-
1
-
-
77955303165
-
Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy
-
Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, González A, Colan SD, Seidman JG, Díez J. 2010. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552-563. https://doi.org/10.1056/NEJMoa1002659.
-
(2010)
N Engl J Med
, vol.363
, pp. 552-563
-
-
Ho, C.Y.1
López, B.2
Coelho-Filho, O.R.3
Lakdawala, N.K.4
Cirino, A.L.5
Jarolim, P.6
Kwong, R.7
González, A.8
Colan, S.D.9
Seidman, J.G.10
Díez, J.11
-
2
-
-
84866342680
-
Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease
-
Fan D, Takawale A, Lee J, Kassiri Z. 2012. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15. https://doi.org/10.1186/1755-1536-5-15.
-
(2012)
Fibrogenesis Tissue Repair
, vol.5
, pp. 15
-
-
Fan, D.1
Takawale, A.2
Lee, J.3
Kassiri, Z.4
-
3
-
-
0025770664
-
Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system
-
Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849-1865.
-
(1991)
Circulation
, vol.83
, pp. 1849-1865
-
-
Weber, K.T.1
Brilla, C.G.2
-
4
-
-
84895125306
-
The pathogenesis of cardiac fibrosis
-
Kong P, Christia P, Frangogiannis NG. 2014. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549-574. https://doi.org/10.1007/s00018-013-1349-6.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 549-574
-
-
Kong, P.1
Christia, P.2
Frangogiannis, N.G.3
-
5
-
-
0026510060
-
Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system
-
Baker KM, Booz GW, Dostal DE. 1992. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54: 227-241. https://doi.org/10.1146/annurev.ph.54.030192.001303.
-
(1992)
Annu Rev Physiol
, vol.54
, pp. 227-241
-
-
Baker, K.M.1
Booz, G.W.2
Dostal, D.E.3
-
6
-
-
33750452307
-
Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis
-
Hilfiker-Kleiner D, Landmesser U, Drexler H. 2006. Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am Coll Cardiol 48:A56-A66. https://doi.org/10.1016/j.jacc.2006.07.007.
-
(2006)
J Am Coll Cardiol
, vol.48
, pp. A56-A66
-
-
Hilfiker-Kleiner, D.1
Landmesser, U.2
Drexler, H.3
-
7
-
-
0035108218
-
Role of myocytes in myocardial collagen production
-
Pathak M, Sarkar S, Vellaichamy E, Sen S. 2001. Role of myocytes in myocardial collagen production. Hypertension 37:833-840. https://doi.org/10.1161/01.HYP.37.3.833.
-
(2001)
Hypertension
, vol.37
, pp. 833-840
-
-
Pathak, M.1
Sarkar, S.2
Vellaichamy, E.3
Sen, S.4
-
8
-
-
3042526284
-
Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes
-
Sarkar S, Vellaichamy E, Young D, Sen S. 2004. Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes. Am J Physiol Heart Circ Physiol 287:H107-H117. https://doi.org/10.1152/ajpheart.00763.2003.
-
(2004)
Am J Physiol Heart Circ Physiol
, vol.287
, pp. H107-H117
-
-
Sarkar, S.1
Vellaichamy, E.2
Young, D.3
Sen, S.4
-
9
-
-
84856076539
-
Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart
-
Mir SA, Chatterjee A, Mitra A, Pathak K, Mahata SK, Sarkar S. 2012. Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J Biol Chem 287:2666-2677. https://doi.org/10.1074/jbc.M111.246173.
-
(2012)
J Biol Chem
, vol.287
, pp. 2666-2677
-
-
Mir, S.A.1
Chatterjee, A.2
Mitra, A.3
Pathak, K.4
Mahata, S.K.5
Sarkar, S.6
-
10
-
-
46849087232
-
STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX
-
Willey CD, Palanisamy AP, Johnston RK, Mani SK, Shiraishi H, Tuxworth WJ, Zile MR, Balasubramanian S, Kuppuswamy D. 2008. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX. Int J Biol Sci 4:184-199.
