. 2381-2399
    • Redmond, K.T.1    Koch, R.W.2
  • 72
    • 84948139775 scopus 로고    scopus 로고
    • Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent
    • Revilla-Romero, B., H. E. Beck, P. Burek, P. Salamon, A. de Roo, and J. Thielen (2015), Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent, Remote Sens. Environ., 171, 118–131.
    • (2015) Remote Sens. Environ. , vol.171 , pp. 118-131
    • Revilla-Romero, B.1    Beck, H.E.2    Burek, P.3    Salamon, P.4    de Roo, A.5    Thielen, J.6
  • 73
    • 84904878273 scopus 로고    scopus 로고
    • Prediction of regional streamflow frequency using model tree ensembles
    • Schnier, S., and X. M. Cai (2014), Prediction of regional streamflow frequency using model tree ensembles, J. Hydrol., 517, 298–309, doi:10.1016/j.jhydrol.2014.05.029.
    • (2014) J. Hydrol. , vol.517 , pp. 298-309
    • Schnier, S.1    Cai, X.M.2
  • 74
    • 0036282430 scopus 로고    scopus 로고
    • The Northern Oscillation Index (NOI): A new climate index for the northeast Pacific
    • Schwing, F., T. Murphree, and P. Green (2002), The Northern Oscillation Index (NOI): A new climate index for the northeast Pacific, Progr. Oceanogr., 53(2), 115–139.
    • (2002) Progr. Oceanogr. , vol.53 , Issue.2 , pp. 115-139
    • Schwing, F.1    Murphree, T.2    Green, P.3
  • 75
    • 84958053477 scopus 로고    scopus 로고
    • A comparison of artificial neural networks (ANN) and local linear regression (llr) techniques for predicting monthly reservoir levels
    • Shamim, M. A., M. Hassan, S. Ahmad, and M. Zeeshan (2016), A comparison of artificial neural networks (ANN) and local linear regression (llr) techniques for predicting monthly reservoir levels, KSCE J. Civ. Eng., 20(2), 971–977.
    • (2016) KSCE J. Civ. Eng. , vol.20 , Issue.2 , pp. 971-977
    • Shamim, M.A.1    Hassan, M.2    Ahmad, S.3    Zeeshan, M.4
  • 76
    • 51849137850 scopus 로고    scopus 로고
    • Training of Artificial Neural Networks Using Differential Evolution Algorithm, IEEE, Krakow, Poland
    • Slowik, A., and M. Bialko (2008), Training of Artificial Neural Networks Using Differential Evolution Algorithm, pp. 60–65, IEEE, Krakow, Poland.
    • (2008) , pp. 60-65
    • Slowik, A.1    Bialko, M.2
  • 77
    • 0033672629 scopus 로고    scopus 로고
    • The effect of ENSO on the intraseasonal variance of surface temperatures in winter
    • Smith, C. A., and P. D. Sardeshmukh (2000), The effect of ENSO on the intraseasonal variance of surface temperatures in winter, Int. J. Climatol., 20(13), 1543–1557.
    • (2000) Int. J. Climatol. , vol.20 , Issue.13 , pp. 1543-1557
    • Smith, C.A.1    Sardeshmukh, P.D.2
  • 79
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J., and B. Schölkopf (2004), A tutorial on support vector regression, Stat. Comput., 14(3), 199–222.
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 80
    • 0642344932 scopus 로고    scopus 로고
    • Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Nino Southern Oscillation and beyond
    • Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz, and B. Ådlandsvik (2003), Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Nino Southern Oscillation and beyond, Proc. R. Soc. London Ser. B, 270(1529), 2087–2096.
    • (2003) Proc. R. Soc. London Ser. B , vol.270 , Issue.1529 , pp. 2087-2096
    • Stenseth, N.C.1    Ottersen, G.2    Hurrell, J.W.3    Mysterud, A.4    Lima, M.5    Chan, K.S.6    Yoccoz, N.G.7    Ådlandsvik, B.8
  • 81
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah, K., and M. C. Deo (1998), River stage forecasting using artificial neural networks, J. Hydrol. Eng., 3(1), 26–32.
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 82
    • 0035870108 scopus 로고    scopus 로고
    • Indices of El Niño evolution
    • Trenberth, K. E., and D. P. Stepaniak (2001), Indices of El Niño evolution, J. Clim., 14(8), 1697–1701.
    • (2001) J. Clim. , vol.14 , Issue.8 , pp. 1697-1701
    • Trenberth, K.E.1    Stepaniak, D.P.2
  • 83
    • 84971280440 scopus 로고    scopus 로고
    • Regime-shifting streamflow processes: Implications for water supply reservoir operations
    • Turner, S. W. D., and S. Galelli (2016), Regime-shifting streamflow processes: Implications for water supply reservoir operations, Water Resour. Res., 52, 3984–4002, doi:10.1002/2015WR017913.
