메뉴 건너뛰기




Volumn 32, Issue 10, 2016, Pages 1527-1535

Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins

Author keywords

[No Author keywords available]

Indexed keywords

RNA; RNA BINDING PROTEIN;

EID: 84970024013     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw003     Document Type: Article
Times cited : (110)

References (57)
  • 1
    • 84861694712 scopus 로고    scopus 로고
    • Differential GC content between exons and introns establishes distinct strategies of splice-site recognition
    • Amit,M. et al. (2012) Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Reports, 1, 543-556.
    • (2012) Cell Reports , vol.1 , pp. 543-556
    • Amit, M.1
  • 2
    • 84861963461 scopus 로고    scopus 로고
    • DoRiNA: A database of RNA interactions in post-transcriptional regulation
    • Anders,G. et al. (2012) doRiNA: A database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res., 40, D180-D186.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D180-D186
    • Anders, G.1
  • 3
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Ashburner,M. et al. (2000) Gene Ontology: tool for the unification of biology. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 4
    • 48949103996 scopus 로고    scopus 로고
    • A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation
    • Aznarez,I. et al. (2008) A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res., 18, 1247-1258.
    • (2008) Genome Res. , vol.18 , pp. 1247-1258
    • Aznarez, I.1
  • 5
    • 84892821162 scopus 로고    scopus 로고
    • Transcriptome-wide discovery of microRNA binding sites in human brain
    • Boudreau,R.L. et al. (2014) Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron, 81, 294-305.
    • (2014) Neuron , vol.81 , pp. 294-305
    • Boudreau, R.L.1
  • 6
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • Brunet,J.P. et al. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. U.S.A., 101, 4164-4169.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 4164-4169
    • Brunet, J.P.1
  • 7
    • 33645794993 scopus 로고    scopus 로고
    • Biclustering of gene expression data by nonsmooth non-negative matrix factorization
    • Carmona-Saez, P. et al. (2006) Biclustering of gene expression data by nonsmooth non-negative matrix factorization. BMC Bioinf, 7, 1-18.
    • (2006) BMC Bioinf , vol.7 , pp. 1-18
    • Carmona-Saez, P.1
  • 8
    • 84861969926 scopus 로고    scopus 로고
    • Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
    • Castello,A. et al. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149, 1393-1406.
    • (2012) Cell , vol.149 , pp. 1393-1406
    • Castello, A.1
  • 9
    • 84922392412 scopus 로고    scopus 로고
    • CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3 processing
    • Chan,S.L. et al. (2014) CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3 processing. Genes Dev., 28, 2370-2380.
    • (2014) Genes Dev. , vol.28 , pp. 2370-2380
    • Chan, S.L.1
  • 10
    • 0003729218 scopus 로고    scopus 로고
    • John Wiley & Sons, Inc., Hoboken, New Jersey 07030-075774, USA
    • Chatterjee,S. et al. (2015). Regression Analysis by Example. John Wiley & Sons, Inc., Hoboken, New Jersey, 07030-5774 USA.
    • (2015) Regression Analysis by Example
    • Chatterjee, S.1
  • 11
    • 84873723387 scopus 로고    scopus 로고
    • Predictions of protein-RNA interactions
    • Cirillo,D. et al. (2013) Predictions of protein-RNA interactions. Comp. Mol. Sci., 3, 161-175.
    • (2013) Comp. Mol. Sci. , vol.3 , pp. 161-175
    • Cirillo, D.1
  • 12
    • 84880312659 scopus 로고    scopus 로고
    • RNA protein interaction in neurons
    • Darnell,R.B. (2013) RNA protein interaction in neurons. Annu. Rev. Neurosci., 36, 243-270.
    • (2013) Annu. Rev. Neurosci. , vol.36 , pp. 243-270
    • Darnell, R.B.1
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar,J. (2006) Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res, 7, 1-30.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 14
    • 0027330888 scopus 로고
    • Using RNAFOLD to predict the activity of small catalytic RNAs
    • Denman,R.B. (1993) Using RNAFOLD to predict the activity of small catalytic RNAs. BioTechniques, 15, 1090-1095.
    • (1993) BioTechniques , vol.15 , pp. 1090-1095
    • Denman, R.B.1
  • 15
    • 84871429429 scopus 로고    scopus 로고
    • Computational biology of RNA interactions
    • Dieterich,C. et al. (2013) Computational biology of RNA interactions. Wiley Interdisc. Rev. RNA, 4, 107-120.
    • (2013) Wiley Interdisc. Rev. RNA , vol.4 , pp. 107-120
    • Dieterich, C.1
  • 16
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix t-factorizations for clustering
    • Ding, C. et al. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD.
    • (2006) Proceedings of the 12th ACM SIGKDD
    • Ding, C.1
  • 17
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Ding,C. et al. (2010) Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell., 32, 45-55.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 45-55
    • Ding, C.1
  • 18
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao,Y. et al. (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970-3975.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1
  • 19
    • 84865442402 scopus 로고    scopus 로고