-
(2008)
Int J Biol Sci
, vol.4
, pp. 184-199
-
-
Willey, C.D.1
Palanisamy, A.P.2
Johnston, R.K.3
Mani, S.K.4
Shiraishi, H.5
Tuxworth, W.J.6
Zile, M.R.7
Balasubramanian, S.8
Kuppuswamy, D.9
-
11
-
-
84905648684
-
Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism
-
Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A, Modesti PA. 2014. Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochim Biophys Acta 1843:2603-2610. https://doi.org/10.1016/j.bbamcr.2014.07.009.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 2603-2610
-
-
Fiaschi, T.1
Magherini, F.2
Gamberi, T.3
Lucchese, G.4
Faggian, G.5
Modesti, A.6
Modesti, P.A.7
-
12
-
-
84899111807
-
STAT3, a key regulator of cell-to-cell communication in the heart
-
Haghikia A, Ricke-Hoch M, Stapel B, Gorst I, Hilfiker-Kleiner D. 2014. STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc Res 102:281-289. https://doi.org/10.1093/cvr/cvu034.
-
(2014)
Cardiovasc Res
, vol.102
, pp. 281-289
-
-
Haghikia, A.1
Ricke-Hoch, M.2
Stapel, B.3
Gorst, I.4
Hilfiker-Kleiner, D.5
-
13
-
-
84885712016
-
STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor
-
Wang Y, van Boxel-Dezaire AH, Cheon H, Yang J, Stark GR. 2013. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci U S A 110:16975-16980. https://doi.org/10.1073/pnas.1315862110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 16975-16980
-
-
Wang, Y.1
van Boxel-Dezaire, A.H.2
Cheon, H.3
Yang, J.4
Stark, G.R.5
-
14
-
-
84863104297
-
DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growthpromoting functions in human tumors
-
Yun UJ, Park SE, Jo YS, Kim J, Shin DY. 2012. DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growthpromoting functions in human tumors. Cancer Lett 323:155-160. https://doi.org/10.1016/j.canlet.2012.04.003.
-
(2012)
Cancer Lett
, vol.323
, pp. 155-160
-
-
Yun, U.J.1
Park, S.E.2
Jo, Y.S.3
Kim, J.4
Shin, D.Y.5
-
15
-
-
0037443661
-
Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3
-
Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, Rossaint R, Heinrich PC, Müller-Newen G. 2003. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol 170:3263-3272. https://doi.org/10.4049/jimmunol.170.6.3263.
-
(2003)
J Immunol
, vol.170
, pp. 3263-3272
-
-
Niemand, C.1
Nimmesgern, A.2
Haan, S.3
Fischer, P.4
Schaper, F.5
Rossaint, R.6
Heinrich, P.C.7
Müller-Newen, G.8
-
16
-
-
3042552337
-
Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1
-
Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M, Vinkemeier U. 2004. Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol 165:823-833. https://doi.org/10.1083/jcb.200403057.
-
(2004)
J Cell Biol
, vol.165
, pp. 823-833
-
-
Marg, A.1
Shan, Y.2
Meyer, T.3
Meissner, T.4
Brandenburg, M.5
Vinkemeier, U.6
-
17
-
-
0036256644
-
What does Stat3 do?
-
Levy DE, Lee CK. 2002. What does Stat3 do? J Clin Invest 109:1143-1148. https://doi.org/10.1172/JCI0215650.
-
(2002)
J Clin Invest
, vol.109
, pp. 1143-1148
-
-
Levy, D.E.1
Lee, C.K.2
-
18
-
-
84908161000
-
Revisiting STAT3 signalling in cancer: new and unexpected biological functions
-
Yu H, Lee H, Herrmann A, Buettner R, Jove R. 2014. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736-746. https://doi.org/10.1038/nrc3818.
