메뉴 건너뛰기




Volumn 68, Issue 12, 2013, Pages 2521-2526

Application of artificial neural network, fuzzylogic and decision tree algorithms for modelling of streamflow at Kasol in India

Author keywords

Fuzzy logic; M5; Neural networks; REPTree; Streamflow

Indexed keywords

AUTOCORRELATION FUNCTIONS; CROSS-CORRELATION FUNCTION; DECISION-TREE ALGORITHM; M5; MULTIPLE LINEAR REGRESSIONS; REPTREE; SOFTCOMPUTING TECHNIQUES; WATER RESOURCES SYSTEMS;

EID: 84892765395     PISSN: 02731223     EISSN: None     Source Type: Journal    
DOI: 10.2166/wst.2013.491     Document Type: Article
Times cited : (38)

References (24)
  • 1
    • 84855893978 scopus 로고    scopus 로고
    • Development of stage discharge rating curve using model tree and neural networks: An application to Peachtree Creek in Atlanta
    • Ajmera Tapesh, K. & Goyal Manish Kumar 2012 Development of stage discharge rating curve using model tree and neural networks: an application to Peachtree Creek in Atlanta. Expert Systems With Applications 39 (5), 5702-5710.
    • (2012) Expert Systems with Applications , vol.39 , Issue.5 , pp. 5702-5710
    • Ajmera, T.K.1    Goyal, M.K.2
  • 2
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S. 1994 Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Sys. 2 (3), 267-278.
    • (1994) J. Intell. Fuzzy Sys. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 4
    • 0033045187 scopus 로고    scopus 로고
    • Neural network models for river flow forecasting
    • Danh, N. T., Phien, H. N. & Gupta, A. D. 1999 Neural network models for river flow forecasting. Water SA 25 (1), 33-39.
    • (1999) Water SA , vol.25 , Issue.1 , pp. 33-39
    • Danh, N.T.1    Phien, H.N.2    Gupta, A.D.3
  • 7
    • 84859315699 scopus 로고    scopus 로고
    • Downscaling of precipitation on a lake basin: Evaluation of rule and decision tree induction algorithms
    • Goyal Manish Kumar & Ojha, C. S. P. 2012 Downscaling of precipitation on a lake basin: evaluation of rule and decision tree induction algorithms. Hydrology Research 43 (3), 215-230.
    • (2012) Hydrology Research , vol.43 , Issue.3 , pp. 215-230
    • Goyal, M.K.1    Ojha, C.S.P.2
  • 8
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.-L., Gupta, H. V. & Sorooshian, S. 1995 Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 (10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 9
    • 33845872549 scopus 로고    scopus 로고
    • River suspended sediment modelling using a fuzzy logic approach
    • Kisi, O., Karahan, M. E. & Sen, Z. 2006 River suspended sediment modelling using a fuzzy logic approach. Hydrol. Process. 20, 4351-4362.
    • (2006) Hydrol. Process. , vol.20 , pp. 4351-4362
    • Kisi, O.1    Karahan, M.E.2    Sen, Z.3
  • 10
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns, A. W. & Hall, M. J. 1996 Artificial neural networks as rainfall runoff models. Hydrol. Sci. J. 41 (3), 399-418.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 11
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan, J. R. 1996 Improved use of continuous attributes in C4.5. J. Artif., Intell. Res 4, 77-90.
    • (1996) J. Artif., Intell. Res , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 12
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H. & Sunilkumar, N. 1995 Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40 (2), 145-163.
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 15
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: Comparison of network types
    • Senthil kumar, A. R., Sudheer, K. P., Jain, S. K. & Agarwal, P. K. 2005 Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Process. 19, 1277-1291.
    • (2005) Hydrol. Process. , vol.19 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 16
    • 84872933573 scopus 로고    scopus 로고
    • Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules
    • Senthil kumar, A. R., Goyal Manish Kumar, Ojha, C. S. P., Singh, R. D., Swamee, P. K. & Nema, R. K. 2013 Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules. Water Resources Management, 27 (3), 911-925.
    • (2013) Water Resources Management , vol.27 , Issue.3 , pp. 911-925
    • Senthil Kumar, A.R.1    Goyal, M.K.2    Ojha, C.S.P.3    Singh, R.D.4    Swamee, P.K.5    Nema, R.K.6
  • 17
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu, S. & Jain, A. 2009 River flow prediction using an integrated approach. J. Hydrol. Eng., ASCE 14 (1), 75-83.
    • (2009) J. Hydrol. Eng., ASCE , vol.14 , Issue.1 , pp. 75-83
    • Srinivasulu, S.1    Jain, A.2
  • 18
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process 16, 1325-1330.
    • (2002) Hydrol. Process , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 19
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K. P., Nayak, P. C. & Ramasastri, K. S. 2003 Improving peak flow estimates in artificial neural network river flow models. Hydrolog. Process 17 (3), 677-686.
    • (2003) Hydrolog. Process , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 20
    • 84859341829 scopus 로고    scopus 로고
    • The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098
    • The MathWorks, Inc. 2001 ANN Toolbox User's Guide. 3 Apple Hill Drive, Natick, MA 01760-2098.
    • (2001) ANN Toolbox User's Guide
  • 21
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modelling using artificial neural networks and conceptual models
    • Tokar, A. S. & Markus, M. 2000 Precipitation-runoff modelling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 (2), 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 24
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. & Govindaraju, R.S. 2000 Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36 (3), 753-762.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.