    • (2016) Water Resour. Res. , vol.52 , pp. 3984-4002
    • Turner, S.W.D.1    Galelli, S.2
  • 84
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. N. (1999), An overview of statistical learning theory, IEEE Trans. Neural Netw., 10(5), 988–999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 85
    • 0035870450 scopus 로고    scopus 로고
    • The tropical Western Hemisphere warm pool
    • Wang, C., and D. B. Enfield (2001), The tropical Western Hemisphere warm pool, Geophys. Res. Lett., 28(8), 1635–1638.
    • (2001) Geophys. Res. Lett. , vol.28 , Issue.8 , pp. 1635-1638
    • Wang, C.1    Enfield, D.B.2
  • 86
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang, W., P. H. Van Gelder, J. Vrijling, and J. Ma (2006), Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324(1), 383–399.
    • (2006) J. Hydrol. , vol.324 , Issue.1 , pp. 383-399
    • Wang, W.1    Van Gelder, P.H.2    Vrijling, J.3    Ma, J.4
  • 87
    • 84865530098 scopus 로고    scopus 로고
    • Discretized and continuous target fields for the reservoir release rules during floods
    • Wei, C. C. (2012), Discretized and continuous target fields for the reservoir release rules during floods, Water Resour. Manage., 26(12), 3457–3477.
    • (2012) Water Resour. Manage. , vol.26 , Issue.12 , pp. 3457-3477
    • Wei, C.C.1
  • 88
    • 58849099177 scopus 로고    scopus 로고
    • Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system
    • Wei, C. C., and N. S. Hsu (2009), Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system, J. Hydrol., 365(3-4), 213–224.
    • (2009) J. Hydrol. , vol.365 , Issue.3-4 , pp. 213-224
    • Wei, C.C.1    Hsu, N.S.2
  • 89
    • 85019776520 scopus 로고    scopus 로고
    • On the Evolution of SST Over the PACS Region, p., American Meteorological Society, Atlanta, Ga
    • Weisberg, R. (1996), On the Evolution of SST Over the PACS Region, p. 378, American Meteorological Society, Atlanta, Ga.
    • (1996) , pp. 378
    • Weisberg, R.1
  • 90
    • 85019815782 scopus 로고
    • Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences, Harvard University, Cambridge, Mass
    • Werbos, P. (1974), Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Harvard University, Cambridge, Mass.
    • (1974)
    • Werbos, P.1
  • 91
    • 34249007635 scopus 로고    scopus 로고
    • Measuring the strength of ENSO events: How does 1997/98 rank?
    • Wolter, K., and M. S. Timlin (1998), Measuring the strength of ENSO events: How does 1997/98 rank?, Weather, 53(9), 315–324.
    • (1998) Weather , vol.53 , Issue.9 , pp. 315-324
    • Wolter, K.1    Timlin, M.S.2
  • 92
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu, C., K. Chau, and Y. Li (2009), Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45 , pp. W08432
    • Wu, C.1    Chau, K.2    Li, Y.3
  • 93
    • 84960145075 scopus 로고    scopus 로고
    • Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme
    • Yang, T., X. Gao, S. Sorooshian, and X. Li (2016), Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme, Water Resour. Res., 52, 1626–1651, doi:10.1002/2015WR017394.
    • (2016) Water Resour. Res. , vol.52 , pp. 1626-1651
    • Yang, T.1    Gao, X.2    Sorooshian, S.3    Li, X.4
  • 94
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, X. (1999), Evolving artificial neural networks, Proc. IEEE, 87(9), 1423–1447.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 95
    • 84945157492 scopus 로고    scopus 로고
    • Artificial intelligence based models for stream-flow forecasting: 2000-2015
    • Yaseen, Z. M., A. El-Shafie, O. Jaafar, H. A. Afan, and M. N. Sayl (2015), Artificial intelligence based models for stream-flow forecasting: 2000-2015, J. Hydrol., 530, 829–844.
    • (2015) J. Hydrol. , vol.530 , pp. 829-844
    • Yaseen, Z.M.1    El-Shafie, A.2    Jaafar, O.3    Afan, H.A.4    Sayl, M.N.5
  • 96
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C. M., D. H. Burn, and S. P. Simonovic (1999), Short term streamflow forecasting using artificial neural networks, J. Hydrol., 214(1), 32–48.
    • (1999) J. Hydrol. , vol.214 , Issue.1 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 97
    • 0030731329 scopus 로고    scopus 로고
    • ENSO-like interdecadal variability: 1900-93
    • Zhang, Y., J. M. Wallace, and D. S. Battisti (1997), ENSO-like interdecadal variability: 1900-93, J. Clim., 10(5), 1004–1020.
    • (1997) J. Clim. , vol.10 , Issue.5 , pp. 1004-1020
    • Zhang, Y.1    Wallace, J.M.2    Battisti, D.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.