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 736-746
-
-
Yu, H.1
Lee, H.2
Herrmann, A.3
Buettner, R.4
Jove, R.5
-
19
-
-
2442504891
-
Real time analysis of STAT3 nucleocytoplasmic shuttling
-
Pranada AL, Metz S, Herrmann A, Heinrich PC, Müller-Newen G. 2004. Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 279:15114-15123. https://doi.org/10.1074/jbc.M312530200.
-
(2004)
J Biol Chem
, vol.279
, pp. 15114-15123
-
-
Pranada, A.L.1
Metz, S.2
Herrmann, A.3
Heinrich, P.C.4
Müller-Newen, G.5
-
20
-
-
84906316130
-
Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3+ isoform
-
Ng IH, Bogoyevitch MA, Jans DA. 2014. Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3+ isoform. Traffic 15:946-960. https://doi.org/10.1111/tra.12181.
-
(2014)
Traffic
, vol.15
, pp. 946-960
-
-
Ng, I.H.1
Bogoyevitch, M.A.2
Jans, D.A.3
-
22
-
-
0037160084
-
Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes: preservation of cytokine signaling during fever
-
Shah M, Patel K, Fried VA, Sehgal PB. 2002. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes: preservation of cytokine signaling during fever. J Biol Chem 277:45662-45669. https://doi.org/10.1074/jbc.M205935200.
-
(2002)
J Biol Chem
, vol.277
, pp. 45662-45669
-
-
Shah, M.1
Patel, K.2
Fried, V.A.3
Sehgal, P.B.4
-
23
-
-
0037462881
-
Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3
-
Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T. 2003. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300:847-852. https://doi.org/10.1016/S0006-291X(02)02941-8.
-
(2003)
Biochem Biophys Res Commun
, vol.300
, pp. 847-852
-
-
Sato, N.1
Yamamoto, T.2
Sekine, Y.3
Yumioka, T.4
Junicho, A.5
Fuse, H.6
Matsuda, T.7
-
24
-
-
77954406525
-
HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells
-
Schoof N, von Bonin F, Trümper L, Kube D. 2009. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells. Cell Commun Signal 7:17. https://doi.org/10.1186/1478-811X-7-17.
-
(2009)
Cell Commun Signal
, vol.7
, pp. 17
-
-
Schoof, N.1
von Bonin, F.2
Trümper, L.3
Kube, D.4
-
25
-
-
84906077660
-
IL-6 activated JAK/STAT3 pathway and sensitivity to Hsp90 inhibitors in multiple myeloma
-
Kolosenko I, Grander D, Tamm KP. 2014. IL-6 activated JAK/STAT3 pathway and sensitivity to Hsp90 inhibitors in multiple myeloma. Curr Med Chem 21:3042-3047. https://doi.org/10.2174/0929867321666140414100831.
-
(2014)
Curr Med Chem
, vol.21
, pp. 3042-3047
-
-
Kolosenko, I.1
Grander, D.2
Tamm, K.P.3
-
26
-
-
84941955449
-
Hsp90/Cdc37 assembly modulates TGFα receptor-II to act as a profibrotic regulator of TGFα signaling during cardiac hypertrophy
-
Datta R, Bansal T, Rana S, Datta K, Chattopadhyay S, Chawla-Sarkar M, Sarkar S. 2015. Hsp90/Cdc37 assembly modulates TGFα receptor-II to act as a profibrotic regulator of TGFα signaling during cardiac hypertrophy. Cell Signal 27:2410-2424. https://doi.org/10.1016/j.cellsig.2015.09.005.
-
(2015)
Cell Signal
, vol.27
, pp. 2410-2424
-
-
Datta, R.1
Bansal, T.2
Rana, S.3
Datta, K.4
Chattopadhyay, S.5
Chawla-Sarkar, M.6
Sarkar, S.7
-
27
-
-
84899975158
-
Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-α signalling to prevent fibrosis
-
Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH. 2014. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-α signalling to prevent fibrosis. Ann Rheum Dis 73:1215-1222. https://doi.org/10.1136/annrheumdis-2012-203095.
