메뉴 건너뛰기




Volumn 97, Issue 5, 2011, Pages 257-264

Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach

Author keywords

EMDI; Ensemble estimator; Epistatic miniarray profiling; Matrix completion; Missing value estimation

Indexed keywords

ACCURACY; ALGORITHM; ANALYTICAL ERROR; ARTICLE; CONTROLLED STUDY; EPISTATIC MINIARRAY PROFILING; GENETIC ANALYSIS; INTERMETHOD COMPARISON; PRIORITY JOURNAL; STATISTICAL ANALYSIS;

EID: 79955522081     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2011.03.001     Document Type: Article
Times cited : (36)

References (37)
  • 1
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins S.R., et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007, 446:806-810.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1
  • 2
    • 26844489762 scopus 로고    scopus 로고
    • Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
    • Schuldiner M., et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005, 123:507-519.
    • (2005) Cell , vol.123 , pp. 507-519
    • Schuldiner, M.1
  • 3
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong A.H., et al. Global mapping of the yeast genetic interaction network. Science 2004, 303:808-813.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.1
  • 4
    • 61349119934 scopus 로고    scopus 로고
    • Functional organization of the S. cerevisiae phosphorylation network
    • Fiedler D., et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 2009, 136:952-963.
    • (2009) Cell , vol.136 , pp. 952-963
    • Fiedler, D.1
  • 5
    • 43849094303 scopus 로고    scopus 로고
    • Missing value imputation improves clustering and interpretation of gene expression microarray data
    • Johannes T., Laura E., Olli N., Tero A. Missing value imputation improves clustering and interpretation of gene expression microarray data. BMC Bioinform. 2008, 9:202.
    • (2008) BMC Bioinform. , vol.9 , pp. 202
    • Johannes, T.1    Laura, E.2    Olli, N.3    Tero, A.4
  • 6
    • 77957130052 scopus 로고    scopus 로고
    • Missing data imputation using statistical and machine learning methods in a real breast cancer problem
    • Jerez J.M., et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 2010, 50:105-115.
    • (2010) Artif. Intell. Med. , vol.50 , pp. 105-115
    • Jerez, J.M.1
  • 7
    • 3543135904 scopus 로고    scopus 로고
    • Experimental analysis of methods for imputation of missing values in databases
    • Farhangfar A., Kurgan L., Pedrycz W. Experimental analysis of methods for imputation of missing values in databases. Intell. Comput. Theory Appl. 2004, II(5421):172-182.
    • (2004) Intell. Comput. Theory Appl. , vol.2 , Issue.5421 , pp. 172-182
    • Farhangfar, A.1    Kurgan, L.2    Pedrycz, W.3
  • 8
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O., et al. Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17:520-525.
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1
  • 9
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: local least squares imputation
    • Kim H., Golub G., Park H. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 2005, 21:187-198.
    • (2005) Bioinformatics , vol.21 , pp. 187-198
    • Kim, H.1    Golub, G.2    Park, H.3
  • 10
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: accurate estimation of missing values in microarray data with least squares methods
    • Bo T., Dysvik B., Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004, 32:e34.
    • (2004) Nucleic Acids Res. , vol.32
    • Bo, T.1    Dysvik, B.2    Jonassen, I.3
  • 11
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • Oba S., et al. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 2003, 19:2088-2096.
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1
  • 12
    • 33646671261 scopus 로고    scopus 로고
    • A simultaneous reconstruction of missing data in DNA microarrays
    • Friedland S., Niknejad A., Chihara L. A simultaneous reconstruction of missing data in DNA microarrays. Linear Algebra Appl. 2006, 416:8-28.
    • (2006) Linear Algebra Appl. , vol.416 , pp. 8-28
    • Friedland, S.1    Niknejad, A.2    Chihara, L.3
  • 13
    • 85027978916 scopus 로고    scopus 로고
    • Predicting gene expression from combined expression and promoter profile similarity with application to missing value imputation
    • Elo L., Johannes T., Nevalainen O., Aittokallio T. Predicting gene expression from combined expression and promoter profile similarity with application to missing value imputation. Math. Model. Biol. Syst. 2007, I:97-104.
    • (2007) Math. Model. Biol. Syst. , vol.1 , pp. 97-104
    • Elo, L.1    Johannes, T.2    Nevalainen, O.3    Aittokallio, T.4
  • 14
    • 33644856110 scopus 로고    scopus 로고
    • Improving missing value estimation in microarray data with gene ontology
    • Tuikkala J., Elo L., Nevalainen O., Aittokallio T. Improving missing value estimation in microarray data with gene ontology. Bioinformatics 2006, 22:566-572.
    • (2006) Bioinformatics , vol.22 , pp. 566-572
    • Tuikkala, J.1    Elo, L.2    Nevalainen, O.3    Aittokallio, T.4
  • 15
    • 77950949307 scopus 로고    scopus 로고
    • Dealing with missing values in large-scale studies: microarray data imputation and beyond
    • Aittokallio T. Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief. Bioinform. 2010, 11:253-264.
    • (2010) Brief. Bioinform. , vol.11 , pp. 253-264
    • Aittokallio, T.1
  • 16
    • 39749093807 scopus 로고    scopus 로고
    • Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes
    • Brock G.N., Shaffer J.R., Blakesley R.E., Lotz M.J., Tseng G.C. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinform. 2008, 9:12.
