-
1
-
-
14544282377
-
Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?
-
Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238-250. https://doi.org/10.1038/nrmicro1098.
-
(2005)
Nat Rev Microbiol
, vol.3
, pp. 238-250
-
-
Brogden, K.A.1
-
3
-
-
0028829183
-
Peptides as weapons against microorganisms in the chemical defense system of vertebrates
-
Nicolas P, Mor A. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 49:277-304. https://doi.org/10.1146/annurev.mi.49.100195.001425.
-
(1995)
Annu Rev Microbiol
, vol.49
, pp. 277-304
-
-
Nicolas, P.1
Mor, A.2
-
4
-
-
0032443219
-
Mode of action of linear amphipathic alpha-helical antimicrobial peptides
-
Oren Z, Shai Y. 1998. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451-463.
-
(1998)
Biopolymers
, vol.47
, pp. 451-463
-
-
Oren, Z.1
Shai, Y.2
-
5
-
-
0031039956
-
Peptide antibiotics
-
Hancock RE. 1997. Peptide antibiotics. Lancet 349:418-422. https://doi.org/10.1016/S0140-6736(97)80051-7.
-
(1997)
Lancet
, vol.349
, pp. 418-422
-
-
Hancock, R.E.1
-
6
-
-
0035496012
-
Cationic peptides: Effectors in innate immunity and novel antimicrobials
-
Hancock RE. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156-164. https://doi.org/10.1016/S1473-3099(01)00092-5.
-
(2001)
Lancet Infect Dis
, vol.1
, pp. 156-164
-
-
Hancock, R.E.1
-
7
-
-
84958721684
-
The proteome targets of intracellular targeting antimicrobial peptides
-
Shah P, Hsiao FS, Ho YH, Chen CS. 2016. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 16:1225-1237. https://doi.org/10.1002/pmic.201500380.
-
(2016)
Proteomics
, vol.16
, pp. 1225-1237
-
-
Shah, P.1
Hsiao, F.S.2
Ho, Y.H.3
Chen, C.S.4
-
8
-
-
0345074069
-
Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide
-
Di Nardo A, Vitiello A, Gallo RL. 2003. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 170:2274-2278. https://doi.org/10.4049/jimmunol.170.5.2274.
-
(2003)
J Immunol
, vol.170
, pp. 2274-2278
-
-
Di Nardo, A.1
Vitiello, A.2
Gallo, R.L.3
-
9
-
-
1442330405
-
Interplay between antibacterial effectors: A macrophage antimicrobial peptide impairs intracellular Salmonella replication
-
Rosenberger CM, Gallo RL, Finlay BB. 2004. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci U S A 101:2422-2427. https://doi.org/10.1073/pnas.0304455101.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 2422-2427
-
-
Rosenberger, C.M.1
Gallo, R.L.2
Finlay, B.B.3
-
10
-
-
0031686776
-
Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils
-
Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206-2214.
-
(1998)
Antimicrob Agents Chemother
, vol.42
, pp. 2206-2214
-
-
Turner, J.1
Cho, Y.2
Dinh, N.N.3
Waring, A.J.4
Lehrer, R.I.5
-
11
-
-
10444227185
-
Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae
-
Lee HY, Andalibi A, Webster P, Moon SK, Teufert K, Kang SH, Li JD, Nagura M, Ganz T, Lim DJ. 2004. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis 4:12. https://doi.org/10.1186/1471-2334-4-12.
-
(2004)
BMC Infect Dis
, vol.4
, pp. 12
-
-
Lee, H.Y.1
Andalibi, A.2
Webster, P.3
Moon, S.K.4
Teufert, K.5
Kang, S.H.6
Li, J.D.7
Nagura, M.8
Ganz, T.9
Lim, D.J.10
-
12
-
-
0037068941
-
Innate immunity, antimicrobial peptides, and protection of the oral cavity
-
Zasloff M. 2002. Innate immunity, antimicrobial peptides, and protection of the oral cavity. Lancet 360:1116-1117. https://doi.org/10.1016/S0140-6736(02)11239-6.
-
(2002)
Lancet
, vol.360
, pp. 1116-1117
-
-
Zasloff, M.1
-
13
-
-
0028902757
-
Epithelial antibiotics induced at sites of inflammation
-
Schonwetter BS, Stolzenberg ED, Zasloff MA. 1995. Epithelial antibiotics induced at sites of inflammation. Science 267:1645-1648. https://doi.org/10.1126/science.7886453.
-
(1995)
Science
, vol.267
, pp. 1645-1648
-
-
Schonwetter, B.S.1
Stolzenberg, E.D.2
Zasloff, M.A.3
-
14
-
-
0036948138
-
Mode of action of membrane active antimicrobial peptides
-
Shai Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236-248. https://doi.org/10.1002/bip.10260.
-
(2002)
Biopolymers
, vol.66
, pp. 236-248
-
-
Shai, Y.1
-
15
-
-
0037371597
-
Mechanisms of antimicrobial peptide action and resistance
-
Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27-55. https://doi.org/10.1124/pr.55.1.2.
-
(2003)
Pharmacol Rev
, vol.55
, pp. 27-55
-
-
Yeaman, M.R.1
Yount, N.Y.2
-
16
-
-
37349104237
-
Alternative mechanisms of action of cationic antimicrobial peptides on bacteria
-
Hale JD, Hancock RE. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951-959. https://doi.org/10.1586/14787210.5.6.951.
-
(2007)
Expert Rev Anti Infect Ther
, vol.5
, pp. 951-959
-
-
Hale, J.D.1
Hancock, R.E.2
-
17
-
-
52049109183
-
Toroidal pores formed by antimicrobial peptides show significant disorder
-
Sengupta D, Leontiadou H, Mark AE, Marrink SJ. 2008. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308-2317. https://doi.org/10.1016/j.bbamem.2008.06.007.
-
(2008)
Biochim Biophys Acta
, vol.1778
, pp. 2308-2317
-
-
Sengupta, D.1
Leontiadou, H.2
Mark, A.E.3
Marrink, S.J.4
-
18
-
-
0031849949
-
Neutron off-plane scattering of aligned membranes. I. Method of measurement
-
Yang L, Harroun TA, Heller WT, Weiss TM, Huang HW. 1998. Neutron off-plane scattering of aligned membranes. I. Method of measurement. Biophys J 75:641-645.
-
(1998)
Biophys J
, vol.75
, pp. 641-645
-
-
Yang, L.1
Harroun, T.A.2
Heller, W.T.3
Weiss, T.M.4
Huang, H.W.5
-
19
-
-
67749135638
-
Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q
-
Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K. 2009. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53:3211-3217. https://doi.org/10.1128/AAC.00209-09.
-
(2009)
Antimicrob Agents Chemother
, vol.53
, pp. 3211-3217
-
-
Yoneyama, F.1
Imura, Y.2
Ohno, K.3
Zendo, T.4
Nakayama, J.5
Matsuzaki, K.6
Sonomoto, K.7
-
20
-
-
0034859096
-
Barrel-stave model or toroidal model? A case study on melittin pores
-
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475-1485.
-
(2001)
Biophys J
, vol.81
, pp. 1475-1485
-
-
Yang, L.1
Harroun, T.A.2
Weiss, T.M.3
Ding, L.4
Huang, H.W.5
-
21
-
-
0029111532
-
Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles
-
Gazit E, Boman A, Boman HG, Shai Y. 1995. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34:11479-11488. https://doi.org/10.1021/bi00036a021.
-
(1995)
Biochemistry
, vol.34
, pp. 11479-11488
-
-
Gazit, E.1
Boman, A.2
Boman, H.G.3
Shai, Y.4
-
22
-
-
80051785173
-
The expanding scope of antimicrobial peptide structures and their modes of action
-
Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464-472. https://doi.org/10.1016/j.tibtech.2011.05.001.
-
(2011)
Trends Biotechnol
, vol.29
, pp. 464-472
-
-
Nguyen, L.T.1
Haney, E.F.2
Vogel, H.J.3
-
23
-
-
79959365312
-
Mechanisms of cellular uptake of cell-penetrating peptides
-
Madani F, Lindberg S, Langel U, Futaki S, Graslund A. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729.
-
(2011)
J Biophys
, vol.2011
, pp. 414729
-
-
Madani, F.1
Lindberg, S.2
Langel, U.3
Futaki, S.4
Graslund, A.5
-
24
-
-
34548172649
-
Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides
-
Jones AT. 2007. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med 11:670-684. https://doi.org/10.1111/j.1582-4934.2007.00062.x.
-
(2007)
J Cell Mol Med
, vol.11
, pp. 670-684
-
-
Jones, A.T.1
-
25
-
-
34547114456
-
Pathways of clathrin-independent endocytosis
-
Mayor S, Pagano RE. 2007. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603-612. https://doi.org/10.1038/nrm2216.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 603-612
-
-
Mayor, S.1
Pagano, R.E.2
-
26
-
-
0036532403
-
How do bacteria resist human antimicrobial peptides?
-
Peschel A. 2002. How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179-186. https://doi.org/10.1016/S0966-842X(02)02333-8.
-
(2002)
Trends Microbiol
, vol.10
, pp. 179-186
-
-
Peschel, A.1
-
27
-
-
1042278915
-
The relationship between peptide structure and antibacterial activity
-
Powers JP, Hancock RE. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24:1681-1691. https://doi.org/10.1016/j.peptides.2003.08.023.