-
(2014)
Ann Rheum Dis
, vol.73
, pp. 1215-1222
-
-
Tomcik, M.1
Zerr, P.2
Pitkowski, J.3
Palumbo-Zerr, K.4
Avouac, J.5
Distler, O.6
Becvar, R.7
Senolt, L.8
Schett, G.9
Distler, J.H.10
-
28
-
-
84940978450
-
Heat shock protein 90 inhibitor decreases collagen synthesis of keloid fibroblasts and attenuates the extracellular matrix on the keloid spheroid model
-
Lee WJ, Lee JH, Ahn HM, Song SY, Kim YO, Lew DH, Yun CO. 2015. Heat shock protein 90 inhibitor decreases collagen synthesis of keloid fibroblasts and attenuates the extracellular matrix on the keloid spheroid model. Plast Reconstr Surg 136:328e-337e. https://doi.org/10.1097/PRS.0000000000001538.
-
(2015)
Plast Reconstr Surg
, vol.136
, pp. 328e-337e
-
-
Lee, W.J.1
Lee, J.H.2
Ahn, H.M.3
Song, S.Y.4
Kim, Y.O.5
Lew, D.H.6
Yun, C.O.7
-
29
-
-
84902553744
-
Heat shock proteins in fibrosis and wound healing: good or evil?
-
Bellaye PS, Burgy O, Causse S, Garrido C, Bonniaud P. 2014. Heat shock proteins in fibrosis and wound healing: good or evil? Pharmacol Ther 143:119-132. https://doi.org/10.1016/j.pharmthera.2014.02.009.
-
(2014)
Pharmacol Ther
, vol.143
, pp. 119-132
-
-
Bellaye, P.S.1
Burgy, O.2
Causse, S.3
Garrido, C.4
Bonniaud, P.5
-
30
-
-
84868553748
-
Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-β type II receptor
-
Noh H, Kim HJ, Mi RY, Kim WY, Kim J, Ryu JH, Kwon SH, Jeon JS, Han DC, Ziyadeh F. 2012. Heat shock protein 90 inhibitor attenuates renal fibrosis through degradation of transforming growth factor-β type II receptor. Lab Invest 92:1583-1596. https://doi.org/10.1038/labinvest.2012.127.
-
(2012)
Lab Invest
, vol.92
, pp. 1583-1596
-
-
Noh, H.1
Kim, H.J.2
Mi, R.Y.3
Kim, W.Y.4
Kim, J.5
Ryu, J.H.6
Kwon, S.H.7
Jeon, J.S.8
Han, D.C.9
Ziyadeh, F.10
-
31
-
-
84899128394
-
Cardiac fibroblastderived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
-
Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E. 2014. Cardiac fibroblastderived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136-2146. https://doi.org/10.1172/JCI70577.
-
(2014)
J Clin Invest
, vol.124
, pp. 2136-2146
-
-
Bang, C.1
Batkai, S.2
Dangwal, S.3
Gupta, S.K.4
Foinquinos, A.5
Holzmann, A.6
Just, A.7
Remke, J.8
Zimmer, K.9
Zeug, A.10
Ponimaskin, E.11
-
32
-
-
84885029327
-
STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose
-
Dai B, Cui M, Zhu M, Su WL, Qiu MC, Zhang H. 2013. STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose. Cell Physiol Biochem 32:960-971. https://doi.org/10.1159/000354499.
-
(2013)
Cell Physiol Biochem
, vol.32
, pp. 960-971
-
-
Dai, B.1
Cui, M.2
Zhu, M.3
Su, W.L.4
Qiu, M.C.5
Zhang, H.6
-
33
-
-
21644440037
-
Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation
-
Fredj S, Bescond J, Louault C, Delwail A, Lecron JC, Potreau D. 2005. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol 204: 428-436. https://doi.org/10.1002/jcp.20307.
