-
2
-
-
77957231785
-
Induced fit, conformational selection and independent dynamic segments: an extended view of binding events
-
Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 2010;35:539–546.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 539-546
-
-
Csermely, P.1
Palotai, R.2
Nussinov, R.3
-
3
-
-
0036606483
-
Principles of docking: an overview of search algorithms and a guide to scoring functions
-
Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct Funct Bioinform 2002;47:409–443.
-
(2002)
Proteins Struct Funct Bioinform
, vol.47
, pp. 409-443
-
-
Halperin, I.1
Ma, B.2
Wolfson, H.3
Nussinov, R.4
-
4
-
-
41949111630
-
Recent progress and future directions in protein–protein docking
-
Ritchie DW. Recent progress and future directions in protein–protein docking. Curr Protein Pept Sci 2008;9:1–15.
-
(2008)
Curr Protein Pept Sci
, vol.9
, pp. 1-15
-
-
Ritchie, D.W.1
-
5
-
-
77951297973
-
Accounting for conformational changes during protein–protein docking
-
Zacharias M. Accounting for conformational changes during protein–protein docking. Curr Opin Struct Biol 2010;20:180–186.
-
(2010)
Curr Opin Struct Biol
, vol.20
, pp. 180-186
-
-
Zacharias, M.1
-
6
-
-
84908263546
-
Protein–protein docking: from interaction to interactome
-
Vakser IA. Protein–protein docking: from interaction to interactome. Biophys J 2014;107:1785–1793.
-
(2014)
Biophys J
, vol.107
, pp. 1785-1793
-
-
Vakser, I.A.1
-
9
-
-
70350340728
-
The role of dynamic conformational ensembles in biomolecular recognition
-
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nature 2009;5:789–796.
-
(2009)
Nature
, vol.5
, pp. 789-796
-
-
Boehr, D.D.1
Nussinov, R.2
Wright, P.E.3
-
10
-
-
84883213263
-
Conformational selection is a dominant mechanism of ligand binding
-
Vogt AD, Di Cera E. Conformational selection is a dominant mechanism of ligand binding. Biochemistry 2013;52:5723–5729.
-
(2013)
Biochemistry
, vol.52
, pp. 5723-5729
-
-
Vogt, A.D.1
Di Cera, E.2
-
11
-
-
48449094112
-
Conformer selection and induced fit in flexible backbone protein–protein docking using computational and NMR ensembles
-
Chaudhury S, Gray JJ. Conformer selection and induced fit in flexible backbone protein–protein docking using computational and NMR ensembles. J Mol Biol 2008;381:1068–1087.
-
(2008)
J Mol Biol
, vol.381
, pp. 1068-1087
-
-
Chaudhury, S.1
Gray, J.J.2
-
12
-
-
9944237833
-
Complementarity of structure ensembles in protein–protein binding
-
Grünberg R, Leckner J, Nilges M. Complementarity of structure ensembles in protein–protein binding. Struct Fold Des 2004;12:2125–2136.
-
(2004)
Struct Fold Des
, vol.12
, pp. 2125-2136
-
-
Grünberg, R.1
Leckner, J.2
Nilges, M.3
-
13
-
-
0026310932
-
Soft docking”: matching of molecular surface cubes
-
Jiang F, Kim SH. “Soft docking”: matching of molecular surface cubes. J Mol Biol 1991;219:79–102.
-
(1991)
J Mol Biol
, vol.219
, pp. 79-102
-
-
Jiang, F.1
Kim, S.H.2
-
15
-
-
0038583687
-
Protein–protein docking with a reduced protein model accounting for side-chain flexibility
-
Zacharias M. Protein–protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 2003;12:1271–1282.
-
(2003)
Protein Sci
, vol.12
, pp. 1271-1282
-
-
Zacharias, M.1
-
16
-
-
29144485503
-
Accounting for global protein deformability during protein–protein and protein–ligand docking
-
May A, Zacharias M. Accounting for global protein deformability during protein–protein and protein–ligand docking. Biochim Biophys Acta (BBA) Proteins Proteom 2005;1754:225–231.
-
(2005)
Biochim Biophys Acta (BBA) Proteins Proteom
, vol.1754
, pp. 225-231
-
-
May, A.1
Zacharias, M.2
-
17
-
-
38549097715
-
Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking
-
May A, Zacharias M. Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins Struct Funct Bioinform 2008;70:794–809.
-
(2008)
Proteins Struct Funct Bioinform
, vol.70
, pp. 794-809
-
-
May, A.1
Zacharias, M.2
-
18
-
-
0038161052
-
Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations
-
Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 2003;331:281–299.