    • Online nonnegative matrix factorization with robust stochastic approximation
    • Guan,N. et al. (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Netw. Learn. Syst., 23, 1087-1099.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 1087-1099
    • Guan, N.1
  • 20
    • 77950920903 scopus 로고    scopus 로고
    • Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
    • Hafner,M. et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129-141.
    • (2010) Cell , vol.141 , pp. 129-141
    • Hafner, M.1
  • 21
    • 82955236089 scopus 로고    scopus 로고
    • RNA targets of wild-type and mutant FET family proteins
    • Hoell,J.I. et al. (2011) RNA targets of wild-type and mutant FET family proteins. Nat. Struct. Mol. Biol., 18, 1428-1431.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1428-1431
    • Hoell, J.I.1
  • 22
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer,P.O. (2004) Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res, 5, 1457-1469.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 23
    • 18444402182 scopus 로고    scopus 로고
    • The Ensembl genome database project
    • Hubbard,T. et al. (2002) The Ensembl genome database project. Nucleic Acids Res., 30, 38-41.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 38-41
    • Hubbard, T.1
  • 24
    • 84880791572 scopus 로고    scopus 로고
    • NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs
    • Hussain,S. et al. (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep., 4, 255-261.
    • (2013) Cell Rep. , vol.4 , pp. 255-261
    • Hussain, S.1
  • 25
    • 56649100783 scopus 로고    scopus 로고
    • Position-dependent motif characterization using non-negative matrix factorization
    • Hutchins,L.N. et al. (2008) Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics, 24, 2684-2690.
    • (2008) Bioinformatics , vol.24 , pp. 2684-2690
    • Hutchins, L.N.1
  • 26
    • 84924330592 scopus 로고    scopus 로고
    • Competition between target sites of regulators shapes post-transcriptional gene regulation
    • Jens,M. et al. (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet., 16, 113-126.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 113-126
    • Jens, M.1
  • 28
    • 78049275913 scopus 로고    scopus 로고
    • RNAcontext: A new method for learning the sequence and structure binding preferences of RNA-binding proteins
    • 1-10
    • Kazan,H. et al. (2010) RNAcontext: A new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput. Biol., 6, e1000832: 1-10.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000832
    • Kazan, H.1
  • 29
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim,H. et al. (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23, 1495-1502.
    • (2007) Bioinformatics , vol.23 , pp. 1495-1502
    • Kim, H.1
  • 30
    • 79959813870 scopus 로고    scopus 로고
    • A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins
    • Kishore,S. et al. (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559-564.
    • (2011) Nat. Methods , vol.8 , pp. 559-564
    • Kishore, S.1
  • 31
    • 84901297233 scopus 로고    scopus 로고
    • The cleverSuite approach for protein characterization: Predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities
    • Klus,P. et al. (2014) The cleverSuite approach for protein characterization: predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities. Bioinformatics, 30, 1601-1608.
    • (2014) Bioinformatics , vol.30 , pp. 1601-1608
    • Klus, P.1
  • 32
    • 77954387023 scopus 로고    scopus 로고
    • ICLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution
    • König,J. et al. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909-915.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 909-915
    • König, J.1
  • 33
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee,D.D.D. et al. (2001) Algorithms for non-negative matrix factorization. Adv. NIPS, 548-562.
    • (2001) Adv. NIPS , pp. 548-562
    • Lee, D.D.D.1
  • 34
    • 77952687104 scopus 로고    scopus 로고
    • Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure
    • Li,X. et al. (2010) Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA, 1096-1107. pages
    • (2010) RNA , pp. 1096-1107
    • Li, X.1
  • 35
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Lin,C.J. (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput., 19, 2756-2779.
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 36
    • 84900394210 scopus 로고    scopus 로고
    • Protein-specific prediction of mRNA binding using RNA sequences, bindingmotifs and pred. Secondary structures
    • Livi,C. et al. (2014) Protein-specific prediction of mRNA binding using RNA sequences, bindingmotifs and pred. secondary structures.BMC Bioinf., 15, 123.
    • (2014) BMC Bioinf. , vol.15 , pp. 123
    • Livi, C.1
  • 37
    • 84892636681 scopus 로고    scopus 로고
    • GraphProt: Modeling binding preferences of RNAbinding proteins
    • Maticzka,D. et al. (2014) GraphProt: modeling binding preferences of RNAbinding proteins. Genome Biol., 15, R17.
    • (2014) Genome Biol. , vol.15 , pp. R17
    • Maticzka, D.1
  • 38
    • 67650770061 scopus 로고    scopus 로고
    • Predictor correlation impacts machine learning algorithms: Implications for genomic studies
    • Nicodemus,K.K. et al. (2009) Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics, 25, 1884-1890.