-
(2003)
Peptides
, vol.24
, pp. 1681-1691
-
-
Powers, J.P.1
Hancock, R.E.2
-
28
-
-
0034425535
-
Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways
-
Edgerton M, Koshlukova SE, Araujo MW, Patel RC, Dong J, Bruenn JA. 2000. Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother 44:3310-3316. https://doi.org/10.1128/AAC.44.12.3310-3316.2000.
-
(2000)
Antimicrob Agents Chemother
, vol.44
, pp. 3310-3316
-
-
Edgerton, M.1
Koshlukova, S.E.2
Araujo, M.W.3
Patel, R.C.4
Dong, J.5
Bruenn, J.A.6
-
29
-
-
0030068934
-
A novel antimicrobial peptide from Bufo bufo gargarizans
-
Park CB, Kim MS, Kim SC. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408-413. https://doi.org/10.1006/bbrc.1996.0071.
-
(1996)
Biochem Biophys Res Commun
, vol.218
, pp. 408-413
-
-
Park, C.B.1
Kim, M.S.2
Kim, S.C.3
-
30
-
-
0001439249
-
Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II
-
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. 2000. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A 97:8245-8250. https://doi.org/10.1073/pnas.150518097.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 8245-8250
-
-
Park, C.B.1
Yi, K.S.2
Matsuzaki, K.3
Kim, M.S.4
Kim, S.C.5
-
31
-
-
0034713613
-
Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: Proline as a translocation promoting factor
-
Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K. 2000. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry 39:8648-8654. https://doi.org/10.1021/bi0004549.
-
(2000)
Biochemistry
, vol.39
, pp. 8648-8654
-
-
Kobayashi, S.1
Takeshima, K.2
Park, C.B.3
Kim, S.C.4
Matsuzaki, K.5
-
32
-
-
0032489294
-
Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions
-
Park CB, Kim HS, Kim SC. 1998. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253-257. https://doi.org/10.1006/bbrc.1998.8159.
-
(1998)
Biochem Biophys Res Commun
, vol.244
, pp. 253-257
-
-
Park, C.B.1
Kim, H.S.2
Kim, S.C.3
-
33
-
-
0042121501
-
Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.)
-
Birkemo GA, Luders T, Andersen O, Nes IF, Nissen-Meyer J. 2003. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim Biophys Acta 1646:207-215. https://doi.org/10.1016/S1570-9639(03)00018-9.
-
(2003)
Biochim Biophys Acta
, vol.1646
, pp. 207-215
-
-
Birkemo, G.A.1
Luders, T.2
Andersen, O.3
Nes, I.F.4
Nissen-Meyer, J.5
-
34
-
-
84876840565
-
The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2
-
Hao G, Shi YH, Tang YL, Le GW. 2013. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol 51:200-206. https://doi.org/10.1007/s12275-013-2441-1.
-
(2013)
J Microbiol
, vol.51
, pp. 200-206
-
-
Hao, G.1
Shi, Y.H.2
Tang, Y.L.3
Le, G.W.4
-
35
-
-
0026722445
-
Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils
-
Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292-4295.
-
(1992)
J Biol Chem
, vol.267
, pp. 4292-4295
-
-
Selsted, M.E.1
Novotny, M.J.2
Morris, W.L.3
Tang, Y.Q.4
Smith, W.5
Cullor, J.S.6
-
36
-
-
9444225012
-
Mode of action of the antimicrobial peptide indolicidin
-
Falla TJ, Karunaratne DN, Hancock RE. 1996. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298-19303. https://doi.org/10.1074/jbc.271.32.19298.
-
(1996)
J Biol Chem
, vol.271
, pp. 19298-19303
-
-
Falla, T.J.1
Karunaratne, D.N.2
Hancock, R.E.3
-
37
-
-
0346034649
-
Tryptophan-rich antimicrobial peptides: Comparative properties and membrane interactions
-
Schibli DJ, Epand RF, Vogel HJ, Epand RM. 2002. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem Cell Biol 80:667-677. https://doi.org/10.1139/o02-147.
-
(2002)
Biochem Cell Biol
, vol.80
, pp. 667-677
-
-
Schibli, D.J.1
Epand, R.F.2
Vogel, H.J.3
Epand, R.M.4
-
38
-
-
0031022395
-
Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids
-
Ladokhin AS, Selsted ME, White SH. 1997. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J 72:794-805. https://doi.org/10.1016/S0006-3495(97)78713-7.
-
(1997)
Biophys J
, vol.72
, pp. 794-805
-
-
Ladokhin, A.S.1
Selsted, M.E.2
White, S.H.3
-
39
-
-
0030583546
-
Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin
-
Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N. 1996. Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395:48-52. https://doi.org/10.1016/0014-5793(96)00996-9.
-
(1996)
FEBS Lett
, vol.395
, pp. 48-52
-
-
Subbalakshmi, C.1
Krishnakumari, V.2
Nagaraj, R.3
Sitaram, N.4
-
40
-
-
0032031434
-
Mechanism of antimicrobial action of indolicidin
-
Subbalakshmi C, Sitaram N. 1998. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91-96. https://doi.org/10.1111/j.1574-6968.1998.tb12896.x.
-
(1998)
FEMS Microbiol Lett
, vol.160
, pp. 91-96
-
-
Subbalakshmi, C.1
Sitaram, N.2
-
41
-
-
33750971755
-
Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites
-
Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, Roller P, Kvaratskhelia M, Pommier Y. 2006. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res 34:5157-5165. https://doi.org/10.1093/nar/gkl667.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 5157-5165
-
-
Marchand, C.1
Krajewski, K.2
Lee, H.F.3
Antony, S.4
Johnson, A.A.5
Amin, R.6
Roller, P.7
Kvaratskhelia, M.8
Pommier, Y.9
-
42
-
-
23044452974
-
Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA
-
Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33:4053-4064. https://doi.org/10.1093/nar/gki725.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 4053-4064
-
-
Hsu, C.H.1
Chen, C.2
Jou, M.L.3
Lee, A.Y.4
Lin, Y.C.5
Yu, Y.P.6
Huang, W.T.7
Wu, S.H.8
-
43
-
-
84928710946
-
Indolicidin targets duplex DNA: Structural and mechanistic insight through a combination of spectroscopy and microscopy
-
Ghosh A, Kar RK, Jana J, Saha A, Jana B, Krishnamoorthy J, Kumar D, Ghosh S, Chatterjee S, Bhunia A. 2014. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9:2052-2058. https://doi.org/10.1002/cmdc.201402215.
-
(2014)
ChemMedChem
, vol.9
, pp. 2052-2058
-
-
Ghosh, A.1
Kar, R.K.2
Jana, J.3
Saha, A.4
Jana, B.5
Krishnamoorthy, J.6
Kumar, D.7
Ghosh, S.8
Chatterjee, S.9
Bhunia, A.10
-
45
-
-
33947131434
-
Mechanisms of action of ostrich beta-defensins against Escherichia coli
-
Sugiarto H, Yu PL. 2007. Mechanisms of action of ostrich beta-defensins against Escherichia coli. FEMS Microbiol Lett 270:195-200. https://doi.org/10.1111/j.1574-6968.2007.00642.x.
-
(2007)
FEMS Microbiol Lett
, vol.270
, pp. 195-200
-
-
Sugiarto, H.1
Yu, P.L.2
-
46
-
-
0344495306
-
Isolation and characterisation of proline/ arginine-rich cathelicidin peptides from ovine neutrophils
-
Anderson RC, Yu PL. 2003. Isolation and characterisation of proline/ arginine-rich cathelicidin peptides from ovine neutrophils. Biochem Biophys Res Commun 312:1139-1146. https://doi.org/10.1016/j.bbrc.2003.11.045.
-
(2003)
Biochem Biophys Res Commun
, vol.312
, pp. 1139-1146
-
-
Anderson, R.C.1
Yu, P.L.2
-
47
-
-
0023700978
-
Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure
-
Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y. 1988. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263:16709-16713.
-
(1988)
J Biol Chem
, vol.263
, pp. 16709-16713
-
-
Nakamura, T.1
Furunaka, H.2
Miyata, T.3
Tokunaga, F.4
Muta, T.5
Iwanaga, S.6
Niwa, M.7
Takao, T.8
Shimonishi, Y.9
-
48
-
-
0026550672
-
Binding of tachyplesin I to DNA revealed by footprinting analysis: Significant contribution of secondary structure to DNA binding and implication for biological action
-
Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. 1992. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31:2998-3004. https://doi.org/10.1021/bi00126a022.
-
(1992)
Biochemistry
, vol.31
, pp. 2998-3004
-
-
Yonezawa, A.1
Kuwahara, J.2
Fujii, N.3
Sugiura, Y.4
-
49
-
-
0021223249
-
The microcins
-
Baquero F, Moreno F. 1984. The microcins. FEMS Microbiol Lett 23: 117-124. https://doi.org/10.1111/j.1574-6968.1984.tb01046.x.
-
(1984)
FEMS Microbiol Lett
, vol.23
, pp. 117-124
-
-
Baquero, F.1
Moreno, F.2
-
50
-
-
0025089527
-
Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli
-
Laviña M, Gaggero C, Moreno F. 1990. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 172:6585-6588. https://doi.org/10.1128/jb.172.11.6585-6588.1990.
