메뉴 건너뛰기




Volumn 52, Issue 3, 2016, Pages 1626-1651

Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme

Author keywords

California; controlled outflow; decision tree; reservoir operation

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CLIMATE MODELS; DATA MINING; DECISION MAKING; DECISION TREES; RESERVOIR MANAGEMENT; RIVERS; VERIFICATION;

EID: 84960145075     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1002/2015WR017394     Document Type: Article
Times cited : (144)

References (75)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data agumentation and a method for prediction
    • Allen, D. M., (1974), The relationship between variable selection and data agumentation and a method for prediction, Technometrics, 16 (1), 125-127.
    • (1974) Technometrics , vol.16 , Issue.1 , pp. 125-127
    • Allen, D.M.1
  • 2
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araújo, M. B., and, M. New, (2007), Ensemble forecasting of species distributions, Trends Ecol. Evol., 22 (1), 42-47.
    • (2007) Trends Ecol. Evol. , vol.22 , Issue.1 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 3
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot, S., and, A. Celisse, (2010), A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40-79.
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 4
    • 0022557857 scopus 로고
    • Operational planning for California water system
    • Barnes, G. W., Jr., and, F. I. Chung, (1986), Operational planning for California water system, J. Water Resour. Plann. Manage., 112 (1), 71-86.
    • (1986) J. Water Resour. Plann. Manage. , vol.112 , Issue.1 , pp. 71-86
    • Barnes, G.W.1    Chung, F.I.2
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., and, R. Kohavi, (1999), An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Mach. Learning, 36 (1-2), 105-139.
    • (1999) Mach. Learning , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 7
    • 84968711388 scopus 로고
    • HEC-5: Simulation of flood control and conservation systems (for microcomputers), Model-Simulation
    • Rep. PB-90-502428/XAB, Davis, Calif.
    • Bonner, V., (1989), HEC-5: Simulation of flood control and conservation systems (for microcomputers), Model-Simulation, Rep. PB-90-502428/XAB, Hydrol. Eng. Cent., Davis, Calif.
    • (1989) Hydrol. Eng. Cent.
    • Bonner, V.1
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., (1996), Bagging predictors, Mach. Learning, 24 (2), 123-140.
    • (1996) Mach. Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., (2001), Random forests, Mach. Learning, 45 (1), 5-32.
    • (2001) Mach. Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression, the X-random case
    • Breiman, L., and, P. Spector, (1992), Submodel selection and evaluation in regression, The X-random case, Int. Stat. Rev., 60, 291-319.
    • (1992) Int. Stat. Rev. , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 12
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • Buntine, W., and, T. Niblett, (1992), A further comparison of splitting rules for decision-tree induction, Mach. Learning, 8 (1), 75-85.
    • (1992) Mach. Learning , vol.8 , Issue.1 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 15
    • 77951253366 scopus 로고    scopus 로고
    • A new node splitting measure for decision tree construction
    • Chandra, B., R. Kothari, and, P. Paul, (2010), A new node splitting measure for decision tree construction, Pattern Recognition, 43 (8), 2725-2731.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2725-2731
    • Chandra, B.1    Kothari, R.2    Paul, P.3
  • 16
    • 0019660014 scopus 로고
    • Study of a complex water resources system with screening and simulation models
    • Chaturvedi, M., and, D. Srivastava, (1981), Study of a complex water resources system with screening and simulation models, Water Resour. Res., 17 (4), 783-794.
    • (1981) Water Resour. Res. , vol.17 , Issue.4 , pp. 783-794
    • Chaturvedi, M.1    Srivastava, D.2
  • 17
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., A. Abraham, and, J. P. Thomas, (2005), Feature deduction and ensemble design of intrusion detection systems, Comput. Security, 24 (4), 295-307.
    • (2005) Comput. Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 19
    • 0024626038 scopus 로고
    • Network flow algorithm applied to California aqueduct simulation
    • Chung, F. I., M. C. Archer, and, J. J. DeVries, (1989), Network flow algorithm applied to California aqueduct simulation, J. Water Resour. Plann. Manage., 115 (2), 131-147.
    • (1989) J. Water Resour. Plann. Manage. , vol.115 , Issue.2 , pp. 131-147
    • Chung, F.I.1    Archer, M.C.2    DeVries, J.J.3
  • 20
    • 84879650082 scopus 로고    scopus 로고
    • Reproducing human decisions in reservoir management: The case of Lake Lugano
    • in, edited by L. N. Athanasiadis et al., Springer, Berlin
    • Corani, G., A. E. Rizzoli, A. Salvetti, and, M. Zaffalon, (2009), Reproducing human decisions in reservoir management: The case of Lake Lugano, in Information Technologies in Environmental Engineering, edited by L. N. Athanasiadis et al., pp. 252-263, Springer, Berlin.
