메뉴 건너뛰기




Volumn 38, Issue 10, 2011, Pages 13073-13081

Monthly streamflow forecasting based on improved support vector machine model

Author keywords

Adaptive insensitive factor; Artificial neural network; Chaos and phase space reconstruction theory; Streamflow forecast; Support vector machine; Wavelet

Indexed keywords

ADAPTIVE INSENSITIVE FACTOR; ARTIFICIAL NEURAL NETWORK; CHAOS AND PHASE-SPACE RECONSTRUCTION THEORY; STREAMFLOW FORECAST; WAVELET;

EID: 79957986045     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.04.114     Document Type: Article
Times cited : (158)

References (29)
  • 1
    • 71749111472 scopus 로고    scopus 로고
    • Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting
    • J. Behnamian, and SMTF. Ghomi Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting Expert Systems with Applications 37 2 2010 974 984
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 974-984
    • Behnamian, J.1    Ghomi, S.M.T.F.2
  • 3
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • PII S0167278997001188
    • L. Cao Practical method for determining the minimum embedding Dimension of a scalar time series Physica D:Nonlinear Phenomena 110 1997 43 50 (Pubitemid 127701588)
    • (1997) Physica D: Nonlinear Phenomena , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.1
  • 4
    • 69249212363 scopus 로고    scopus 로고
    • A modified particle swarm optimization for production planning problems in the TFT array process
    • Y.Y. Chen, and J.T. Lin A modified particle swarm optimization for production planning problems in the TFT array process Expert Systems with Applications 36 10 2009 12264 12271
    • (2009) Expert Systems with Applications , vol.36 , Issue.10 , pp. 12264-12271
    • Chen, Y.Y.1    Lin, J.T.2
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 3142715535 scopus 로고
    • Chengdu University of Science and Technology Press Chengdu
    • J. Ding, and Y.R. Deng Stochastic hydrology 1988 Chengdu University of Science and Technology Press Chengdu
    • (1988) Stochastic Hydrology
    • Ding, J.1    Deng, Y.R.2
  • 7
    • 33748139775 scopus 로고    scopus 로고
    • Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression
    • DOI 10.1016/j.eswa.2005.11.012, PII S0957417405003246
    • H.M. Feng, C.Y. Chen, and F. Ye Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression Expert Systems with Applications 32 1 2007 213 222 (Pubitemid 44311478)
    • (2007) Expert Systems with Applications , vol.32 , Issue.1 , pp. 213-222
    • Feng, H.-M.1    Chen, C.-Y.2    Ye, F.3
  • 8
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquaradt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feed forward networks with the Marquaradt algorithm IEEE Transactions on Neural Networks 5 6 1994 861 867
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 10
    • 67651207540 scopus 로고    scopus 로고
    • Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling
    • Y.Y. He, J.Z. Zhou, X.Q. Xiang, H. Chen, and H. Qin Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling Chaos, Solitons & Fractals 42 5 2009 3169 3176
    • (2009) Chaos, Solitons & Fractals , vol.42 , Issue.5 , pp. 3169-3176
    • He, Y.Y.1    Zhou, J.Z.2    Xiang, X.Q.3    Chen, H.4    Qin, H.5
  • 11
    • 48749108969 scopus 로고    scopus 로고
    • Automatic and interactive e-learning auxiliary material generation utilizing particle swarm optimization
    • T.C. Huang, Y.M. Huang, and S.C. Cheng Automatic and interactive e-learning auxiliary material generation utilizing particle swarm optimization Expert Systems with Applications 35 4 2008 2113 2122
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 2113-2122
    • Huang, T.C.1    Huang, Y.M.2    Cheng, S.C.3
  • 12
    • 0028199319 scopus 로고
    • Analysis and prediction of chaos in rainfall and streamflow time series
    • A.W. Jayawarderm, and F. Lai Analysis and prediction of chaos in rainfall and streamflow time series Journal of Hydrology 153 1994 23 52
    • (1994) Journal of Hydrology , vol.153 , pp. 23-52
    • Jayawarderm, A.W.1    Lai, F.2
  • 13
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • J.Y. Lin, C.T. Cheng, and K.W. Chau Using support vector machines for long-term discharge prediction Hydrological Sciences Journal 51 4 2006 599 612
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 14