-
(1990)
J Bacteriol
, vol.172
, pp. 6585-6588
-
-
Laviña, M.1
Gaggero, C.2
Moreno, F.3
-
51
-
-
0030006825
-
Genetic analysis of plasmid determinants for microcin J25 production and immunity
-
Solbiati JO, Ciaccio M, Farias RN, Salomon RA. 1996. Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178:3661-3663. https://doi.org/10.1128/jb.178.12.3661-3663.1996.
-
(1996)
J Bacteriol
, vol.178
, pp. 3661-3663
-
-
Solbiati, J.O.1
Ciaccio, M.2
Farias, R.N.3
Salomon, R.A.4
-
52
-
-
0025964113
-
The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase
-
Vizán JL, Hernandez-Chico C, del Castillo I, Moreno F. 1991. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J 10:467-476.
-
(1991)
EMBO J
, vol.10
, pp. 467-476
-
-
Vizán, J.L.1
Hernandez-Chico, C.2
Del Castillo, I.3
Moreno, F.4
-
53
-
-
0022803528
-
The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine
-
Davagnino J, Herrero M, Furlong D, Moreno F, Kolter R. 1986. The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine. Proteins 1:230-238. https://doi.org/10.1002/prot.340010305.
-
(1986)
Proteins
, vol.1
, pp. 230-238
-
-
Davagnino, J.1
Herrero, M.2
Furlong, D.3
Moreno, F.4
Kolter, R.5
-
54
-
-
0035853284
-
The antibiotic microcin B17 is a DNA gyrase poison: Characterisation of the mode of inhibition
-
Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA, Wentzell LM, Walsh CT, Maxwell A. 2001. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 307:1223-1234. https://doi.org/10.1006/jmbi.2001.4562.
-
(2001)
J Mol Biol
, vol.307
, pp. 1223-1234
-
-
Heddle, J.G.1
Blance, S.J.2
Zamble, D.B.3
Hollfelder, F.4
Miller, D.A.5
Wentzell, L.M.6
Walsh, C.T.7
Maxwell, A.8
-
56
-
-
0033118907
-
Thiazole and oxazole peptides: Biosynthesis and molecular machinery
-
Roy RS, Gehring AM, Milne JC, Belshaw PJ, Walsh CT. 1999. Thiazole and oxazole peptides: biosynthesis and molecular machinery. Nat Prod Rep 16:249-263. https://doi.org/10.1039/a806930a.
-
(1999)
Nat Prod Rep
, vol.16
, pp. 249-263
-
-
Roy, R.S.1
Gehring, A.M.2
Milne, J.C.3
Belshaw, P.J.4
Walsh, C.T.5
-
57
-
-
34247402221
-
The action of the bacterial toxin, microcin B17, on DNA gyrase
-
Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. 2007. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89:500-507. https://doi.org/10.1016/j.biochi.2006.12.005.
-
(2007)
Biochimie
, vol.89
, pp. 500-507
-
-
Parks, W.M.1
Bottrill, A.R.2
Pierrat, O.A.3
Durrant, M.C.4
Maxwell, A.5
-
58
-
-
0022516452
-
Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12
-
Laviña M, Pugsley AP, Moreno F. 1986. Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol 132:1685-1693.
-
(1986)
J Gen Microbiol
, vol.132
, pp. 1685-1693
-
-
Laviña, M.1
Pugsley, A.P.2
Moreno, F.3
-
59
-
-
0026526445
-
Microcin 25, a novel antimicrobial peptide produced by Escherichia coli
-
Salomón RA, Farías RN. 1992. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428-7435. https://doi.org/10.1128/jb.174.22.7428-7435.1992.
-
(1992)
J Bacteriol
, vol.174
, pp. 7428-7435
-
-
Salomón, R.A.1
Farías, R.N.2
-
60
-
-
0141988966
-
Structure of antibacterial peptide microcin J25: A 21-residue lariat protoknot
-
Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, Sineva E, Dawson PE, Montelione GT, Ebright RH. 2003. Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125:12382-12383. https://doi.org/10.1021/ja036677e.
-
(2003)
J Am Chem Soc
, vol.125
, pp. 12382-12383
-
-
Bayro, M.J.1
Mukhopadhyay, J.2
Swapna, G.V.3
Huang, J.Y.4
Ma, L.C.5
Sineva, E.6
Dawson, P.E.7
Montelione, G.T.8
Ebright, R.H.9
-
61
-
-
0027369822
-
The FhuA protein is involved in microcin 25 uptake
-
Salomón RA, Farías RN. 1993. The FhuA protein is involved in microcin 25 uptake. J Bacteriol 175:7741-7742. https://doi.org/10.1128/jb.175.23.7741-7742.1993.
-
(1993)
J Bacteriol
, vol.175
, pp. 7741-7742
-
-
Salomón, R.A.1
Farías, R.N.2
-
62
-
-
0029045349
-
The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein
-
Salomón RA, Farías RN. 1995. The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J Bacteriol 177:3323-3325. https://doi.org/10.1128/jb.177.11.3323-3325.1995.
-
(1995)
J Bacteriol
, vol.177
, pp. 3323-3325
-
-
Salomón, R.A.1
Farías, R.N.2
-
63
-
-
0346890209
-
Mutations of bacterial RNA polymerase leading to resistance to microcin j25
-
Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, Artsimovitch I, Mooney RA, Landick R, Farias RN, Salomon R, Severinov K. 2002. Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J Biol Chem 277:50867-50875. https://doi.org/10.1074/jbc.M209425200.
-
(2002)
J Biol Chem
, vol.277
, pp. 50867-50875
-
-
Yuzenkova, J.1
Delgado, M.2
Nechaev, S.3
Savalia, D.4
Epshtein, V.5
Artsimovitch, I.6
Mooney, R.A.7
Landick, R.8
Farias, R.N.9
Salomon, R.10
Severinov, K.11
-
64
-
-
2942696237
-
Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel
-
Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH. 2004. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14:739-751. https://doi.org/10.1016/j.molcel.2004.06.010.
-
(2004)
Mol Cell
, vol.14
, pp. 739-751
-
-
Mukhopadhyay, J.1
Sineva, E.2
Knight, J.3
Levy, R.M.4
Ebright, R.H.5
-
65
-
-
2942635581
-
Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25
-
Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, Borukhov S, Wang MD, Severinov K. 2004. Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25. Mol Cell 14:753-762. https://doi.org/10.1016/j.molcel.2004.05.017.
-
(2004)
Mol Cell
, vol.14
, pp. 753-762
-
-
Adelman, K.1
Yuzenkova, J.2
La Porta, A.3
Zenkin, N.4
Lee, J.5
Lis, J.T.6
Borukhov, S.7
Wang, M.D.8
Severinov, K.9
-
66
-
-
0029762649
-
Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas
-
Schnapp D, Kemp GD, Smith VJ. 1996. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532-539. https://doi.org/10.1111/j.1432-1033.1996.0532h.x.
-
(1996)
Eur J Biochem
, vol.240
, pp. 532-539
-
-
Schnapp, D.1
Kemp, G.D.2
Smith, V.J.3
-
67
-
-
33750597176
-
Dual mode of action of Bac7, a proline-rich antibacterial peptide
-
Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. 2006. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732-1740. https://doi.org/10.1016/j.bbagen.2006.09.006.
-
(2006)
Biochim Biophys Acta
, vol.1760
, pp. 1732-1740
-
-
Podda, E.1
Benincasa, M.2
Pacor, S.3
Micali, F.4
Mattiuzzo, M.5
Gennaro, R.6
Scocchi, M.7
-
68
-
-
34548664145
-
Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides
-
Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. 2007. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151-163. https://doi.org/10.1111/j.1365-2958.2007.05903.x.
-
(2007)
Mol Microbiol
, vol.66
, pp. 151-163
-
-
Mattiuzzo, M.1
Bandiera, A.2
Gennaro, R.3
Benincasa, M.4
Pacor, S.5
Antcheva, N.6
Scocchi, M.7
-
69
-
-
84919917867
-
The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis
-
Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. 2014. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639-1647. https://doi.org/10.1016/j.chembiol.2014.10.009.
-
(2014)
Chem Biol
, vol.21
, pp. 1639-1647
-
-
Mardirossian, M.1
Grzela, R.2
Giglione, C.3
Meinnel, T.4
Gennaro, R.5
Mergaert, P.6
Scocchi, M.7
-
70
-
-
84973345102
-
Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin B, by using Escherichia coli proteome microarrays
-
Ho YH, Shah P, Chen YW, Chen CS. 2016. Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin B, by using Escherichia coli proteome microarrays. Mol Cell Proteomics 15:1837-1847. https://doi.org/10.1074/mcp.M115.054999.
-
(2016)
Mol Cell Proteomics
, vol.15
, pp. 1837-1847
-
-
Ho, Y.H.1
Shah, P.2
Chen, Y.W.3
Chen, C.S.4
-
71
-
-
1542647067
-
Neutralization of endotoxin in vitro and in vivo by Bac7(1-35), a proline-rich antibacterial peptide
-
Ghiselli R, Giacometti A, Cirioni O, Circo R, Mocchegiani F, Skerlavaj B, D'Amato G, Scalise G, Zanetti M, Saba V. 2003. Neutralization of endotoxin in vitro and in vivo by Bac7(1-35), a proline-rich antibacterial peptide. Shock 19:577-581. https://doi.org/10.1097/01.shk.0000055236.26446.c9.