-
(2005)
J Cell Physiol
, vol.204
, pp. 428-436
-
-
Fredj, S.1
Bescond, J.2
Louault, C.3
Delwail, A.4
Lecron, J.C.5
Potreau, D.6
-
34
-
-
0035997252
-
Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture
-
Ancey C, Corbi P, Froger J, Delwail A, Wijdenes J, Gascan H, Potreau D, Lecron JC. 2002. Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. Cytokine 18:199-205. https://doi.org/10.1006/cyto.2002.1033.
-
(2002)
Cytokine
, vol.18
, pp. 199-205
-
-
Ancey, C.1
Corbi, P.2
Froger, J.3
Delwail, A.4
Wijdenes, J.5
Gascan, H.6
Potreau, D.7
Lecron, J.C.8
-
35
-
-
0025343895
-
Activation of interleukin-6 gene expression through the NF-kappa B transcription factor
-
Libermann TA, Baltimore DA. 1990. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327-2334. https://doi.org/10.1128/MCB.10.5.2327.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 2327-2334
-
-
Libermann, T.A.1
Baltimore, D.A.2
-
36
-
-
0025280023
-
Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence
-
Zhang YH, Lin JX, Vilcek J. 1990. Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol 10:3818-3823. https://doi.org/10.1128/MCB.10.7.3818.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 3818-3823
-
-
Zhang, Y.H.1
Lin, J.X.2
Vilcek, J.3
-
37
-
-
0036260699
-
Transcription factors C/EBP-β and-γ regulate IL-6 production in IL-1β-stimulated human enterocytes
-
Hungness ES, Luo GJ, Pritts TA, Sun X, Robb BW, Hershko D, Hasselgren PO. 2002. Transcription factors C/EBP-β and-γ regulate IL-6 production in IL-1β-stimulated human enterocytes. J Cell Physiol 192:64-70. https://doi.org/10.1002/jcp.10116.
-
(2002)
J Cell Physiol
, vol.192
, pp. 64-70
-
-
Hungness, E.S.1
Luo, G.J.2
Pritts, T.A.3
Sun, X.4
Robb, B.W.5
Hershko, D.6
Hasselgren, P.O.7
-
38
-
-
0024355425
-
A multiple cytokine-and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation
-
Ray A, Sassone-Corsi P, Sehgal PB. 1989. A multiple cytokine-and second messenger-responsive element in the enhancer of the human interleukin-6 gene: similarities with c-fos gene regulation. Mol Cell Biol 9:5537-5547. https://doi.org/10.1128/MCB.9.12.5537.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 5537-5547
-
-
Ray, A.1
Sassone-Corsi, P.2
Sehgal, P.B.3
-
39
-
-
0032920658
-
Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-κB and NF-IL6 in cardiac myocytes
-
Matsui H, Ihara Y, Fujio Y, Kunisada K, Akira S, Kishimoto T, Yamauchi-Takihara K. 1999. Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-κB and NF-IL6 in cardiac myocytes. Cardiovasc Res 42:104-112. https://doi.org/10.1016/S0008-6363(98)00285-5.
-
(1999)
Cardiovasc Res
, vol.42
, pp. 104-112
-
-
Matsui, H.1
Ihara, Y.2
Fujio, Y.3
Kunisada, K.4
Akira, S.5
Kishimoto, T.6
Yamauchi-Takihara, K.7
-
40
-
-
0032519758
-
The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90+ gene by interleukin-6 but have opposite effects on its inducibility by heat shock
-
Stephanou A, Isenberg AD, Akira S, Kishimoto T, Latchman SD. 1998. The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90+ gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochem J 330:189-195. https://doi.org/10.1042/bj3300189.