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S.W. Lin, K.C. Ying, S.C. Chen, and Z.-J. Lee Particle swarm optimization for parameter determination and feature selection of support vector machines Expert Systems with Applications 35 4 2008 1817 1824
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3    Lee, Z.-J.4
  • 15
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippmann An introduction to computing with neural nets IEEE ASSP Magasine 1987 4 22
    • (1987) IEEE ASSP Magasine , pp. 4-22
    • Lippmann, R.P.1
  • 16
    • 18444389480 scopus 로고    scopus 로고
    • Improved particle swarm optimization combined with chaos
    • DOI 10.1016/j.chaos.2004.11.095, PII S0960077905000330
    • B. Liu, L. Wang, Y.H. Jin, F. Tang, and D.X. Huang Improved particle swarm optimization combined with chaos Chaos, Solitons & Fractals 25 5 2005 1261 1271 (Pubitemid 40643077)
    • (2005) Chaos, Solitons and Fractals , vol.25 , Issue.5 , pp. 1261-1271
    • Liu, B.1    Wang, L.2    Jin, Y.-H.3    Tang, F.4    Huang, D.-X.5
  • 17
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • B. Mohsen, A. Keyvan, E. Morteza, and M. Palhang Generalization performance of support vector machines and neural networks in runoff modeling Expert Systems with Applications 36 4 2009 7624 7629
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7624-7629
    • Mohsen, B.1    Keyvan, A.2    Morteza, E.3    Palhang, M.4
  • 21
    • 0000933887 scopus 로고
    • The statistical properties of dimension calculations using small data sets
    • J.B. Ramsey, and H.J. Yuan The statistical properties of dimension calculations using small data sets Nonlinearity 3 1 1990 155 176
    • (1990) Nonlinearity , vol.3 , Issue.1 , pp. 155-176
    • Ramsey, J.B.1    Yuan, H.J.2
  • 22
    • 0042592966 scopus 로고    scopus 로고
    • Chaos theory in geophysics: Past, present and future
    • B. Sivakumar Chaos theory in geophysics: past, present and future Chaos, Solitons and Fractals 19 2 2004 441 462
    • (2004) Chaos, Solitons and Fractals , vol.19 , Issue.2 , pp. 441-462
    • Sivakumar, B.1
  • 24
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • DOI 10.1016/j.jhydrol.2006.04.030, PII S0022169406002368
    • S. Tripathi, VV. Srinivas, and RS. Nanjundiah Downscaling of precipitation for climate change scenarios: A support vector machine approach Journal of Hydrology 330 2006 621 640 (Pubitemid 44573197)
    • (2006) Journal of Hydrology , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 25
    • 84887252594 scopus 로고    scopus 로고
    • Supportvector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S. Golowich, and A. Smola Supportvector method for function approximation, regression estimation, and signal processing M. Mozer, M. Jordan, T. Petsche, Neural information processing systems 1997 MIT Press
    • (1997) Neural Information Processing Systems
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 26
    • 67349205596 scopus 로고    scopus 로고
    • Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems
    • J.G. Vlachogiannis, and K.Y. Lee Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems Expert Systems with Applications 36 8 2009 10802 10808
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 10802-10808
    • Vlachogiannis, J.G.1    Lee, K.Y.2
  • 27
    • 27744530847 scopus 로고    scopus 로고
    • Sediment-carrying capacity forecasting based on support vector machine
    • J.Q. Xiong, and Z.Y. Li Sediment-carrying capacity forecasting based on support vector machine Journal of Hydraulic Engineering 36 10 2005 1171 1175
    • (2005) Journal of Hydraulic Engineering , vol.36 , Issue.10 , pp. 1171-1175
    • Xiong, J.Q.1    Li, Z.Y.2
  • 28
    • 42949159177 scopus 로고    scopus 로고
    • Prediction model of chaotic time series based on support vector machine and its application to runoff
    • G.R. Yu, and Z.Q. Xia Prediction model of chaotic time series based on support vector machine and its application to runoff Advances in Water Science 19 1 2008 116 122
    • (2008) Advances in Water Science , vol.19 , Issue.1 , pp. 116-122
    • Yu, G.R.1    Xia, Z.Q.2
  • 29
    • 56349106409 scopus 로고    scopus 로고
    • PSO-based single multiplicative neuron model for time series prediction
    • L. Zhao, and Y.P. Yang PSO-based single multiplicative neuron model for time series prediction Expert Systems with Applications 36 2 2009 2805 2812
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2805-2812
    • Zhao, L.1    Yang, Y.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.