-
(2003)
Shock
, vol.19
, pp. 577-581
-
-
Ghiselli, R.1
Giacometti, A.2
Cirioni, O.3
Circo, R.4
Mocchegiani, F.5
Skerlavaj, B.6
D'Amato, G.7
Scalise, G.8
Zanetti, M.9
Saba, V.10
-
72
-
-
0030957967
-
Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder
-
Cole AM, Weis P, Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008-12013. https://doi.org/10.1074/jbc.272.18.12008.
-
(1997)
J Biol Chem
, vol.272
, pp. 12008-12013
-
-
Cole, A.M.1
Weis, P.2
Diamond, G.3
-
73
-
-
0036168570
-
Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli
-
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. 2002. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:-614605-12013. https://doi.org/10.1128/AAC.46.3.605-614.2002.
-
(2002)
Antimicrob Agents Chemother
, vol.46
, pp. 614605-712013
-
-
Patrzykat, A.1
Friedrich, C.L.2
Zhang, L.3
Mendoza, V.4
Hancock, R.E.5
-
74
-
-
0035968224
-
Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria
-
Friedrich CL, Rozek A, Patrzykat A, Hancock RE. 2001. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. J Biol Chem 276:24015-24022. https://doi.org/10.1074/jbc.M009691200.
-
(2001)
J Biol Chem
, vol.276
, pp. 24015-24022
-
-
Friedrich, C.L.1
Rozek, A.2
Patrzykat, A.3
Hancock, R.E.4
-
75
-
-
33748935159
-
LL-37, the only human member of the cathelicidin family of antimicrobial peptides
-
Durr UH, Sudheendra US, Ramamoorthy A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408-1425. https://doi.org/10.1016/j.bbamem.2006.03.030.
-
(2006)
Biochim Biophys Acta
, vol.1758
, pp. 1408-1425
-
-
Durr, U.H.1
Sudheendra, U.S.2
Ramamoorthy, A.3
-
76
-
-
0031940688
-
Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils
-
Robinson WE, Jr, McDougall B, Tran D, Selsted ME. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 63:94-100.
-
(1998)
J Leukoc Biol
, vol.63
, pp. 94-100
-
-
Robinson, W.E.1
McDougall, B.2
Tran, D.3
Selsted, M.E.4
-
77
-
-
0027514011
-
Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils
-
Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS. 1993. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641-6648.
-
(1993)
J Biol Chem
, vol.268
, pp. 6641-6648
-
-
Selsted, M.E.1
Tang, Y.Q.2
Morris, W.L.3
McGuire, P.A.4
Novotny, M.J.5
Smith, W.6
Henschen, A.H.7
Cullor, J.S.8
-
78
-
-
0028918846
-
Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils
-
van Abel RJ, Tang YQ, Rao VS, Dobbs CH, Tran D, Barany G, Selsted ME. 1995. Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. Int J Pept Protein Res 45:401-409.
-
(1995)
Int J Pept Protein Res
, vol.45
, pp. 401-409
-
-
Van Abel, R.J.1
Tang, Y.Q.2
Rao, V.S.3
Dobbs, C.H.4
Tran, D.5
Barany, G.6
Selsted, M.E.7
-
79
-
-
84929591171
-
In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin
-
Le C-F, Yusof MYM, Hassan H, Sekaran SD. 2015. In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin. Sci Rep 5:9761. https://doi.org/10.1038/srep09761.
-
(2015)
Sci Rep
, vol.5
, pp. 9761
-
-
Le, C.-F.1
Yusof, M.Y.M.2
Hassan, H.3
Sekaran, S.D.4
-
80
-
-
84936871662
-
In vivo efficacy and molecular docking of designed peptide that exhibits potent antipneumococcal activity and synergises in combination with penicillin
-
Le C-F, Yusof MY, Hassan MA, Lee VS, Isa DM, Sekaran SD. 2015. In vivo efficacy and molecular docking of designed peptide that exhibits potent antipneumococcal activity and synergises in combination with penicillin. Sci Rep 5:11886. https://doi.org/10.1038/srep11886.
-
(2015)
Sci Rep
, vol.5
, pp. 11886
-
-
Le, C.-F.1
Yusof, M.Y.2
Hassan, M.A.3
Lee, V.S.4
Isa, D.M.5
Sekaran, S.D.6
-
81
-
-
84971260997
-
Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3
-
Le C-F, Gudimella R, Razali R, Manikam R, Sekaran SD. 2016. Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 6:26828. https://doi.org/10.1038/srep26828.
-
(2016)
Sci Rep
, vol.6
, pp. 26828
-
-
Le, C.-F.1
Gudimella, R.2
Razali, R.3
Manikam, R.4
Sekaran, S.D.5
-
82
-
-
0026349223
-
Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides
-
Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jornvall H. 1991. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849-854.
-
(1991)
Eur J Biochem
, vol.202
, pp. 849-854
-
-
Agerberth, B.1
Lee, J.Y.2
Bergman, T.3
Carlquist, M.4
Boman, H.G.5
Mutt, V.6
Jornvall, H.7
-
83
-
-
0028585933
-
Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine
-
Shi J, Ross CR, Chengappa MM, Blecha F. 1994. Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J Leukoc Biol 56:807-811.
-
(1994)
J Leukoc Biol
, vol.56
, pp. 807-811
-
-
Shi, J.1
Ross, C.R.2
Chengappa, M.M.3
Blecha, F.4
-
84
-
-
48749128095
-
Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2
-
Pränting M, Negrea A, Rhen M, Andersson DI. 2008. Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother 52:2734-2741. https://doi.org/10.1128/AAC.00205-08.
-
(2008)
Antimicrob Agents Chemother
, vol.52
, pp. 2734-2741
-
-
Pränting, M.1
Negrea, A.2
Rhen, M.3
Andersson, D.I.4
-
85
-
-
0027216093
-
Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine
-
Boman HG, Agerberth B, Boman A. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978-2984.
-
(1993)
Infect Immun
, vol.61
, pp. 2978-2984
-
-
Boman, H.G.1
Agerberth, B.2
Boman, A.3
-
86
-
-
33746910238
-
Apidaecin-type peptides: Biodiversity, structure-function relationships and mode of action
-
Li WF, Ma GX, Zhou XX. 2006. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350-2359. https://doi.org/10.1016/j.peptides.2006.03.016.
-
(2006)
Peptides
, vol.27
, pp. 2350-2359
-
-
Li, W.F.1
Ma, G.X.2
Zhou, X.X.3
-
87
-
-
0024454751
-
Apidaecins: Antibacterial peptides from honeybees
-
Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. 1989. Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387-2391.
-
(1989)
EMBO J
, vol.8
, pp. 2387-2391
-
-
Casteels, P.1
Ampe, C.2
Jacobs, F.3
Vaeck, M.4
Tempst, P.5
-
88
-
-
0027973437
-
Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance
-
Casteels P, Romagnolo J, Castle M, Casteels-Josson K, Erdjument-Bromage H, Tempst P. 1994. Biodiversity of apidaecin-type peptide antibiotics. Prospects of manipulating the antibacterial spectrum and combating acquired resistance. J Biol Chem 269:26107-26115.
-
(1994)
J Biol Chem
, vol.269
, pp. 26107-26115
-
-
Casteels, P.1
Romagnolo, J.2
Castle, M.3
Casteels-Josson, K.4
Erdjument-Bromage, H.5
Tempst, P.6
-
89
-
-
0027413860
-
Apidaecin multipeptide precursor structure: A putative mechanism for amplification of the insect antibacterial response
-
Casteels-Josson K, Capaci T, Casteels P, Tempst P. 1993. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J 12:1569-1578.
-
(1993)
EMBO J
, vol.12
, pp. 1569-1578
-
-
Casteels-Josson, K.1
Capaci, T.2
Casteels, P.3
Tempst, P.4
-
90
-
-
0028286667
-
Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity
-
Casteels P, Tempst P. 1994. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun 199:339-345. https://doi.org/10.1006/bbrc.1994.1234.
-
(1994)
Biochem Biophys Res Commun
, vol.199
, pp. 339-345
-
-
Casteels, P.1
Tempst, P.2
-
91
-
-
84859862508
-
Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB
-
M111.014720
-
Ho YH, Sung TC, Chen CS. 2012. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 11:M111.014720. https://doi.org/10.1074/mcp.M111.014720.
-
(2012)
Mol Cell Proteomics
, vol.11
-
-
Ho, Y.H.1
Sung, T.C.2
Chen, C.S.3
-
92
-
-
82555168478
-
Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip
-
Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS. 2011. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One 6:e28197. https://doi.org/10.1371/journal.pone.0028197.
-
(2011)
PLoS One
, vol.6
-
-
Tu, Y.H.1
Ho, Y.H.2
Chuang, Y.C.3
Chen, P.C.4
Chen, C.S.5
-
93
-
-
0031046654
-
Antimicrobial peptides of leukocytes
-
Ganz T, Lehrer RI. 1997. Antimicrobial peptides of leukocytes. Curr Opin Hematol 4:53-58. https://doi.org/10.1097/00062752-199704010-00009.
-
(1997)
Curr Opin Hematol
, vol.4
, pp. 53-58
-
-
Ganz, T.1
Lehrer, R.I.2
-
94
-
-
0024391711
-
Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity
-
Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. 1989. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84:553-561.