    • (2009) Information Technologies in Environmental Engineering , pp. 252-263
    • Corani, G.1    Rizzoli, A.E.2    Salvetti, A.3    Zaffalon, M.4
  • 21
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: A powerful yet simple technique for ecological data analysis
    • De'ath, G., and, K. E. Fabricius, (2000), Classification and regression trees: A powerful yet simple technique for ecological data analysis, Ecology, 81 (11), 3178-3192.
    • (2000) Ecology , vol.81 , Issue.11 , pp. 3178-3192
    • De'ath, G.1    Fabricius, K.E.2
  • 23
    • 84963967111 scopus 로고    scopus 로고
    • DWR, California Water Plan Update 2005, Calif. Dep. of Water Resour., Sacramento
    • DWR (2005), California Water Plan Update 2005, Calif. Dep. of Water Resour., Sacramento.
    • (2005)
  • 24
    • 84963951864 scopus 로고    scopus 로고
    • DWR, California Water Plan Update 2009, Calif. Dep. of Water Resour., Sacramento
    • DWR (2009), California Water Plan Update 2009, Calif. Dep. of Water Resour., Sacramento.
    • (2009)
  • 25
    • 84963967125 scopus 로고    scopus 로고
    • DWR, Feather River Regional Flood Management Plan, Calif. Dep. of Water Resour., Sacramento
    • DWR (2013a), Feather River Regional Flood Management Plan, Calif. Dep. of Water Resour., Sacramento.
    • (2013)
  • 26
    • 84963960217 scopus 로고    scopus 로고
    • DWR, California Water Plan Update 2013, Calif. Dep. of Water Resour., Sacramento
    • DWR (2013b), California Water Plan Update 2013, Calif. Dep. of Water Resour., Sacramento.
    • (2013)
  • 27
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: Ecological explanation and prediction across space and time
    • Elith, J., and, J. R. Leathwick, (2009), Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40 (1), 677-697.
    • (2009) Annu. Rev. Ecol. Evol. Syst. , vol.40 , Issue.1 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 28
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., G. Piatetsky-Shapiro, and, P. Smyth, (1996), From data mining to knowledge discovery in databases, AI Mag., 17 (3), 37-54.
    • (1996) AI Mag. , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 30
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geisser, S., (1975), The predictive sample reuse method with applications, J. Am. Stat. Assoc., 70 (350), 320-328.
    • (1975) J. Am. Stat. Assoc. , vol.70 , Issue.350 , pp. 320-328
    • Geisser, S.1
  • 32
    • 84947756297 scopus 로고    scopus 로고
    • Making the most of data: An information selection and assessment framework to improve water systems operations
    • Giuliani, M., F. Pianosi, and, A. Castelletti, (2015), Making the most of data: An information selection and assessment framework to improve water systems operations, Water Resour. Res., 51, 9073-9093, doi: 10.1002/2015WR017044.
    • (2015) Water Resour. Res. , vol.51 , pp. 9073-9093
    • Giuliani, M.1    Pianosi, F.2    Castelletti, A.3
  • 33
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
    • Gupta, H. V., S. Sorooshian, and, P. O. Yapo, (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34 (4), 751-763.
    • (1998) Water Resour. Res. , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 34
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and, A. Elisseeff, (2003), An introduction to variable and feature selection, J. Mach. Learning Res., 3, 1157-1182.
    • (2003) J. Mach. Learning Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 35
    • 15744402095 scopus 로고    scopus 로고
    • A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies
    • Hancock, T., R. Put, D. Coomans, Y. Vander Heyden, and, Y. Everingham, (2005), A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies, Chemometrics Intelligent Lab. Syst., 76 (2), 185-196.
    • (2005) Chemometrics Intelligent Lab. Syst. , vol.76 , Issue.2 , pp. 185-196
    • Hancock, T.1    Put, R.2    Coomans, D.3    Vander Heyden, Y.4    Everingham, Y.5
  • 36
    • 55649118871 scopus 로고    scopus 로고
    • The role of hydrologic information in reservoir operation-learning from historical releases
    • Hejazi, M. I., X. Cai, and, B. L. Ruddell, (2008), The role of hydrologic information in reservoir operation-learning from historical releases, Adv. Water Resour., 31 (12), 1636-1650.
