-
1
-
-
84911417279
-
Multiscale combinatorial grouping
-
P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014.
-
(2014)
CVPR
-
-
Arbeláez, P.1
Pont-Tuset, J.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
3
-
-
84861335581
-
CPMC: Automatic object segmentation using constrained parametric min-cuts
-
J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. PAMI, 34(7):1312-1328, 2012.
-
(2012)
PAMI
, vol.34
, Issue.7
, pp. 1312-1328
-
-
Carreira, J.1
Sminchisescu, C.2
-
4
-
-
84911455504
-
Beat the mturkers: Automatic image labeling from weak 3d supervision
-
L.-C. Chen, S. Fidler, A. L. Yuille, and R. Urtasun. Beat the mturkers: Automatic image labeling from weak 3d supervision. In CVPR, 2014.
-
(2014)
CVPR
-
-
Chen, L.-C.1
Fidler, S.2
Yuille, A.L.3
Urtasun, R.4
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
7
-
-
84911456915
-
BING: Binarized normed gradients for objectness estimation at 300fps
-
M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014.
-
(2014)
CVPR
-
-
Cheng, M.-M.1
Zhang, Z.2
Lin, W.-Y.3
Torr, P.H.S.4
-
11
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
0038401728
-
Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
-
P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In ECCV, 2002.
-
(2002)
ECCV
-
-
Duygulu, P.1
Barnard, K.2
De Freitas, J.F.3
Forsyth, D.A.4
-
13
-
-
84952007662
-
The pascal visual object classes challenge a retrospective
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserma. The pascal visual object classes challenge a retrospective. IJCV, 2014.
-
(2014)
IJCV
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.5
Zisserma, A.6
-
15
-
-
84920253681
-
Imagenet auto-annotation with segmentation propagation
-
M. Guillaumin, D. Küttel, and V. Ferrari. Imagenet auto-annotation with segmentation propagation. IJCV, 110(3):328-348, 2014.
-
(2014)
IJCV
, vol.110
, Issue.3
, pp. 328-348
-
-
Guillaumin, M.1
Küttel, D.2
Ferrari, V.3
-
16
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
19
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
20
-
-
34547971087
-
Learning about individuals from group statistics
-
H. Kuck and N. de Freitas. Learning about individuals from group statistics. In UAI, 2005.
-
(2005)
UAI
-
-
Kuck, H.1
De Freitas, N.2
-
21
-
-
84856638291
-
Learning specific-class segmentation from diverse data
-
M. P. Kumar, H. Turki, D. Preston, and D. Koller. Learning specific-class segmentation from diverse data. In ICCV, 2011.
-
(2011)
ICCV
-
-
Kumar, M.P.1
Turki, H.2
Preston, D.3
Koller, D.4
-
23
-
-
84919825360
-
High order regularization for semisupervised learning of structured output problems
-
Y. Li and R. Zemel. High order regularization for semisupervised learning of structured output problems. In ICML, 2014.
-
(2014)
ICML
-
-
Li, Y.1
Zemel, R.2
-
24
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin et al. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
-
26
-
-
84973880272
-
Learning to track and identify players from broadcast sports videos
-
W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy. Learning to track and identify players from broadcast sports videos. PAMI, 2013.
-
(2013)
PAMI
-
-
Lu, W.-L.1
Ting, J.-A.2
Little, J.J.3
Murphy, K.P.4
-
28
-
-
84919730581
-
Weakly supervised object recognition with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition with convolutional neural networks. In NIPS, 2014.
-
(2014)
NIPS
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
31
-
-
84959200585
-
From image-level to pixel-level labeling with convolutional networks
-
P. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Pinheiro, P.1
Collobert, R.2
-
32
-
-
84888141899
-
Learning low-order models for enforcing high-order statistics
-
P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order statistics. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Pletscher, P.1
Kohli, P.2
-
33
-
-
84877632511
-
GrabCut: Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
-
(2004)
SIGGRAPH
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
35
-
-
84886079293
-
Fast exact inference for recursive cardinality models
-
D. Tarlow, K. Swersky, R. S. Zemel, R. P. Adams, and B. J. Frey. Fast exact inference for recursive cardinality models. In UAI, 2012.
-
(2012)
UAI
-
-
Tarlow, D.1
Swersky, K.2
Zemel, R.S.3
Adams, R.P.4
Frey, B.J.5
-
36
-
-
34948814611
-
Region classification with markov field aspect models
-
J. Verbeek and B. Triggs. Region classification with markov field aspect models. In CVPR, 2007.
-
(2007)
CVPR
-
-
Verbeek, J.1
Triggs, B.2
-
37
-
-
84866684103
-
Weakly supervised structured output learning for semantic segmentation
-
A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly supervised structured output learning for semantic segmentation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Vezhnevets, A.1
Ferrari, V.2
Buhmann, J.M.3
-
38
-
-
84898775703
-
Semantic segmentation without annotating segments
-
W. Xia, C. Domokos, J. Dong, L.-F. Cheong, and S. Yan. Semantic segmentation without annotating segments. In ICCV, 2013.
-
(2013)
ICCV
-
-
Xia, W.1
Domokos, C.2
Dong, J.3
Cheong, L.-F.4
Yan, S.5
-
39
-
-
84911404516
-
Tell me what you see and i will show you where it is
-
J. Xu, A. G. Schwing, and R. Urtasun. Tell me what you see and I will show you where it is. In CVPR, 2014.
-
(2014)
CVPR
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
40
-
-
84959218681
-
Learning to segment under various forms of weak supervision
-
J. Xu, A. G. Schwing, and R. Urtasun. Learning to segment under various forms of weak supervision. In CVPR, 2015.
-
(2015)
CVPR
-
-
Xu, J.1
Schwing, A.G.2
Urtasun, R.3
-
41
-
-
84937134364
-
-
arXiv:1502. 03240
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. ArXiv:1502. 03240, 2015.
-
(2015)
Conditional Random Fields As Recurrent Neural Networks
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
42
-
-
84937851238
-
Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm
-
J. Zhu, J. Mao, and A. L. Yuille. Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhu, J.1
Mao, J.2
Yuille, A.L.3
|