-
(1989)
J Clin Invest
, vol.84
, pp. 553-561
-
-
Lehrer, R.I.1
Barton, A.2
Daher, K.A.3
Harwig, S.S.4
Ganz, T.5
Selsted, M.E.6
-
96
-
-
0025382818
-
The molecular chaperone concept
-
Ellis RJ. 1990. The molecular chaperone concept. Semin Cell Biol 1:1-9.
-
(1990)
Semin Cell Biol
, vol.1
, pp. 1-9
-
-
Ellis, R.J.1
-
97
-
-
84861139210
-
DnaK functions as a central hub in the E. coli chaperone network
-
Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, Tartaglia GG, Hayer-Hartl M, Hartl FU. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251-264. https://doi.org/10.1016/j.celrep.2011.12.007.
-
(2012)
Cell Rep
, vol.1
, pp. 251-264
-
-
Calloni, G.1
Chen, T.2
Schermann, S.M.3
Chang, H.C.4
Genevaux, P.5
Agostini, F.6
Tartaglia, G.G.7
Hayer-Hartl, M.8
Hartl, F.U.9
-
98
-
-
0028304808
-
Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus
-
Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P. 1994. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300:567-575.
-
(1994)
Biochem J
, vol.300
, pp. 567-575
-
-
Cociancich, S.1
Dupont, A.2
Hegy, G.3
Lanot, R.4
Holder, F.5
Hetru, C.6
Hoffmann, J.A.7
Bulet, P.8
-
99
-
-
0030078317
-
Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus
-
Miura K, Ueno S, Kamiya K, Kobayashi J, Matsuoka H, Ando K, Chinzei Y. 1996. Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus. Zoolog Sci 13:111-117. https://doi.org/10.2108/zsj.13.111.
-
(1996)
Zoolog Sci
, vol.13
, pp. 111-117
-
-
Miura, K.1
Ueno, S.2
Kamiya, K.3
Kobayashi, J.4
Matsuoka, H.5
Ando, K.6
Chinzei, Y.7
-
100
-
-
0034700271
-
Interaction between heat shock proteins and antimicrobial peptides
-
Otvos L, Jr, O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. 2000. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150-14159. https://doi.org/10.1021/bi0012843.
-
(2000)
Biochemistry
, vol.39
, pp. 14150-14159
-
-
Otvos, L.1
O, I.2
Rogers, M.E.3
Consolvo, P.J.4
Condie, B.A.5
Lovas, S.6
Bulet, P.7
Blaszczyk-Thurin, M.8
-
101
-
-
2342503733
-
The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK
-
Chesnokova LS, Slepenkov SV, Witt SN. 2004. The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565:65-69. https://doi.org/10.1016/j.febslet.2004.03.075.
-
(2004)
FEBS Lett
, vol.565
, pp. 65-69
-
-
Chesnokova, L.S.1
Slepenkov, S.V.2
Witt, S.N.3
-
102
-
-
0035853022
-
The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding
-
Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Jr. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016-3026. https://doi.org/10.1021/bi002656a.
-
(2001)
Biochemistry
, vol.40
, pp. 3016-3026
-
-
Kragol, G.1
Lovas, S.2
Varadi, G.3
Condie, B.A.4
Hoffmann, R.5
Otvos, L.6
-
103
-
-
84926351932
-
Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria
-
Rahnamaeian M, Cytrynska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A. 2015. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 282:20150293. https://doi.org/10.1098/rspb.2015.0293.
-
(2015)
Proc Biol Sci
, vol.282
, pp. 20150293
-
-
Rahnamaeian, M.1
Cytrynska, M.2
Zdybicka-Barabas, A.3
Dobslaff, K.4
Wiesner, J.5
Twyman, R.M.6
Zuchner, T.7
Sadd, B.M.8
Regoes, R.R.9
Schmid-Hempel, P.10
Vilcinskas, A.11
-
104
-
-
77954725852
-
2): A novel antibacterial peptide optimized against Gram-negative human pathogens
-
2): a novel antibacterial peptide optimized against Gram-negative human pathogens. J Med Chem 53:5240-5247. https://doi.org/10.1021/jm100378b.
-
(2010)
J Med Chem
, vol.53
, pp. 5240-5247
-
-
Knappe, D.1
Piantavigna, S.2
Hansen, A.3
Mechler, A.4
Binas, A.5
Nolte, O.6
Martin, L.L.7
Hoffmann, R.8
-
105
-
-
79953695041
-
Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin-DnaK complex
-
Knappe D, Zahn M, Sauer U, Schiffer G, Strater N, Hoffmann R. 2011. Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structure of the oncocin-DnaK complex. Chembiochem 12:874-876. https://doi.org/10.1002/cbic.201000792.
-
(2011)
Chembiochem
, vol.12
, pp. 874-876
-
-
Knappe, D.1
Zahn, M.2
Sauer, U.3
Schiffer, G.4
Strater, N.5
Hoffmann, R.6
-
106
-
-
67349282270
-
The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK
-
Scocchi M, Lüthy C, Decarli P, Mignogna G, Christen P, Gennaro R. 2009. The proline-rich antibacterial peptide Bac7 binds to and inhibits in vitro the molecular chaperone DnaK. Int J Pept Res Ther 15:9.
-
(2009)
Int J Pept Res Ther
, vol.15
, pp. 9
-
-
Scocchi, M.1
Lüthy, C.2
Decarli, P.3
Mignogna, G.4
Christen, P.5
Gennaro, R.6
-
107
-
-
0025687119
-
The role of gingival crevicular fluid and salivary interstitial collagenases in human periodontal diseases
-
Sorsa T, Suomalainen K, Uitto VJ. 1990. The role of gingival crevicular fluid and salivary interstitial collagenases in human periodontal diseases. Arch Oral Biol 35(Suppl):193S-196S.
-
(1990)
Arch Oral Biol
, vol.35
, pp. 193S-196S
-
-
Sorsa, T.1
Suomalainen, K.2
Uitto, V.J.3
-
108
-
-
0025032869
-
Structural relationship between human salivary histatins
-
Troxler RF, Offner GD, Xu T, Vanderspek JC, Oppenheim FG. 1990. Structural relationship between human salivary histatins. J Dent Res 69:2-6. https://doi.org/10.1177/00220345900690010101.
-
(1990)
J Dent Res
, vol.69
, pp. 2-6
-
-
Troxler, R.F.1
Offner, G.D.2
Xu, T.3
Vanderspek, J.C.4
Oppenheim, F.G.5
-
109
-
-
0023888810
-
Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans
-
Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF. 1988. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472-7477.
-
(1988)
J Biol Chem
, vol.263
, pp. 7472-7477
-
-
Oppenheim, F.G.1
Xu, T.2
McMillian, F.M.3
Levitz, S.M.4
Diamond, R.D.5
Offner, G.D.6
Troxler, R.F.7
-
110
-
-
84907463396
-
How does it kill?: Understanding the candidacidal mechanism of salivary histatin 5
-
Puri S, Edgerton M. 2014. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13:958-964. https://doi.org/10.1128/EC.00095-14.
-
(2014)
Eukaryot Cell
, vol.13
, pp. 958-964
-
-
Puri, S.1
Edgerton, M.2
-
111
-
-
0021280786
-
Growth-inhibitory and bactericidal effects of human parotid salivary histidinerich polypeptides on Streptococcus mutans
-
MacKay BJ, Denepitiya L, Iacono VJ, Krost SB, Pollock JJ. 1984. Growth-inhibitory and bactericidal effects of human parotid salivary histidinerich polypeptides on Streptococcus mutans. Infect Immun 44:695-701.
-
(1984)
Infect Immun
, vol.44
, pp. 695-701
-
-
MacKay, B.J.1
Denepitiya, L.2
Iacono, V.J.3
Krost, S.B.4
Pollock, J.J.5
-
112
-
-
79951668267
-
Streptococcus mutans, caries and simulation models
-
Forssten SD, Bjorklund M, Ouwehand AC. 2010. Streptococcus mutans, caries and simulation models. Nutrients 2:290-298. https://doi.org/10.3390/nu2030290.
-
(2010)
Nutrients
, vol.2
, pp. 290-298
-
-
Forssten, S.D.1
Bjorklund, M.2
Ouwehand, A.C.3
-
113
-
-
0035115443
-
Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease
-
Gusman H, Travis J, Helmerhorst EJ, Potempa J, Troxler RF, Oppenheim FG. 2001. Salivary histatin 5 is an inhibitor of both host and bacterial enzymes implicated in periodontal disease. Infect Immun 69:1402-1408. https://doi.org/10.1128/IAI.69.3.1402-1408.2001.
-
(2001)
Infect Immun
, vol.69
, pp. 1402-1408
-
-
Gusman, H.1
Travis, J.2
Helmerhorst, E.J.3
Potempa, J.4
Troxler, R.F.5
Oppenheim, F.G.6
-
114
-
-
0035951376
-
Salivary histatin 5 is a potent competitive inhibitor of the cysteine proteinase clostripain
-
Gusman H, Grogan J, Kagan HM, Troxler RF, Oppenheim FG. 2001. Salivary histatin 5 is a potent competitive inhibitor of the cysteine proteinase clostripain. FEBS Lett 489:97-100. https://doi.org/10.1016/S0014-5793(01)02077-4.