-
(1998)
Biochem J
, vol.330
, pp. 189-195
-
-
Stephanou, A.1
Isenberg, A.D.2
Akira, S.3
Kishimoto, T.4
Latchman, S.D.5
-
41
-
-
79960675340
-
Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy
-
Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S. 2011. Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226:2543-2554. https://doi.org/10.1002/jcp.22599.
-
(2011)
J Cell Physiol
, vol.226
, pp. 2543-2554
-
-
Chatterjee, A.1
Mir, S.A.2
Dutta, D.3
Mitra, A.4
Pathak, K.5
Sarkar, S.6
-
42
-
-
4444376712
-
Signaling to NF-κB
-
Hayden MS, Ghosh S. 2004. Signaling to NF-κB. Genes Dev 18: 2195-2224. https://doi.org/10.1101/gad.1228704.
-
(2004)
Genes Dev
, vol.18
, pp. 2195-2224
-
-
Hayden, M.S.1
Ghosh, S.2
-
43
-
-
3142719113
-
Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation
-
Broemer M, Krappmann D, Scheidereit C. 2004. Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation. Oncogene 23:5378-5386. https://doi.org/10.1038/sj.onc.1207705.
-
(2004)
Oncogene
, vol.23
, pp. 5378-5386
-
-
Broemer, M.1
Krappmann, D.2
Scheidereit, C.3
-
44
-
-
0036187476
-
TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90
-
Chen G, Cao P, Goeddel DV. 2002. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401-410. https://doi.org/10.1016/S1097-2765(02)00450-1.
-
(2002)
Mol Cell
, vol.9
, pp. 401-410
-
-
Chen, G.1
Cao, P.2
Goeddel, D.V.3
-
45
-
-
78149266867
-
Heat shock protein 90 regulates IκB kinase complex and NF-κB activation in angiotensin II-induced cardiac cell hypertrophy
-
Lee KH, Jang Y, Chung JH. 2010. Heat shock protein 90 regulates IκB kinase complex and NF-κB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med 42:703-711. https://doi.org/10.3858/emm.2010.42.10.069.
-
(2010)
Exp Mol Med
, vol.42
, pp. 703-711
-
-
Lee, K.H.1
Jang, Y.2
Chung, J.H.3
-
46
-
-
0037315208
-
Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery
-
Pratt WB, Toft DO. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111-133. https://doi.org/10.1177/153537020322800201.
-
(2003)
Exp Biol Med
, vol.228
, pp. 111-133
-
-
Pratt, W.B.1
Toft, D.O.2
-
47
-
-
84951760190
-
Hsp90 + Cdc37 complexes with protein kinases form cooperatively with multiple distinct interaction sites
-
Eckl JM, Scherr MJ, Freiburger L, Daake MA, Sattler M, Richter K. 2015. Hsp90 + Cdc37 complexes with protein kinases form cooperatively with multiple distinct interaction sites. J Biol Chem 290:30843-30854. https://doi.org/10.1074/jbc.M115.693150.
-
(2015)
J Biol Chem
, vol.290
, pp. 30843-30854
-
-
Eckl, J.M.1
Scherr, M.J.2
Freiburger, L.3
Daake, M.A.4
Sattler, M.5
Richter, K.6
-
48
-
-
84890904610
-
Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling
-
Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, Marmé F, Umansky L, Umansky V, Eigenbrod T, Sammar M. 2013. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J Biol Chem 288:36691-36702. https://doi.org/10.1074/jbc.M113.512806.
-
(2013)
J Biol Chem
, vol.288
, pp. 36691-36702
-
-
Bretz, N.P.1
Ridinger, J.2
Rupp, A.K.3
Rimbach, K.4
Keller, S.5
Rupp, C.6
Marmé, F.7
Umansky, L.8
Umansky, V.9
Eigenbrod, T.10
Sammar, M.11
-
49
-
-
84903272721
-
RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy
-
Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H, Ochiya T. 2014. RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol Cancer 13:134. https://doi.org/10.1186/1476-4598-13-134.