-
(2003)
J Mol Biol
, vol.331
, pp. 281-299
-
-
Gray, J.J.1
Moughon, S.2
Wang, C.3
Schueler-Furman, O.4
Kuhlman, B.5
Rohl, C.A.6
Baker, D.7
-
19
-
-
17744364070
-
Improved side-chain modeling for protein–protein docking
-
Wang C, Schueler-Furman O, Baker D. Improved side-chain modeling for protein–protein docking. Protein Sci 2005;14:1328–1339.
-
(2005)
Protein Sci
, vol.14
, pp. 1328-1339
-
-
Wang, C.1
Schueler-Furman, O.2
Baker, D.3
-
22
-
-
44949117092
-
A combination of rescoring and refinement significantly improves protein docking performance
-
Pierce B, Weng Z. A combination of rescoring and refinement significantly improves protein docking performance. Proteins Struct Funct Bioinform 2008;72:270–279.
-
(2008)
Proteins Struct Funct Bioinform
, vol.72
, pp. 270-279
-
-
Pierce, B.1
Weng, Z.2
-
23
-
-
84937575796
-
iATTRACT: simultaneous global and local interface optimization for protein–protein docking refinement
-
Schindler CEM, de Vries SJ, Zacharias M. iATTRACT: simultaneous global and local interface optimization for protein–protein docking refinement. Proteins Struct Funct Bioinform 2014;83:248–258.
-
(2014)
Proteins Struct Funct Bioinform
, vol.83
, pp. 248-258
-
-
Schindler, C.E.M.1
de Vries, S.J.2
Zacharias, M.3
-
24
-
-
84936870616
-
Application of enhanced sampling Monte Carlo methods for high-resolution protein-protein docking in Rosetta
-
Zhang Z, Schindler CEM, Lange OF, Zacharias M. Application of enhanced sampling Monte Carlo methods for high-resolution protein-protein docking in Rosetta. PLoS One 2015;10:e0125941.
-
(2015)
PLoS One
, vol.10
-
-
Zhang, Z.1
Schindler, C.E.M.2
Lange, O.F.3
Zacharias, M.4
-
25
-
-
84861499934
-
Potential and limitations of ensemble docking
-
Korb O, Olsson TSG, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC. Potential and limitations of ensemble docking. J Chem Inf Model 2012;52:1262–1274.
-
(2012)
J Chem Inf Model
, vol.52
, pp. 1262-1274
-
-
Korb, O.1
Olsson, T.S.G.2
Bowden, S.J.3
Hall, R.J.4
Verdonk, M.L.5
Liebeschuetz, J.W.6
Cole, J.C.7
-
26
-
-
84921494921
-
Multi-conformer ensemble docking to difficult protein targets
-
Ellingson SR, Miao Y, Baudry J, Smith JC. Multi-conformer ensemble docking to difficult protein targets. J Phys Chem B 2015;119:1026–1034.
-
(2015)
J Phys Chem B
, vol.119
, pp. 1026-1034
-
-
Ellingson, S.R.1
Miao, Y.2
Baudry, J.3
Smith, J.C.4
-
27
-
-
84978795095
-
Conformational heterogeneity of unbound proteins enhances recognition in protein–protein encounters
-
Pallara C, Rueda M, Abagyan R, Fernandez-Recio J. Conformational heterogeneity of unbound proteins enhances recognition in protein–protein encounters. J Chem Theory Comput Am Chem Soc 2016;12:3236–3249.
-
(2016)
J Chem Theory Comput Am Chem Soc
, vol.12
, pp. 3236-3249
-
-
Pallara, C.1
Rueda, M.2
Abagyan, R.3
Fernandez-Recio, J.4
-
28
-
-
84979518365
-
Protein–protein docking by fast generalized Fourier transforms on 5D rotational manifolds
-
Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kozakov D. Protein–protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Proc Natl Acad Sci USA 2016;113:E4286–E4293.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E4286-E4293
-
-
Padhorny, D.1
Kazennov, A.2
Zerbe, B.S.3
Porter, K.A.4
Xia, B.5
Mottarella, S.E.6
Kozakov, D.7
-
29
-
-
41949132916
-
Flexible ligand docking to multiple receptor conformations: a practical alternative
-
Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 2008;18:178–184.
-
(2008)
Curr Opin Struct Biol
, vol.18
, pp. 178-184
-
-
Totrov, M.1
Abagyan, R.2
-
30
-
-
77951992987
-
Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments
-
Craig IR, Essex JW, Spiegel K. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J Chem Inf Model 2010;50:511–524.
-
(2010)
J Chem Inf Model
, vol.50
, pp. 511-524
-
-
Craig, I.R.1
Essex, J.W.2
Spiegel, K.3
-
31
-
-
77955574450
-
Ensemble docking from homology models
-
Novoa EM, Pouplana LR, de, Barril X, Orozco M. Ensemble docking from homology models. J Chem Theory Comput 2010;6:2547–2557.