-
(2001)
FEBS Lett
, vol.489
, pp. 97-100
-
-
Gusman, H.1
Grogan, J.2
Kagan, H.M.3
Troxler, R.F.4
Oppenheim, F.G.5
-
115
-
-
27744448866
-
Practice guidelines for the diagnosis and management of skin and soft-tissue infections
-
Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC. 2005. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 41:1373-1406. https://doi.org/10.1086/497143.
-
(2005)
Clin Infect Dis
, vol.41
, pp. 1373-1406
-
-
Stevens, D.L.1
Bisno, A.L.2
Chambers, H.F.3
Everett, E.D.4
Dellinger, P.5
Goldstein, E.J.6
Gorbach, S.L.7
Hirschmann, J.V.8
Kaplan, E.L.9
Montoya, J.G.10
Wade, J.C.11
-
116
-
-
0025962890
-
Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis
-
Nishikata M, Kanehira T, Oh H, Tani H, Tazaki M, Kuboki Y. 1991. Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis. Biochem Biophys Res Commun 174:625-630. https://doi.org/10.1016/0006-291X(91)91463-M.
-
(1991)
Biochem Biophys Res Commun
, vol.174
, pp. 625-630
-
-
Nishikata, M.1
Kanehira, T.2
Oh, H.3
Tani, H.4
Tazaki, M.5
Kuboki, Y.6
-
117
-
-
0026493723
-
eNAP-2, a novel cysteine-rich bactericidal peptide from equine leukocytes
-
Couto MA, Harwig SS, Cullor JS, Hughes JP, Lehrer RI. 1992. eNAP-2, a novel cysteine-rich bactericidal peptide from equine leukocytes. Infect Immun 60:5042-5047.
-
(1992)
Infect Immun
, vol.60
, pp. 5042-5047
-
-
Couto, M.A.1
Harwig, S.S.2
Cullor, J.S.3
Hughes, J.P.4
Lehrer, R.I.5
-
118
-
-
0027318984
-
Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils
-
Couto MA, Harwig SS, Lehrer RI. 1993. Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils. Infect Immun 61:2991-2994.
-
(1993)
Infect Immun
, vol.61
, pp. 2991-2994
-
-
Couto, M.A.1
Harwig, S.S.2
Lehrer, R.I.3
-
119
-
-
33645414090
-
Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases
-
Fogaça AC, Almeida IC, Eberlin MN, Tanaka AS, Bulet P, Daffre S. 2006. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides 27:667-674. https://doi.org/10.1016/j.peptides.2005.07.013.
-
(2006)
Peptides
, vol.27
, pp. 667-674
-
-
Fogaça, A.C.1
Almeida, I.C.2
Eberlin, M.N.3
Tanaka, A.S.4
Bulet, P.5
Daffre, S.6
-
120
-
-
0025017501
-
Regulation of cell division in E. coli
-
Lutkenhaus J. 1990. Regulation of cell division in E. coli. Trends Genet 6:22-25. https://doi.org/10.1016/0168-9525(90)90045-8.
-
(1990)
Trends Genet
, vol.6
, pp. 22-25
-
-
Lutkenhaus, J.1
-
121
-
-
0026706736
-
Purification and characterization of a diptericin homologue from Sarcophaga peregrina (flesh fly)
-
Ishikawa M, Kubo T, Natori S. 1992. Purification and characterization of a diptericin homologue from Sarcophaga peregrina (flesh fly). Biochem J 287:573-578.
-
(1992)
Biochem J
, vol.287
, pp. 573-578
-
-
Ishikawa, M.1
Kubo, T.2
Natori, S.3
-
122
-
-
80052735816
-
Human defensin 5 disulfide array mutants: Disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus
-
Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. 2011. Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 50:8005-8017. https://doi.org/10.1021/bi201043j.
-
(2011)
Biochemistry
, vol.50
, pp. 8005-8017
-
-
Wanniarachchi, Y.A.1
Kaczmarek, P.2
Wan, A.3
Nolan, E.M.4
-
123
-
-
84915747975
-
A bacterial mutant library as a tool to study the attack of a defensin peptide
-
Moser S, Chileveru HR, Tomaras J, Nolan EM. 2014. A bacterial mutant library as a tool to study the attack of a defensin peptide. Chembiochem 15:2684-2688. https://doi.org/10.1002/cbic.201402354.
-
(2014)
Chembiochem
, vol.15
, pp. 2684-2688
-
-
Moser, S.1
Chileveru, H.R.2
Tomaras, J.3
Nolan, E.M.4
-
124
-
-
84924402233
-
Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5
-
Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM. 2015. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 54:1767-1777. https://doi.org/10.1021/bi501483q.
-
(2015)
Biochemistry
, vol.54
, pp. 1767-1777
-
-
Chileveru, H.R.1
Lim, S.A.2
Chairatana, P.3
Wommack, A.J.4
Chiang, I.L.5
Nolan, E.M.6
-
125
-
-
0032969566
-
Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope
-
Navarre WW, Schneewind O. 1999. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174-229.
-
(1999)
Microbiol Mol Biol Rev
, vol.63
, pp. 174-229
-
-
Navarre, W.W.1
Schneewind, O.2
-
126
-
-
0035204466
-
Morphogenesis of Escherichia coli
-
Vollmer W, Holtje JV. 2001. Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625-633. https://doi.org/10.1016/S1369-5274(01)00261-2.
-
(2001)
Curr Opin Microbiol
, vol.4
, pp. 625-633
-
-
Vollmer, W.1
Holtje, J.V.2
-
127
-
-
0142126675
-
Bacterial wall as target for attack: Past, present, and future research
-
Koch AL. 2003. Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev 16:673-687. https://doi.org/10.1128/CMR.16.4.673-687.2003.
-
(2003)
Clin Microbiol Rev
, vol.16
, pp. 673-687
-
-
Koch, A.L.1
-
128
-
-
0031056744
-
Constitution and solution conformation of the antibiotic mersacidin determined by NMR and molecular dynamics
-
Prasch T, Naumann T, Markert RL, Sattler M, Schubert W, Schaal S, Bauch M, Kogler H, Griesinger C. 1997. Constitution and solution conformation of the antibiotic mersacidin determined by NMR and molecular dynamics. Eur J Biochem 244:501-512. https://doi.org/10.1111/j.1432-1033.1997.00501.x.
-
(1997)
Eur J Biochem
, vol.244
, pp. 501-512
-
-
Prasch, T.1
Naumann, T.2
Markert, R.L.3
Sattler, M.4
Schubert, W.5
Schaal, S.6
Bauch, M.7
Kogler, H.8
Griesinger, C.9
-
129
-
-
0038026361
-
The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II
-
Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154-160.
-
(1998)
Antimicrob Agents Chemother
, vol.42
, pp. 154-160
-
-
Brötz, H.1
Bierbaum, G.2
Leopold, K.3
Reynolds, P.E.4
Sahl, H.G.5
-
130
-
-
0030969611
-
The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation
-
Brötz H, Bierbaum G, Reynolds PE, Sahl HG. 1997. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246:193-199. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00193.x.
-
(1997)
Eur J Biochem
, vol.246
, pp. 193-199
-
-
Brötz, H.1
Bierbaum, G.2
Reynolds, P.E.3
Sahl, H.G.4
-
131
-
-
0026695022
-
Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization
-
Tokyo
-
Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H. 1992. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832-838.
-
(1992)
J Antibiot
, vol.45
, pp. 832-838
-
-
Chatterjee, S.1
Lad, S.J.2
Phansalkar, M.S.3
Rupp, R.H.4
Ganguli, B.N.5
Fehlhaber, H.W.6
Kogler, H.7
-
132
-
-
0037205949
-
Combination of antibiotic mechanisms in lantibiotics
-
Hoffmann A, Pag U, Wiedemann I, Sahl HG. 2002. Combination of antibiotic mechanisms in lantibiotics. Farmaco 57:685-691. https://doi.org/10.1016/S0014-827X(02)01208-9.
-
(2002)
Farmaco
, vol.57
, pp. 685-691
-
-
Hoffmann, A.1
Pag, U.2
Wiedemann, I.3
Sahl, H.G.4
-
133
-
-
4644313503
-
Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model
-
Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648-653. https://doi.org/10.1093/jac/dkh387.
-
(2004)
J Antimicrob Chemother
, vol.54
, pp. 648-653
-
-
Kruszewska, D.1
Sahl, H.G.2
Bierbaum, G.3
Pag, U.4
Hynes, S.O.5
Ljungh, A.6
-
134
-
-
77951271759
-
Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II
-
de Leeuw E, Li C, Zeng P, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W. 2010. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543-1548. https://doi.org/10.1016/j.febslet.2010.03.004.
-
(2010)
FEBS Lett
, vol.584
, pp. 1543-1548
-
-
De Leeuw, E.1
Li, C.2
Zeng, P.3
Diepeveen-de Buin, M.4
Lu, W.Y.5
Breukink, E.6
Lu, W.7
-
135
-
-
77952693839
-
Human beta-defensin 3 inhibits cell wall biosynthesis in stapylococci
-
Sass V, Schneider T, Wilmes M, Korner C, Tossi A, Novikova N, Shamova O, Sahl HG. 2010. Human beta-defensin 3 inhibits cell wall biosynthesis in stapylococci. Infect Immun 78:2793-2800. https://doi.org/10.1128/IAI.00688-09.