    • (2008) BMC Bioinform. , vol.9 , pp. 12
    • Brock, G.N.1    Shaffer, J.R.2    Blakesley, R.E.3    Lotz, M.J.4    Tseng, G.C.5
  • 17
    • 39149108478 scopus 로고    scopus 로고
    • Identifications of conserved 7-mers in 3′-UTRs and microRNAs in Drosophila
    • Gu J., Fu H., Zhang X., Li Y. Identifications of conserved 7-mers in 3′-UTRs and microRNAs in Drosophila. BMC Bioinform. 2007, 8:432.
    • (2007) BMC Bioinform. , vol.8 , pp. 432
    • Gu, J.1    Fu, H.2    Zhang, X.3    Li, Y.4
  • 18
    • 33646871614 scopus 로고    scopus 로고
    • An ensemble of K-local hyperplanes for predicting protein-protein interactions
    • Nanni L., Lumini A. An ensemble of K-local hyperplanes for predicting protein-protein interactions. Bioinformatics 2006, 22:1207-1210.
    • (2006) Bioinformatics , vol.22 , pp. 1207-1210
    • Nanni, L.1    Lumini, A.2
  • 19
    • 34548667906 scopus 로고    scopus 로고
    • RegionBoost learning for 2D+3D based face recognition
    • Nanni L., Lumini A. RegionBoost learning for 2D+3D based face recognition. Pattern Recogit. Lett. 2007, 28:2063-2070.
    • (2007) Pattern Recogit. Lett. , vol.28 , pp. 2063-2070
    • Nanni, L.1    Lumini, A.2
  • 20
    • 39549116279 scopus 로고    scopus 로고
    • A genetic approach for building different alphabets for peptide and protein classification
    • Nanni L., Lumini A. A genetic approach for building different alphabets for peptide and protein classification. BMC Bioinform. 2008, 9:45.
    • (2008) BMC Bioinform. , vol.9 , pp. 45
    • Nanni, L.1    Lumini, A.2
  • 23
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Climate 2001, 14:853-871.
    • (2001) J. Climate , vol.14 , pp. 853-871
    • Schneider, T.1
  • 24
    • 37049035583 scopus 로고    scopus 로고
    • Random subspace for an improved BioHashing for face authentication
    • Nanni L., Lumini A. Random subspace for an improved BioHashing for face authentication. Pattern Recogit. Lett. 2008, 29:295-300.
    • (2008) Pattern Recogit. Lett. , vol.29 , pp. 295-300
    • Nanni, L.1    Lumini, A.2
  • 25
    • 32544454675 scopus 로고    scopus 로고
    • Experimental comparison of one-class classifiers for online signature verification
    • Nanni L. Experimental comparison of one-class classifiers for online signature verification. Neurocomputing 2006, 69:869-873.
    • (2006) Neurocomputing , vol.69 , pp. 869-873
    • Nanni, L.1
  • 26
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. 1998, 20:832-844.
    • (1998) IEEE Trans. Pattern Anal. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 27
    • 40549108335 scopus 로고    scopus 로고
    • Evolved feature weighting for random subspace classifier
    • Nanni L., Lumini A. Evolved feature weighting for random subspace classifier. IEEE Trans. Neural Netw. 2008, 19:363-366.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , pp. 363-366
    • Nanni, L.1    Lumini, A.2
  • 29
    • 53749095489 scopus 로고    scopus 로고
    • Local coherence in genetic interaction patterns reveals prevalent functional versatility
    • Pu S., Ronen K., Vlasblom J., Greenblatt J., Wodak S.J. Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics 2008, 24:2376-2383.
    • (2008) Bioinformatics , vol.24 , pp. 2376-2383
    • Pu, S.1    Ronen, K.2    Vlasblom, J.3    Greenblatt, J.4    Wodak, S.J.5
  • 30
    • 56849094282 scopus 로고    scopus 로고
    • A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing
    • Wilmes G., et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 2008, 32:735-746.
    • (2008) Mol. Cell , vol.32 , pp. 735-746
    • Wilmes, G.1
  • 31
    • 54249107599 scopus 로고    scopus 로고
    • Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast
    • Roguev A., et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 2008, 322:405-410.
    • (2008) Science , vol.322 , pp. 405-410
    • Roguev, A.1
  • 32
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candes E., Recht B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9:717-772.
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candes, E.1    Recht, B.2
  • 33
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: near-optimal matrix completion
    • Candes E., Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE T. Inform. Theory. 2009, 56:2053-2080.
    • (2009) IEEE T. Inform. Theory. , vol.56 , pp. 2053-2080
    • Candes, E.1    Tao, T.2
  • 34
    • 0142215333 scopus 로고    scopus 로고
    • Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices
    • Fazel M., Hindi H., Boyd S.P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. Proc. Amer. Contr. Conf. 2003, 2156-2162.
    • (2003) Proc. Amer. Contr. Conf. , pp. 2156-2162
    • Fazel, M.1    Hindi, H.2    Boyd, S.P.3
  • 35
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai J.F., Candes E.J., Shen Z.W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20:1956-1982.
    • (2010) SIAM J. Optim. , vol.20 , pp. 1956-1982
    • Cai, J.F.1    Candes, E.J.2    Shen, Z.W.3
  • 36
    • 56349125172 scopus 로고    scopus 로고
    • On diversity and accuracy of homogeneous and heterogeneous ensembles
    • Bian S., Wang W. On diversity and accuracy of homogeneous and heterogeneous ensembles. Int. J. Hybrid Intell. Syst. 2007, 4:103-128.
    • (2007) Int. J. Hybrid Intell. Syst. , vol.4 , pp. 103-128
    • Bian, S.1    Wang, W.2
  • 37
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6:21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , pp. 21-45
    • Polikar, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.