-
(2010)
J Chem Theory Comput
, vol.6
, pp. 2547-2557
-
-
Novoa, E.M.1
Pouplana, L.R.2
Barril, X.3
Orozco, M.4
-
32
-
-
33846000313
-
Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking
-
Huang S-Y, Zou X. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins Struct Funct Bioinform 2007;66:399–421.
-
(2007)
Proteins Struct Funct Bioinform
, vol.66
, pp. 399-421
-
-
Huang, S.-Y.1
Zou, X.2
-
33
-
-
77957958670
-
Binding site prediction and improved scoring during flexible protein–protein docking with ATTRACT
-
Fiorucci S, Zacharias M. Binding site prediction and improved scoring during flexible protein–protein docking with ATTRACT. Proteins Struct Funct Bioinform 2010;78:3131–3139.
-
(2010)
Proteins Struct Funct Bioinform
, vol.78
, pp. 3131-3139
-
-
Fiorucci, S.1
Zacharias, M.2
-
34
-
-
84888305906
-
Flexible docking and refinement with a coarse-grained protein model using ATTRACT
-
de Vries S, Zacharias M. Flexible docking and refinement with a coarse-grained protein model using ATTRACT. Proteins Struct Funct Bioinform 2013;81:2167–2174.
-
(2013)
Proteins Struct Funct Bioinform
, vol.81
, pp. 2167-2174
-
-
de Vries, S.1
Zacharias, M.2
-
36
-
-
0026320866
-
The energy landscapes and motions of proteins
-
Frauenfelder H, Sligar S, Wolynes P. The energy landscapes and motions of proteins. Science 1991;254:1598–1603.
-
(1991)
Science
, vol.254
, pp. 1598-1603
-
-
Frauenfelder, H.1
Sligar, S.2
Wolynes, P.3
-
37
-
-
0032533790
-
Analysis of domain motions by approximate normal mode calculations
-
Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins Struct Funct Genet 1998;33:417–429.
-
(1998)
Proteins Struct Funct Genet
, vol.33
, pp. 417-429
-
-
Hinsen, K.1
-
38
-
-
45649084560
-
Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction
-
Smith CA, Kortemme T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 2008;380:742–756.
-
(2008)
J Mol Biol
, vol.380
, pp. 742-756
-
-
Smith, C.A.1
Kortemme, T.2
-
40
-
-
84904760980
-
-
San Francisco, University of California
-
Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA. Amber 14. San Francisco: University of California; 2014.
-
(2014)
Amber 14
-
-
Case, D.A.1
Babin, V.2
Berryman, J.T.3
Betz, R.M.4
Cai, Q.5
Cerutti, D.S.6
Cheatham, T.E.7
Darden, T.A.8
Duke, R.E.9
Gohlke, H.10
Goetz, A.W.11
Gusarov, S.12
Homeyer, N.13
Janowski, P.14
Kaus, J.15
Kolossváry, I.16
Kovalenko, A.17
Lee, T.S.18
LeGrand, S.19
Luchko, T.20
Luo, R.21
Madej, B.22
Merz, K.M.23
Paesani, F.24
Roe, D.R.25
Roitberg, A.26
Sagui, C.27
Salomon-Ferrer, R.28
Seabra, G.29
Simmerling, C.L.30
Smith, W.31
Swails, J.32
Walker, R.C.33
Wang, J.34
Wolf, R.M.35
Wu, X.36
Kollman, P.A.37
more..
-
41
-
-
84938930908
-
ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
-
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 2015;11:3696–3713.
-
(2015)
J Chem Theory Comput
, vol.11
, pp. 3696-3713
-
-
Maier, J.A.1
Martinez, C.2
Kasavajhala, K.3
Wickstrom, L.4
Hauser, K.E.5
Simmerling, C.6
-
42
-
-
0038697805
-
Protein–protein docking predictions for the CAPRI experiment
-
Gray JJ, Moughon SE, Kortemme T, Schueler-Furman O, Misura KMS, Morozov AV, Baker D. Protein–protein docking predictions for the CAPRI experiment. Proteins Struct FunctBioinform 2003;52:118–122.
-
(2003)
Proteins Struct FunctBioinform
, vol.52
, pp. 118-122
-
-
Gray, J.J.1
Moughon, S.E.2
Kortemme, T.3
Schueler-Furman, O.4
Misura, K.M.S.5
Morozov, A.V.6
Baker, D.7
-
44
-
-
84883252161
-
Replica exchange improves sampling in low-resolution docking stage of RosettaDock
-
Zhang Z, Lange OF. Replica exchange improves sampling in low-resolution docking stage of RosettaDock. PLoS One 2013;8:e72096.
-
(2013)
PLoS One
, vol.8
-
-
Zhang, Z.1
Lange, O.F.2
|