메뉴 건너뛰기




Volumn 2, Issue January, 2014, Pages 1601-1609

Do convnets learn correspondence?

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE CLASSIFICATION; INFORMATION SCIENCE; OBJECT RECOGNITION;

EID: 84937874835     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (300)

References (36)
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 3
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 5
    • 84937934725 scopus 로고    scopus 로고
    • Accessed: 2014-5-31
    • Debate on Yann LeCun's Google+ page. https://plus.google.com/+YannLeCunPhD/posts/JBBFfv2XgWM. Accessed: 2014-5-31.
    • Debate on Yann LeCun's Google+ Page
  • 6
    • 50649108337 scopus 로고    scopus 로고
    • Unsupervised joint alignment of complex images
    • G. B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, 2007.
    • (2007) ICCV
    • Huang, G.B.1    Jain, V.2    Learned-Miller, E.3
  • 8
    • 79953049203 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. PAMI, 33(5): 978-994, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 978-994
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 9
    • 84898818161 scopus 로고    scopus 로고
    • Bird part localization using exemplar-based models with enforced pose and subcategory consistenty
    • J. Liu and P. N. Belhumeur. Bird part localization using exemplar-based models with enforced pose and subcategory consistenty. In ICCV, 2013.
    • (2013) ICCV
    • Liu, J.1    Belhumeur, P.N.2
  • 10
    • 84887356895 scopus 로고    scopus 로고
    • POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • T. Berg and P. N. Belhumeur. POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 12
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation using flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In CVPR, 2011.
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 13
    • 84856628543 scopus 로고    scopus 로고
    • Articulated part-based model for joint object detection and pose estimation
    • M. Sun and S. Savarese. Articulated part-based model for joint object detection and pose estimation. In ICCV, 2011.
    • (2011) ICCV
    • Sun, M.1    Savarese, S.2
  • 14
    • 84866667680 scopus 로고    scopus 로고
    • Face detection, pose estimation, and landmark localization in the wild
    • X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012.
    • (2012) CVPR
    • Zhu, X.1    Ramanan, D.2
  • 15
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 16
    • 84911427286 scopus 로고    scopus 로고
    • Using k-poselets for detecting people and localizing their keypoints
    • G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In CVPR, 2014.
    • (2014) CVPR
    • Gkioxari, G.1    Hariharan, B.2    Girshick, R.3    Malik, J.4
  • 17
    • 84887375411 scopus 로고    scopus 로고
    • Articulated pose estimation using discriminative armlet classifiers
    • G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative armlet classifiers. In CVPR, 2013.
    • (2013) CVPR
    • Gkioxari, G.1    Arbelaez, P.2    Bourdev, L.3    Malik, J.4
  • 21
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multistage feature learning
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multistage feature learning. In CVPR, 2013.
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 22
    • 84911381180 scopus 로고    scopus 로고
    • DeepPose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 23
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler. Learning human pose estimation features with convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3    Taylor, G.W.4    Bregler, C.5
  • 24
    • 84937902251 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional neural networks
    • M. D Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 32
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. In PAMI, 2013.
    • (2013) PAMI
    • Yang, Y.1    Ramanan, D.2
  • 33
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D.G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 34
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.