    • (2008) Adv. Water Resour. , vol.31 , Issue.12 , pp. 1636-1650
    • Hejazi, M.I.1    Cai, X.2    Ruddell, B.L.3
  • 37
    • 0026057159 scopus 로고
    • Heuristic operating policies for reservoir system simulation
    • Johnson, S. A., J. R. Stedinger, and, K. Staschus, (1991), Heuristic operating policies for reservoir system simulation, Water Resour. Res., 27 (5), 673-685.
    • (1991) Water Resour. Res. , vol.27 , Issue.5 , pp. 673-685
    • Johnson, S.A.1    Stedinger, J.R.2    Staschus, K.3
  • 40
    • 0024048632 scopus 로고
    • General water supply system simulation model: WASP
    • Kuczera, G., and, G. Diment, (1988), General water supply system simulation model: WASP, J. Water Resour. Plann. Manage., 114 (4), 365-382.
    • (1988) J. Water Resour. Plann. Manage. , vol.114 , Issue.4 , pp. 365-382
    • Kuczera, G.1    Diment, G.2
  • 41
    • 84892765395 scopus 로고    scopus 로고
    • Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India
    • Kumar, A. R. S., M. K. Goyal, C. S. P. Ojha, R. D. Singh, and, P. K. Swamee, (2013a), Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India, Water Sci. Technol., 68 (12), 2521-2526.
    • (2013) Water Sci. Technol. , vol.68 , Issue.12 , pp. 2521-2526
    • Kumar, A.R.S.1    Goyal, M.K.2    Ojha, C.S.P.3    Singh, R.D.4    Swamee, P.K.5
  • 42
    • 84872933573 scopus 로고    scopus 로고
    • Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the development of reservoir operating rules
    • Kumar, A. R. S., M. K. Goyal, C. S. P. Ojha, R. D. Singh, P. K. Swamee, and, R. K. Nema, (2013b), Application of ANN, Fuzzy Logic and Decision Tree Algorithms for the development of reservoir operating rules, Water Resour. Manage., 27 (3), 911-925.
    • (2013) Water Resour. Manage. , vol.27 , Issue.3 , pp. 911-925
    • Kumar, A.R.S.1    Goyal, M.K.2    Ojha, C.S.P.3    Singh, R.D.4    Swamee, P.K.5    Nema, R.K.6
  • 44
    • 84888306024 scopus 로고    scopus 로고
    • Self-adaptive obtaining water-supply reservoir operation rules: Co-evolution artificial immune system
    • Li, S. F., X. L. Wang, J. Z. Xiao, and, Z. J. Yin, (2014), Self-adaptive obtaining water-supply reservoir operation rules: Co-evolution artificial immune system, Expert Syst. Appl., 41 (4), 1262-1270.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1262-1270
    • Li, S.F.1    Wang, X.L.2    Xiao, J.Z.3    Yin, Z.J.4
  • 45
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., and, M. Wiener, (2002), Classification and regression by randomForest, R News, 2 (3), 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 47
    • 0344604483 scopus 로고    scopus 로고
    • Derived operating rules for reservoirs in series or in parallel
    • Lund, J. R., and, J. Guzman, (1999), Derived operating rules for reservoirs in series or in parallel, J. Water Resour. Plann. Manage., 125 (3), 143-153.
    • (1999) J. Water Resour. Plann. Manage. , vol.125 , Issue.3 , pp. 143-153
    • Lund, J.R.1    Guzman, J.2
  • 48
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers, J., (1989), An empirical comparison of selection measures for decision-tree induction, Mach. Learning, 3 (4), 319-342.
    • (1989) Mach. Learning , vol.3 , Issue.4 , pp. 319-342
    • Mingers, J.1
  • 49
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi, D., J. Arnold, M. Van Liew, R. Bingner, R. Harmel, and, T. Veith, (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50 (3), 885-900.
    • (2007) Trans. ASABE , vol.50 , Issue.3 , pp. 885-900
    • Moriasi, D.1    Arnold, J.2    Van Liew, M.3    Bingner, R.4    Harmel, R.5    Veith, T.6
  • 50
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - A discussion of principles
    • Nash, J., and, J. V. Sutcliffe, (1970), River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrol., 10 (3), 282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.1    Sutcliffe, J.V.2
  • 51
    • 0030618869 scopus 로고    scopus 로고
    • Operating rules for multireservoir systems
    • Oliveira, R., and, D. P. Loucks, (1997), Operating rules for multireservoir systems, Water Resour. Res., 33 (4), 839-852.