-
(2010)
Infect Immun
, vol.78
, pp. 2793-2800
-
-
Sass, V.1
Schneider, T.2
Wilmes, M.3
Korner, C.4
Tossi, A.5
Novikova, N.6
Shamova, O.7
Sahl, H.G.8
-
136
-
-
33645474378
-
Lipid II as a target for antibiotics
-
Breukink E, de Kruijff B. 2006. Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321-332. https://doi.org/10.1038/nrd2004.
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 321-332
-
-
Breukink, E.1
De Kruijff, B.2
-
137
-
-
4744345463
-
The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics
-
Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA. 2004. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963-967. https://doi.org/10.1038/nsmb830.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 963-967
-
-
Hsu, S.T.1
Breukink, E.2
Tischenko, E.3
Lutters, M.A.4
De Kruijff, B.5
Kaptein, R.6
Bonvin, A.M.7
Van Nuland, N.A.8
-
138
-
-
33748766086
-
An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II
-
Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E. 2006. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636-1637. https://doi.org/10.1126/science.1129818.
-
(2006)
Science
, vol.313
, pp. 1636-1637
-
-
Hasper, H.E.1
Kramer, N.E.2
Smith, J.L.3
Hillman, J.D.4
Zachariah, C.5
Kuipers, O.P.6
De Kruijff, B.7
Breukink, E.8
-
139
-
-
0038220969
-
Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes
-
Wescombe PA, Tagg JR. 2003. Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69:2737-2747. https://doi.org/10.1128/AEM.69.5.2737-2747.2003.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 2737-2747
-
-
Wescombe, P.A.1
Tagg, J.R.2
-
140
-
-
0036185650
-
Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3
-
Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD. 2002. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184:1703-1711. https://doi.org/10.1128/JB.184.6.1703-1711.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 1703-1711
-
-
Stein, T.1
Borchert, S.2
Conrad, B.3
Feesche, J.4
Hofemeister, B.5
Hofemeister, J.6
Entian, K.D.7
-
141
-
-
0035004672
-
Lantibiotics: Structure, biosynthesis and mode of action
-
McAuliffe O, Ross RP, Hill C. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x.
-
(2001)
FEMS Microbiol Rev
, vol.25
, pp. 285-308
-
-
McAuliffe, O.1
Ross, R.P.2
Hill, C.3
-
142
-
-
33645779735
-
Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-ofaction studies
-
Bonelli RR, Schneider T, Sahl HG, Wiedemann I. 2006. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-ofaction studies. Antimicrob Agents Chemother 50:1449-1457. https://doi.org/10.1128/AAC.50.4.1449-1457.2006.
-
(2006)
Antimicrob Agents Chemother
, vol.50
, pp. 1449-1457
-
-
Bonelli, R.R.1
Schneider, T.2
Sahl, H.G.3
Wiedemann, I.4
-
143
-
-
0033393424
-
Identification, characterization and purification of the lantibiotic staphylococcin T, a natural gallidermin variant
-
Furmanek B, Kaczorowski T, Bugalski R, Bielawski K, Bohdanowicz J, Podhajska AJ. 1999. Identification, characterization and purification of the lantibiotic staphylococcin T, a natural gallidermin variant. J Appl Microbiol 87:856-866. https://doi.org/10.1046/j.1365-2672.1999.00937.x.
-
(1999)
J Appl Microbiol
, vol.87
, pp. 856-866
-
-
Furmanek, B.1
Kaczorowski, T.2
Bugalski, R.3
Bielawski, K.4
Bohdanowicz, J.5
Podhajska, A.J.6
-
144
-
-
84918584330
-
Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis
-
Essig A, Hofmann D, Munch D, Gayathri S, Kunzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M. 2014. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 289:34953-34964. https://doi.org/10.1074/jbc.M114.599878.
-
(2014)
J Biol Chem
, vol.289
, pp. 34953-34964
-
-
Essig, A.1
Hofmann, D.2
Munch, D.3
Gayathri, S.4
Kunzler, M.5
Kallio, P.T.6
Sahl, H.G.7
Wider, G.8
Schneider, T.9
Aebi, M.10
-
145
-
-
77952976637
-
Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II
-
Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH. 2010. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168-1172. https://doi.org/10.1126/science.1185723.
-
(2010)
Science
, vol.328
, pp. 1168-1172
-
-
Schneider, T.1
Kruse, T.2
Wimmer, R.3
Wiedemann, I.4
Sass, V.5
Pag, U.6
Jansen, A.7
Nielsen, A.K.8
Mygind, P.H.9
Raventos, D.S.10
Neve, S.11
Ravn, B.12
Bonvin, A.M.13
De Maria, L.14
Andersen, A.S.15
Gammelgaard, L.K.16
Sahl, H.G.17
Kristensen, H.H.18
-
146
-
-
27144504220
-
Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus
-
Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975-980. https://doi.org/10.1038/nature04051.
-
(2005)
Nature
, vol.437
, pp. 975-980
-
-
Mygind, P.H.1
Fischer, R.L.2
Schnorr, K.M.3
Hansen, M.T.4
Sonksen, C.P.5
Ludvigsen, S.6
Raventos, D.7
Buskov, S.8
Christensen, B.9
De Maria, L.10
Taboureau, O.11
Yaver, D.12
Elvig-Jorgensen, S.G.13
Sorensen, M.V.14
Christensen, B.E.15
Kjaerulff, S.16
Frimodt-Moller, N.17
Lehrer, R.I.18
Zasloff, M.19
Kristensen, H.H.20
more..
-
147
-
-
0019801262
-
Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis
-
Sahl HG, Brandis H. 1981. Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol 127:377-384.
-
(1981)
J Gen Microbiol
, vol.127
, pp. 377-384
-
-
Sahl, H.G.1
Brandis, H.2
-
148
-
-
0023547233
-
Autolytic system of Staphylococcus simulans 22: Influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase
-
Bierbaum G, Sahl HG. 1987. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169:5452-5458. https://doi.org/10.1128/jb.169.12.5452-5458.1987.
-
(1987)
J Bacteriol
, vol.169
, pp. 5452-5458
-
-
Bierbaum, G.1
Sahl, H.G.2
-
149
-
-
0026523731
-
Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein
-
Yeaman MR, Puentes SM, Norman DC, Bayer AS. 1992. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun 60:1202-1209.
-
(1992)
Infect Immun
, vol.60
, pp. 1202-1209
-
-
Yeaman, M.R.1
Puentes, S.M.2
Norman, D.C.3
Bayer, A.S.4
-
150
-
-
0026729011
-
Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus
-
Yeaman MR, Norman DC, Bayer AS. 1992. Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 36:1665-1670. https://doi.org/10.1128/AAC.36.8.1665.
-
(1992)
Antimicrob Agents Chemother
, vol.36
, pp. 1665-1670
-
-
Yeaman, M.R.1
Norman, D.C.2
Bayer, A.S.3
-
151
-
-
0027513077
-
Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro
-
Yeaman MR, Ibrahim AS, Edwards JE, Jr, Bayer AS, Ghannoum MA. 1993. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro. Antimicrob Agents Chemother 37:546-553. https://doi.org/10.1128/AAC.37.3.546.
-
(1993)
Antimicrob Agents Chemother
, vol.37
, pp. 546-553
-
-
Yeaman, M.R.1
Ibrahim, A.S.2
Edwards, J.E.3
Bayer, A.S.4
Ghannoum, M.A.5
-
152
-
-
0031020085
-
Purification and in vitro activities of rabbit platelet microbicidal proteins
-
Yeaman MR, Tang YQ, Shen AJ, Bayer AS, Selsted ME. 1997. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun 65:1023-1031.
-
(1997)
Infect Immun
, vol.65
, pp. 1023-1031
-
-
Yeaman, M.R.1
Tang, Y.Q.2
Shen, A.J.3
Bayer, A.S.4
Selsted, M.E.5
-
153
-
-
0030044640
-
Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential
-
Koo SP, Bayer AS, Sahl HG, Proctor RA, Yeaman MR. 1996. Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 64:1070-1074.
-
(1996)
Infect Immun
, vol.64
, pp. 1070-1074
-
-
Koo, S.P.1
Bayer, A.S.2
Sahl, H.G.3
Proctor, R.A.4
Yeaman, M.R.5
-
155
-
-
0031984629
-
Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action
-
Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM. 1998. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J Clin Invest 101:178-187. https://doi.org/10.1172/JCI562.
-
(1998)
J Clin Invest
, vol.101
, pp. 178-187
-
-
Yeaman, M.R.1
Bayer, A.S.2
Koo, S.P.3
Foss, W.4
Sullam, P.M.5
-
156
-
-
0032952408
-
In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action
-
Xiong YQ, Yeaman MR, Bayer AS. 1999. In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 43:1111-1117.
-
(1999)
Antimicrob Agents Chemother
, vol.43
, pp. 1111-1117
-
-
Xiong, Y.Q.1
Yeaman, M.R.2
Bayer, A.S.3
-
157
-
-
0023683860
-
Effect of small cationic leukocyte peptides (defensins) on the permeability barrier of the outer membrane
-
Viljanen P, Koski P, Vaara M. 1988. Effect of small cationic leukocyte peptides (defensins) on the permeability barrier of the outer membrane. Infect Immun 56:2324-2329.