-
(2014)
Mol Cancer
, vol.13
, pp. 134
-
-
Tominaga, N.1
Hagiwara, K.2
Kosaka, N.3
Honma, K.4
Nakagama, H.5
Ochiya, T.6
-
50
-
-
79957925099
-
LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation
-
Verweij FJ, Van Eijndhoven MA, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E, Kieff E, Geerts D, van der Kant R, Neefjes J, Middeldorp JM. 2011. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 30:2115-2129. https://doi.org/10.1038/emboj.2011.123.
-
(2011)
EMBO J
, vol.30
, pp. 2115-2129
-
-
Verweij, F.J.1
Van Eijndhoven, M.A.2
Hopmans, E.S.3
Vendrig, T.4
Wurdinger, T.5
Cahir-McFarland, E.6
Kieff, E.7
Geerts, D.8
van der Kant, R.9
Neefjes, J.10
Middeldorp, J.M.11
-
51
-
-
67349263394
-
Trafficking and function of the tetraspanin CD63
-
Pols MS, Klumperman J. 2009. Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584-1592. https://doi.org/10.1016/j.yexcr.2008.09.020.
-
(2009)
Exp Cell Res
, vol.315
, pp. 1584-1592
-
-
Pols, M.S.1
Klumperman, J.2
-
52
-
-
24944495594
-
Induction of heat shock proteins in B-cell exosomes
-
Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. 2005. Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631-3638. https://doi.org/10.1242/jcs.02494.
-
(2005)
J Cell Sci
, vol.118
, pp. 3631-3638
-
-
Clayton, A.1
Turkes, A.2
Navabi, H.3
Mason, M.D.4
Tabi, Z.5
-
53
-
-
34447525068
-
HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway
-
Gupta S, Knowlton AA. 2007. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292:H3052-H3056. https://doi.org/10.1152/ajpheart.01355.2006.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.292
, pp. H3052-H3056
-
-
Gupta, S.1
Knowlton, A.A.2
-
54
-
-
57749184756
-
Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells
-
Chung SW, Lee JH, Choi KH, Park YC, Eo SK, Rhim BY, Kim K. 2009. Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem Biophys Res Commun 378:444-449. https://doi.org/10.1016/j.bbrc.2008.11.063.
-
(2009)
Biochem Biophys Res Commun
, vol.378
, pp. 444-449
-
-
Chung, S.W.1
Lee, J.H.2
Choi, K.H.3
Park, Y.C.4
Eo, S.K.5
Rhim, B.Y.6
Kim, K.7
-
55
-
-
84940766267
-
Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction
-
Essandoh K, Yang L, Wang X, Huang W, Qin D, Hao J, Wang Y, Zingarelli B, Peng T, Fan GC. 2015. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta 1852:2362-2371. https://doi.org/10.1016/j.bbadis.2015.08.010.
-
(2015)
Biochim Biophys Acta
, vol.1852
, pp. 2362-2371
-
-
Essandoh, K.1
Yang, L.2
Wang, X.3
Huang, W.4
Qin, D.5
Hao, J.6
Wang, Y.7
Zingarelli, B.8
Peng, T.9
Fan, G.C.10
-
56
-
-
84869081799
-
Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes
-
Yu X, Deng L, Wang D, Li N, Chen X, Cheng X, Yuan J, Gao X, Liao M, Wang M, Liao Y. 2012. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol 53:848-857. https://doi.org/10.1016/j.yjmcc.2012.10.002.