    • (1997) Water Resour. Res. , vol.33 , Issue.4 , pp. 839-852
    • Oliveira, R.1    Loucks, D.P.2
  • 52
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard, R. R., and, R. D. Cook, (1984), Cross-validation of regression models, J. Am. Stat. Assoc., 79 (387), 575-583.
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.387 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 53
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A. M., L. R. Iverson, and, A. Liaw, (2006), Newer classification and regression tree techniques: Bagging and random forests for ecological prediction, Ecosystems, 9 (2), 181-199.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 54
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • Qi, Y., Z. Bar-Joseph, and, J. Klein-Seetharaman, (2006), Evaluation of different biological data and computational classification methods for use in protein interaction prediction, Proteins, 63 (3), 490-500.
    • (2006) Proteins , vol.63 , Issue.3 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-Seetharaman, J.3
  • 55
    • 0002442571 scopus 로고
    • Discovering rules by induction from large collections of examples
    • in, 168-201, Edinburgh Univ. Press, Edinburgh, U. K.
    • Quinlan, J. R., (1979), Discovering rules by induction from large collections of examples, in Expert Systems in the Micro Electronic Age, pp. 168-201, Edinburgh Univ. Press, Edinburgh, U. K.
    • (1979) Expert Systems in the Micro Electronic Age
    • Quinlan, J.R.1
  • 56
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R., (1986), Induction of decision trees, Mach. Learning, 1 (1), 81-106.
    • (1986) Mach. Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 57
    • 0030224015 scopus 로고    scopus 로고
    • Deriving a general operating policy for reservoirs using neural network
    • Raman, H., and, V. Chandramouli, (1996), Deriving a general operating policy for reservoirs using neural network, J. Water Resour. Plann. Manage., 122 (5), 342-347.
    • (1996) J. Water Resour. Plann. Manage. , vol.122 , Issue.5 , pp. 342-347
    • Raman, H.1    Chandramouli, V.2
  • 58
    • 16244386248 scopus 로고    scopus 로고
    • A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models
    • Razi, M. A., and, K. Athappilly, (2005), A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models, Expert Syst. Appl., 29 (1), 65-74.
    • (2005) Expert Syst. Appl. , vol.29 , Issue.1 , pp. 65-74
    • Razi, M.A.1    Athappilly, K.2
  • 59
    • 84867226614 scopus 로고    scopus 로고
    • An intelligent agent for optimal river-reservoir system management
    • Rieker, J. D., and, J. W. Labadie, (2012), An intelligent agent for optimal river-reservoir system management, Water Resour. Res., 48, W09550, doi: 10.1029/2012WR011958.
    • (2012) Water Resour. Res. , vol.48 , pp. W09550
    • Rieker, J.D.1    Labadie, J.W.2
  • 60
    • 53549131556 scopus 로고    scopus 로고
    • A bias correction algorithm for the gini variable importance measure in classification trees
    • Sandri, M., and, P. Zuccolotto, (2008), A bias correction algorithm for the gini variable importance measure in classification trees, J. Comput. Graphical Stat., 17 (3), 611-628.
    • (2008) J. Comput. Graphical Stat. , vol.17 , Issue.3 , pp. 611-628
    • Sandri, M.1    Zuccolotto, P.2
  • 61
    • 77956880851 scopus 로고    scopus 로고
    • Analysis and correction of bias in total decrease in node impurity measures for tree-based algorithms
    • Sandri, M., and, P. Zuccolotto, (2010), Analysis and correction of bias in total decrease in node impurity measures for tree-based algorithms, Stat. Comput., 20 (4), 393-407.
    • (2010) Stat. Comput. , vol.20 , Issue.4 , pp. 393-407
    • Sandri, M.1    Zuccolotto, P.2
  • 62
    • 84864649324 scopus 로고    scopus 로고
    • Application of a data mining approach to derive operating rules for the Eleviyan irrigation reservoir
    • Sattari, M. T., H. Apaydin, F. Ozturk, and, N. Baykal, (2012), Application of a data mining approach to derive operating rules for the Eleviyan irrigation reservoir, Lake Reservoir Manage., 28 (2), 142-152.
