메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1742-1750

Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; MAXIMUM PRINCIPLE; NEURAL NETWORKS; SEMANTICS; SUPERVISED LEARNING;

EID: 84973863204     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.203     Document Type: Conference Paper
Times cited : (1100)

References (42)
  • 3
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. PAMI, 34(7):1312-1328, 2012.
    • (2012) PAMI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 4
    • 84911455504 scopus 로고    scopus 로고
    • Beat the mturkers: Automatic image labeling from weak 3d supervision
    • L.-C. Chen, S. Fidler, A. L. Yuille, and R. Urtasun. Beat the mturkers: Automatic image labeling from weak 3d supervision. In CVPR, 2014.
    • (2014) CVPR
    • Chen, L.-C.1    Fidler, S.2    Yuille, A.L.3    Urtasun, R.4
  • 5
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014.
    • (2014) CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.H.S.4
  • 10
    • 84855348351 scopus 로고    scopus 로고
    • Fast approximate energy minimization with label costs
    • A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate energy minimization with label costs. IJCV, 2012.
    • (2012) IJCV
    • Delong, A.1    Osokin, A.2    Isack, H.N.3    Boykov, Y.4
  • 12
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In ECCV, 2002.
    • (2002) ECCV
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.F.3    Forsyth, D.A.4
  • 14
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. PAMI, 2013.
    • (2013) PAMI
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 15
    • 84920253681 scopus 로고    scopus 로고
    • Imagenet auto-annotation with segmentation propagation
    • M. Guillaumin, D. Küttel, and V. Ferrari. Imagenet auto-annotation with segmentation propagation. IJCV, 110(3):328-348, 2014.
    • (2014) IJCV , vol.110 , Issue.3 , pp. 328-348
    • Guillaumin, M.1    Küttel, D.2    Ferrari, V.3
  • 19
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 20
    • 34547971087 scopus 로고    scopus 로고
    • Learning about individuals from group statistics
    • H. Kuck and N. de Freitas. Learning about individuals from group statistics. In UAI, 2005.
    • (2005) UAI
    • Kuck, H.1    De Freitas, N.2
  • 21
    • 84856638291 scopus 로고    scopus 로고
    • Learning specific-class segmentation from diverse data
    • M. P. Kumar, H. Turki, D. Preston, and D. Koller. Learning specific-class segmentation from diverse data. In ICCV, 2011.
    • (2011) ICCV
    • Kumar, M.P.1    Turki, H.2    Preston, D.3    Koller, D.4
  • 23
    • 84919825360 scopus 로고    scopus 로고
    • High order regularization for semisupervised learning of structured output problems
    • Y. Li and R. Zemel. High order regularization for semisupervised learning of structured output problems. In ICML, 2014.
    • (2014) ICML
    • Li, Y.1    Zemel, R.2
  • 24
    • 84937834115 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • T.-Y. Lin et al. Microsoft COCO: Common objects in context. In ECCV, 2014.
    • (2014) ECCV
    • Lin, T.-Y.1
  • 26
    • 84973880272 scopus 로고    scopus 로고
    • Learning to track and identify players from broadcast sports videos
    • W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy. Learning to track and identify players from broadcast sports videos. PAMI, 2013.
    • (2013) PAMI
    • Lu, W.-L.1    Ting, J.-A.2    Little, J.J.3    Murphy, K.P.4
  • 28
    • 84919730581 scopus 로고    scopus 로고
    • Weakly supervised object recognition with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition with convolutional neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 31
    • 84959200585 scopus 로고    scopus 로고
    • From image-level to pixel-level labeling with convolutional networks
    • P. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convolutional networks. In CVPR, 2015.
    • (2015) CVPR
    • Pinheiro, P.1    Collobert, R.2
  • 32
    • 84888141899 scopus 로고    scopus 로고
    • Learning low-order models for enforcing high-order statistics
    • P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order statistics. In AISTATS, 2012.
    • (2012) AISTATS
    • Pletscher, P.1    Kohli, P.2
  • 33
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
    • (2004) SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 36
    • 34948814611 scopus 로고    scopus 로고
    • Region classification with markov field aspect models
    • J. Verbeek and B. Triggs. Region classification with markov field aspect models. In CVPR, 2007.
    • (2007) CVPR
    • Verbeek, J.1    Triggs, B.2
  • 37
    • 84866684103 scopus 로고    scopus 로고
    • Weakly supervised structured output learning for semantic segmentation
    • A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly supervised structured output learning for semantic segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Vezhnevets, A.1    Ferrari, V.2    Buhmann, J.M.3
  • 39
    • 84911404516 scopus 로고    scopus 로고
    • Tell me what you see and i will show you where it is
    • J. Xu, A. G. Schwing, and R. Urtasun. Tell me what you see and I will show you where it is. In CVPR, 2014.
    • (2014) CVPR
    • Xu, J.1    Schwing, A.G.2    Urtasun, R.3
  • 40
    • 84959218681 scopus 로고    scopus 로고
    • Learning to segment under various forms of weak supervision
    • J. Xu, A. G. Schwing, and R. Urtasun. Learning to segment under various forms of weak supervision. In CVPR, 2015.
    • (2015) CVPR
    • Xu, J.1    Schwing, A.G.2    Urtasun, R.3
  • 42
    • 84937851238 scopus 로고    scopus 로고
    • Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm
    • J. Zhu, J. Mao, and A. L. Yuille. Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm. In NIPS, 2014.
    • (2014) NIPS
    • Zhu, J.1    Mao, J.2    Yuille, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.