-
(1988)
Infect Immun
, vol.56
, pp. 2324-2329
-
-
Viljanen, P.1
Koski, P.2
Vaara, M.3
-
158
-
-
34548605458
-
Lipid A modification systems in Gram-negative bacteria
-
Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295-329. https://doi.org/10.1146/annurev.biochem.76.010307.145803.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 295-329
-
-
Raetz, C.R.1
Reynolds, C.M.2
Trent, M.S.3
Bishop, R.E.4
-
159
-
-
0035997382
-
Lipopolysaccharide endotoxins
-
Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414.
-
(2002)
Annu Rev Biochem
, vol.71
, pp. 635-700
-
-
Raetz, C.R.1
Whitfield, C.2
-
160
-
-
0023491364
-
Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia
-
Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A. 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662-664. https://doi.org/10.1038/330662a0.
-
(1987)
Nature
, vol.330
, pp. 662-664
-
-
Tracey, K.J.1
Fong, Y.2
Hesse, D.G.3
Manogue, K.R.4
Lee, A.T.5
Kuo, G.C.6
Lowry, S.F.7
Cerami, A.8
-
161
-
-
0035826096
-
Efficacy and safety of recombinant human activated protein C for severe sepsis
-
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ, Jr, Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group. 2001. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699-709. https://doi.org/10.1056/NEJM200103083441001.
-
(2001)
N Engl J Med
, vol.344
, pp. 699-709
-
-
Bernard, G.R.1
Vincent, J.L.2
Laterre, P.F.3
LaRosa, S.P.4
Dhainaut, J.F.5
Lopez-Rodriguez, A.6
Steingrub, J.S.7
Garber, G.E.8
Helterbrand, J.D.9
Ely, E.W.10
Fisher, C.J.11
-
162
-
-
0034615559
-
Regulation of blood coagulation
-
Esmon CT. 2000. Regulation of blood coagulation. Biochim Biophys Acta 1477:349-360. https://doi.org/10.1016/S0167-4838(99)00266-6.
-
(2000)
Biochim Biophys Acta
, vol.1477
, pp. 349-360
-
-
Esmon, C.T.1
-
163
-
-
0033957876
-
Update on meningococcal disease with emphasis on pathogenesis and clinical management
-
van Deuren M, Brandtzaeg P, van der Meer JWM. 2000. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 13:144-166. https://doi.org/10.1128/CMR.13.1.144-166.2000.
-
(2000)
Clin Microbiol Rev
, vol.13
, pp. 144-166
-
-
Van Deuren, M.1
Brandtzaeg, P.2
Van Der Meer, J.W.M.3
-
164
-
-
0028085937
-
Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification
-
Piers KL, Brown MH, Hancock RE. 1994. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38:2311-2316. https://doi.org/10.1128/AAC.38.10.2311.
-
(1994)
Antimicrob Agents Chemother
, vol.38
, pp. 2311-2316
-
-
Piers, K.L.1
Brown, M.H.2
Hancock, R.E.3
-
165
-
-
0028361454
-
The interaction of a recombinant cecropin/melittin hybrid peptide with the outer membrane of Pseudomonas aeruginosa
-
Piers KL, Hancock RE. 1994. The interaction of a recombinant cecropin/melittin hybrid peptide with the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 12:951-958. https://doi.org/10.1111/j.1365-2958.1994.tb01083.x.
-
(1994)
Mol Microbiol
, vol.12
, pp. 951-958
-
-
Piers, K.L.1
Hancock, R.E.2
-
166
-
-
0029824838
-
Antiendotoxin activity of cationic peptide antimicrobial agents
-
Gough M, Hancock RE, Kelly NM. 1996. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 64:4922-4927.
-
(1996)
Infect Immun
, vol.64
, pp. 4922-4927
-
-
Gough, M.1
Hancock, R.E.2
Kelly, N.M.3
-
167
-
-
0141844605
-
Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells
-
Gee K, Kozlowski M, Kumar A. 2003. Tumor necrosis factor-alpha induces functionally active hyaluronan-adhesive CD44 by activating sialidase through p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem 278:37275-37287. https://doi.org/10.1074/jbc.M302309200.
-
(2003)
J Biol Chem
, vol.278
, pp. 37275-37287
-
-
Gee, K.1
Kozlowski, M.2
Kumar, A.3
-
168
-
-
33947107565
-
Bacterial components regulate the expression of Toll-like receptor 4 on human mast cells
-
Kubo Y, Fukuishi N, Yoshioka M, Kawasoe Y, Iriguchi S, Imajo N, Yasui Y, Matsui N, Akagi M. 2007. Bacterial components regulate the expression of Toll-like receptor 4 on human mast cells. Inflamm Res 56:70-75. https://doi.org/10.1007/s00011-006-6064-4.
-
(2007)
Inflamm Res
, vol.56
, pp. 70-75
-
-
Kubo, Y.1
Fukuishi, N.2
Yoshioka, M.3
Kawasoe, Y.4
Iriguchi, S.5
Imajo, N.6
Yasui, Y.7
Matsui, N.8
Akagi, M.9
-
169
-
-
4043115490
-
The potential for Toll-like receptors to collaborate with other innate immune receptors
-
Mukhopadhyay S, Herre J, Brown GD, Gordon S. 2004. The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 112:521-530. https://doi.org/10.1111/j.1365-2567.2004.01941.x.
-
(2004)
Immunology
, vol.112
, pp. 521-530
-
-
Mukhopadhyay, S.1
Herre, J.2
Brown, G.D.3
Gordon, S.4
-
170
-
-
84947221955
-
Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation
-
Sun Y, Shang D. 2015. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm 2015:167572. https://doi.org/10.1155/2015/167572.
-
(2015)
Mediators Inflamm
, vol.2015
, pp. 167572
-
-
Sun, Y.1
Shang, D.2
-
171
-
-
84961979617
-
Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action
-
Frecer V, Ho B, Ding JL. 2000. Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action. Eur J Biochem 267:837-852. https://doi.org/10.1046/j.1432-1327.2000.01069.x.
-
(2000)
Eur J Biochem
, vol.267
, pp. 837-852
-
-
Frecer, V.1
Ho, B.2
Ding, J.L.3
-
172
-
-
0035873909
-
Design of Gram-negative selective antimicrobial peptides
-
Muhle SA, Tam JP. 2001. Design of Gram-negative selective antimicrobial peptides. Biochemistry 40:5777-5785. https://doi.org/10.1021/bi0100384.
-
(2001)
Biochemistry
, vol.40
, pp. 5777-5785
-
-
Muhle, S.A.1
Tam, J.P.2
-
173
-
-
84858679239
-
Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome
-
Maria-Neto S, Candido Ede S, Rodrigues DR, de Sousa DA, da Silva EM, de Moraes LM, Otero-Gonzalez Ade J, Magalhaes BS, Dias SC, Franco OL. 2012. Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 56:1714-1724. https://doi.org/10.1128/AAC.05558-11.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 1714-1724
-
-
Maria-Neto, S.1
Candido Ede, S.2
Rodrigues, D.R.3
De Sousa, D.A.4
Da Silva, E.M.5
De Moraes, L.M.6
Otero-Gonzalez Ade, J.7
Magalhaes, B.S.8
Dias, S.C.9
Franco, O.L.10
-
174
-
-
84935019262
-
Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae
-
Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, Isa DM, Sekaran SD. 2015. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS One 10:e0128532. https://doi.org/10.1371/journal.pone.0128532.
-
(2015)
PLoS One
, vol.10
-
-
Jindal, H.M.1
Le, C.F.2
Mohd Yusof, M.Y.3
Velayuthan, R.D.4
Lee, V.S.5
Zain, S.M.6
Isa, D.M.7
Sekaran, S.D.8
-
175
-
-
84929192159
-
Activity of novel synthetic peptides against Candida albicans
-
Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, Hassan H, Sekaran SD. 2015. Activity of novel synthetic peptides against Candida albicans. Sci Rep 5:9657. https://doi.org/10.1038/srep09657.
-
(2015)
Sci Rep
, vol.5
, pp. 9657
-
-
Lum, K.Y.1
Tay, S.T.2
Le, C.F.3
Lee, V.S.4
Sabri, N.H.5
Velayuthan, R.D.6
Hassan, H.7
Sekaran, S.D.8
-
177
-
-
73549121068
-
Anionic antimicrobial peptides from eukaryotic organisms
-
Harris F, Dennison SR, Phoenix DA. 2009. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585-606. https://doi.org/10.2174/138920309789630589.
-
(2009)
Curr Protein Pept Sci
, vol.10
, pp. 585-606
-
-
Harris, F.1
Dennison, S.R.2
Phoenix, D.A.3
-
178
-
-
84874104396
-
Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus
-
Noore J, Noore A, Li B. 2013. Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 57:1283-1290. https://doi.org/10.1128/AAC.01650-12.
-
(2013)
Antimicrob Agents Chemother
, vol.57
, pp. 1283-1290
-
-
Noore, J.1
Noore, A.2
Li, B.3
-
179
-
-
85010399975
-
Notes from the field: Pan-resistant New Delhi-metallo-beta-lactamase-producing Klebsiella pneumoniae-Washoe County, Nevada, 2016
-
Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. 2017. Notes from the field: pan-resistant New Delhi-metallo-beta-lactamase-producing Klebsiella pneumoniae-Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep 66:33. https://doi.org/10.15585/mmwr.mm6601a7.
-
(2017)
MMWR Morb Mortal Wkly Rep
, vol.66
, pp. 33
-
-
Chen, L.1
Todd, R.2
Kiehlbauch, J.3
Walters, M.4
Kallen, A.5
|