    • (2012) Lake Reservoir Manage. , vol.28 , Issue.2 , pp. 142-152
    • Sattari, M.T.1    Apaydin, H.2    Ozturk, F.3    Baykal, N.4
  • 64
    • 0016941490 scopus 로고
    • A simulation model for operating a multipurpose multireservoir system
    • Sigvaldson, O., (1976), A simulation model for operating a multipurpose multireservoir system, Water Resour. Res., 12 (2), 263-278.
    • (1976) Water Resour. Res. , vol.12 , Issue.2 , pp. 263-278
    • Sigvaldson, O.1
  • 65
    • 85152855869 scopus 로고    scopus 로고
    • CART: Classification and regression trees
    • in, CRC Press, Boca Raton, Fla
    • Steinberg, D., and, P. Colla, (2009), CART: Classification and regression trees, in The Top Ten Algorithms in Data Mining, vol. 9, 179 pp., CRC Press, Boca Raton, Fla.
    • (2009) The Top Ten Algorithms in Data Mining , vol.9 , pp. 179
    • Steinberg, D.1    Colla, P.2
  • 66
    • 0017336301 scopus 로고
    • Asymptotics for and against cross-validation
    • Stone, M., (1977), Asymptotics for and against cross-validation, Biometrika, 64, 29-35.
    • (1977) Biometrika , vol.64 , pp. 29-35
    • Stone, M.1
  • 67
    • 33748680159 scopus 로고    scopus 로고
    • Classification and regression trees (CART) theory and applications
    • Master thesis, Humboldt Univ., Berlin, Germany
    • Timofeev, R., (2004), Classification and regression trees (CART) theory and applications, Master thesis, Cent. of Appl. Stat. and Econ., Humboldt Univ., Berlin, Germany.
    • (2004) Cent. of Appl. Stat. and Econ.
    • Timofeev, R.1
  • 68
    • 84856372643 scopus 로고    scopus 로고
    • Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a river basin during typhoons: A case study in Taiwan
    • Tsai, C.-C., M.-C. Lu, and, C.-C. Wei, (2012), Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a river basin during typhoons: A case study in Taiwan, Environ. Eng. Sci., 29 (2), 108-116.
    • (2012) Environ. Eng. Sci. , vol.29 , Issue.2 , pp. 108-116
    • Tsai, C.-C.1    Lu, M.-C.2    Wei, C.-C.3
  • 70
    • 84865530098 scopus 로고    scopus 로고
    • Discretized and continuous target fields for the reservoir release rules during floods
    • Wei, C.-C., (2012), Discretized and continuous target fields for the reservoir release rules during floods, Water Resour. Manage., 26 (12), 3457-3477.
    • (2012) Water Resour. Manage. , vol.26 , Issue.12 , pp. 3457-3477
    • Wei, C.-C.1
  • 71
    • 41149153775 scopus 로고    scopus 로고
    • Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees
    • Wei, C. C., and, N. S. Hsu, (2008), Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees, Water Resour. Res., 44, W02428, doi: 10.1029/2006WR005792.
    • (2008) Water Resour. Res. , vol.44 , pp. W02428
    • Wei, C.C.1    Hsu, N.S.2
  • 73
    • 23744434616 scopus 로고    scopus 로고
    • Decision tree regression for soft classification of remote sensing data
    • Xu, M., P. Watanachaturaporn, P. K. Varshney, and, M. K. Arora, (2005), Decision tree regression for soft classification of remote sensing data, Remote Sens. Environ., 97 (3), 322-336.
    • (2005) Remote Sens. Environ. , vol.97 , Issue.3 , pp. 322-336
    • Xu, M.1    Watanachaturaporn, P.2    Varshney, P.K.3    Arora, M.K.4
  • 74
    • 84930277268 scopus 로고    scopus 로고
    • Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville-Thermalito complex
    • Yang, T., X. Gao, S. L. Sellars, and, S. Sorooshian, (2015), Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville-Thermalito complex, Environ. Modell. Software, 69, 262-279.
    • (2015) Environ. Modell. Software , vol.69 , pp. 262-279
    • Yang, T.1    Gao, X.2    Sellars, S.L.3    Sorooshian, S.4
  • 75
    • 31544479298 scopus 로고    scopus 로고
    • WEAP21 - A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics
    • Yates, D., J. Sieber, D. Purkey, and, A. Huber-Lee, (2005), WEAP21-A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics, Water Int., 30 (4), 487-500.
    • (2005) Water Int. , vol.30 , Issue.4 , pp. 487-500
    • Yates, D.1    Sieber, J.2    Purkey, D.3    Huber-Lee, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.