-
(2012)
J Mol Cell Cardiol
, vol.53
, pp. 848-857
-
-
Yu, X.1
Deng, L.2
Wang, D.3
Li, N.4
Chen, X.5
Cheng, X.6
Yuan, J.7
Gao, X.8
Liao, M.9
Wang, M.10
Liao, Y.11
-
57
-
-
35548963711
-
HB-EGF induces delayed STAT3 activation via NF-κB mediated IL-6 secretion in vascular smooth muscle cell
-
Lee KS, Park JH, Lee S, Lim HJ, Choi HE, Park HY. 2007. HB-EGF induces delayed STAT3 activation via NF-κB mediated IL-6 secretion in vascular smooth muscle cell. Biochim Biophys Acta 1773:1637-1644. https://doi.org/10.1016/j.bbamcr.2007.07.001.
-
(2007)
Biochim Biophys Acta
, vol.1773
, pp. 1637-1644
-
-
Lee, K.S.1
Park, J.H.2
Lee, S.3
Lim, H.J.4
Choi, H.E.5
Park, H.Y.6
-
59
-
-
0030838007
-
Angiotensin II and myocyte growth role of fibroblasts
-
Sil P, Sen S. 1997. Angiotensin II and myocyte growth role of fibroblasts. Hypertension 30(2 Pt 1):209-216.
-
(1997)
Hypertension
, vol.30
, Issue.2
, pp. 209-216
-
-
Sil, P.1
Sen, S.2
-
60
-
-
84921058769
-
A spatiotemporal cardiomyocyte targeted vector system for efficient delivery of therapeutic payloads to regress cardiac hypertrophy abating bystander effect
-
Rana S, Datta K, Reddy TL, Chatterjee E, Sen P, Pal-Bhadra M, Bhadra U, Pramanik A, Pramanik P, Chawla-Sarkar M, Sarkar S. 2015. A spatiotemporal cardiomyocyte targeted vector system for efficient delivery of therapeutic payloads to regress cardiac hypertrophy abating bystander effect. J Control Release 200:167-178. https://doi.org/10.1016/j.jconrel.2015.01.008.
-
(2015)
J Control Release
, vol.200
, pp. 167-178
-
-
Rana, S.1
Datta, K.2
Reddy, T.L.3
Chatterjee, E.4
Sen, P.5
Pal-Bhadra, M.6
Bhadra, U.7
Pramanik, A.8
Pramanik, P.9
Chawla-Sarkar, M.10
Sarkar, S.11
-
61
-
-
84948400744
-
Improved bioavailability of targeted curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment
-
Ray A, Rana S, Banerjee D, Mitra A, Datta R, Naskar S, Sarkar S. 2016. Improved bioavailability of targeted curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment. Toxicol Appl Pharmacol 290:54-65. https://doi.org/10.1016/j.taap.2015.11.011.
-
(2016)
Toxicol Appl Pharmacol
, vol.290
, pp. 54-65
-
-
Ray, A.1
Rana, S.2
Banerjee, D.3
Mitra, A.4
Datta, R.5
Naskar, S.6
Sarkar, S.7
-
62
-
-
79952935751
-
Improved elution conditions for native co-immunoprecipitation
-
Antrobus R, Borner GH. 2011. Improved elution conditions for native co-immunoprecipitation. PLoS One 6:e18218. https://doi.org/10.1371/journal.pone.0018218.
-
(2011)
PLoS One
, vol.6
-
-
Antrobus, R.1
Borner, G.H.2
-
63
-
-
0037096162
-
The exosome pathway in K562 cells is regulated by Rab11
-
Savina A, Vidal M, Colombo MI. 2002. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 115(Pt 12):2505-2515.
-
(2002)
J Cell Sci
, vol.115
, pp. 2505-2515
-
-
Savina, A.1
Vidal, M.2
Colombo, M.I.3
-
64
-
-
0037490207
-
Exosome release is regulated by a calcium-dependent mechanism in K562 cells
-
Savina A, Furlán M, Vidal M, Colombo MI. 2003. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083-20090. https://doi.org/10.1074/jbc.M301642200.
-
(2003)
J Biol Chem
, vol.278
, pp. 20083-20090
-
-
Savina, A.1
Furlán, M.2
Vidal, M.3
Colombo, M.I.4
|