    • (2009) Bioinformatics , vol.25 , pp. 1884-1890
    • Nicodemus, K.K.1
  • 39
    • 84865194573 scopus 로고    scopus 로고
    • Computational methods for prediction of protein-RNA interactions
    • Puton,T. et al. (2012) Computational methods for prediction of protein-RNA interactions. J. Struct. Biol., 179, 261-268.
    • (2012) J. Struct. Biol. , vol.179 , pp. 261-268
    • Puton, T.1
  • 40
    • 84880427394 scopus 로고    scopus 로고
    • A compendium of RNA-binding motifs for decoding gene regulation
    • Ray,D. et al. (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499, 172-177.
    • (2013) Nature , vol.499 , pp. 172-177
    • Ray, D.1
  • 41
    • 84896885113 scopus 로고    scopus 로고
    • Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L
    • Rossbach,O. et al. (2014) Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol., 11, 146-155.
    • (2014) RNA Biol. , vol.11 , pp. 146-155
    • Rossbach, O.1
  • 42
    • 61849139645 scopus 로고    scopus 로고
    • Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts
    • Sanford,J.R. et al. (2009) Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res., 19, 381-394.
    • (2009) Genome Res. , vol.19 , pp. 381-394
    • Sanford, J.R.1
  • 43
    • 84869087484 scopus 로고    scopus 로고
    • CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex
    • Saulière,J. et al. (2012) CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol., 19, 1124-1131.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1124-1131
    • Saulière, J.1
  • 44
    • 84869071915 scopus 로고    scopus 로고
    • Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data
    • Sievers,C. et al. (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res., 40, e160-e160.
    • (2012) Nucleic Acids Res. , vol.40 , pp. e160-e160
    • Sievers, C.1
  • 45
    • 84936744064 scopus 로고    scopus 로고
    • Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions
    • Sugimoto,Y. et al. (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol., 13, R67.
    • (2012) Genome Biol. , vol.13 , pp. R67
    • Sugimoto, Y.1
  • 46
    • 79953180492 scopus 로고    scopus 로고
    • Characterizing the RNA targets and position-dependent splicing regulation by TDP-43
    • Tollervey,J.R. et al. (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci., 14, 452-U180.
    • (2011) Nat. Neurosci. , vol.14 , pp. U452-U4180
    • Tollervey, J.R.1
  • 47
    • 84876235880 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization
    • Wang,H. et al. (2013) Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J. Comput. Biol., 20, 344-358.
    • (2013) J. Comput. Biol. , vol.20 , pp. 344-358
    • Wang, H.1
  • 48
    • 78149393552 scopus 로고    scopus 로고
    • ICLIP predicts the dual splicing effects of TIA-RNA interactions
    • Wang,Z. et al. (2010) iCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions. PLoS Biol., 8, e1000530.
    • (2010) PLoS Biol. , vol.8 , pp. e1000530
    • Wang, Z.1
  • 49
    • 70549083928 scopus 로고    scopus 로고
    • Weighted nonnegative matrix co-tri-factorization for collaborative prediction
    • Yoo, J. et al. (2009) Weighted nonnegative matrix co-tri-factorization for collaborative prediction. Adv. Mach. Learn., 5828, 396-411.
    • (2009) Adv. Mach. Learn. , vol.5828 , pp. 396-411
    • Yoo, J.1
  • 50
    • 84873323035 scopus 로고    scopus 로고
    • Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements
    • Zarnack,K. et al. (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell, 152, 453-466.
    • (2013) Cell , vol.152 , pp. 453-466
    • Zarnack, K.1
  • 51
    • 85014098635 scopus 로고    scopus 로고
    • Non-negative matrix factorization with quasi-Newton optimization
    • Zdunek,R. et al. (2006) Non-negative matrix factorization with quasi-newton optimization. Artif. Intell. Soft Comput., 87, 870-879.
    • (2006) Artif. Intell. Soft Comput. , vol.87 , pp. 870-879
    • Zdunek, R.1
  • 52
    • 77954838957 scopus 로고    scopus 로고
    • Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls
    • Zhang,C. et al. (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science, 329, 439-443.
    • (2010) Science , vol.329 , pp. 439-443
    • Zhang, C.1
  • 53
    • 79959448071 scopus 로고    scopus 로고
    • A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
    • Zhang,S. et al. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27, i401-i409.
    • (2011) Bioinformatics , vol.27 , pp. i401-i409
    • Zhang, S.1
  • 54
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang,S. et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res., 40, 9379-9391.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9379-9391
    • Zhang, S.1
  • 55
    • 84881493949 scopus 로고    scopus 로고
    • Prediction of clustered RNA-binding protein motif sites in the mammalian genome
    • Zhang,C. et al. (2013) Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res., 41, 6793-6807.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6793-6807
    • Zhang, C.1
  • 56
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • Zhou,K. et al. (2011). Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR, p. 315.
    • (2011) Proceedings of the 34th International ACM SIGIR , pp. 315
    • Zhou, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.