메뉴 건너뛰기




Volumn 140, Issue 12, 2017, Pages 2634-2641

Nuclear factor one transcription factors as epigenetic regulators in cancer

Author keywords

[No Author keywords available]

Indexed keywords

ADAM12 PROTEIN; HISTONE H3; NUCLEAR FACTOR ONE TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; ISOPROTEIN; NUCLEAR FACTOR I;

EID: 85013042388     PISSN: 00207136     EISSN: 10970215     Source Type: Journal    
DOI: 10.1002/ijc.30603     Document Type: Review
Times cited : (47)

References (100)
  • 1
    • 34249337761 scopus 로고    scopus 로고
    • Perceptions of epigenetics
    • Bird A, Perceptions of epigenetics. Nature 2007;447:396–8.
    • (2007) Nature , vol.447 , pp. 396-398
    • Bird, A.1
  • 2
    • 84863773570 scopus 로고    scopus 로고
    • The epigenotype, 1942
    • Waddington CH, The epigenotype, 1942. Int J Epidemiol 2012;41:10–3.
    • (2012) Int J Epidemiol , vol.41 , pp. 10-13
    • Waddington, C.H.1
  • 4
    • 84863621527 scopus 로고    scopus 로고
    • Cancer epigenetics: from mechanism to therapy
    • Dawson MA, Kouzarides T, Cancer epigenetics: from mechanism to therapy. Cell 2012;150:12–27.
    • (2012) Cell , vol.150 , pp. 12-27
    • Dawson, M.A.1    Kouzarides, T.2
  • 5
    • 1042278765 scopus 로고    scopus 로고
    • The history of cancer epigenetics
    • Feinberg AP, Tycko B, The history of cancer epigenetics. Nat Rev Cancer 2004;4:143–53.
    • (2004) Nat Rev Cancer , vol.4 , pp. 143-153
    • Feinberg, A.P.1    Tycko, B.2
  • 6
    • 84898746948 scopus 로고    scopus 로고
    • Age-related epigenetic drift in the pathogenesis of MDS and AML
    • Maegawa S, Gough SM, Watanabe-Okochi N, et al. Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res 2014;24:580–591.
    • (2014) Genome Res , vol.24 , pp. 580-591
    • Maegawa, S.1    Gough, S.M.2    Watanabe-Okochi, N.3
  • 7
    • 77957351501 scopus 로고    scopus 로고
    • Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis
    • Niwa T, Ushijima T, Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis. Adv Genet 2010;71:41–56.
    • (2010) Adv Genet , vol.71 , pp. 41-56
    • Niwa, T.1    Ushijima, T.2
  • 8
    • 77954086478 scopus 로고    scopus 로고
    • Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate
    • Liu F, Killian JK, Yang M, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010;29:3650–64.
    • (2010) Oncogene , vol.29 , pp. 3650-3664
    • Liu, F.1    Killian, J.K.2    Yang, M.3
  • 9
    • 84860214990 scopus 로고    scopus 로고
    • Intra-tumour heterogeneity: a looking glass for cancer?
    • Marusyk A, Almendro V, Polyak K, Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012;12:323–34.
    • (2012) Nat Rev Cancer , vol.12 , pp. 323-334
    • Marusyk, A.1    Almendro, V.2    Polyak, K.3
  • 10
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA, Hallmarks of cancer: the next generation. Cell 2011;144:646–74.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 11
    • 84856013431 scopus 로고    scopus 로고
    • Clonal evolution in cancer
    • Greaves M, Maley CC, Clonal evolution in cancer. Nature 2012;481:306–13.
    • (2012) Nature , vol.481 , pp. 306-313
    • Greaves, M.1    Maley, C.C.2
  • 12
    • 84901853867 scopus 로고    scopus 로고
    • Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance
    • Easwaran H, Tsai HC, Baylin SB, Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014;54:716–27.
    • (2014) Mol Cell , vol.54 , pp. 716-727
    • Easwaran, H.1    Tsai, H.C.2    Baylin, S.B.3
  • 13
    • 77950809059 scopus 로고    scopus 로고
    • A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations
    • Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010;141:69–80.
    • (2010) Cell , vol.141 , pp. 69-80
    • Sharma, S.V.1    Lee, D.Y.2    Li, B.3
  • 14
    • 43549103847 scopus 로고    scopus 로고
    • The epigenetic influence of tumor and embryonic microenvironments: how different are they?
    • Abbott DE, Bailey CM, Postovit LM, et al. The epigenetic influence of tumor and embryonic microenvironments: how different are they? Cancer Microenviron 2008;1:13–21.
    • (2008) Cancer Microenviron , vol.1 , pp. 13-21
    • Abbott, D.E.1    Bailey, C.M.2    Postovit, L.M.3
  • 16
    • 84898645670 scopus 로고    scopus 로고
    • Dedifferentiation and reprogramming: origins of cancer stem cells
    • Friedmann-Morvinski D, Verma IM, Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014;15:244–53.
    • (2014) EMBO Rep , vol.15 , pp. 244-253
    • Friedmann-Morvinski, D.1    Verma, I.M.2
  • 17
    • 84892800329 scopus 로고    scopus 로고
    • Dynamic regulation of transcriptional states by chromatin and transcription factors
    • Voss TC, Hager GL, Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 2014;15:69–81.
    • (2014) Nat Rev Genet , vol.15 , pp. 69-81
    • Voss, T.C.1    Hager, G.L.2
  • 18
    • 84873310426 scopus 로고    scopus 로고
    • Genome-wide chromatin state transitions associated with developmental and environmental cues
    • Zhu J, Adli M, Zou JY, et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013;152:642–54.
    • (2013) Cell , vol.152 , pp. 642-654
    • Zhu, J.1    Adli, M.2    Zou, J.Y.3
  • 19
    • 84930927649 scopus 로고    scopus 로고
    • MicroRNA regulons in tumor microenvironment
    • Suzuki HI, Katsura A, Matsuyama H, et al. MicroRNA regulons in tumor microenvironment. Oncogene 2015;34:3085–94.
    • (2015) Oncogene , vol.34 , pp. 3085-3094
    • Suzuki, H.I.1    Katsura, A.2    Matsuyama, H.3
  • 20
    • 84874641043 scopus 로고    scopus 로고
    • A microRNA component of the neoplastic microenvironment: microregulators with far-reaching impact
    • Li X, Wu Z, Fu X, et al. A microRNA component of the neoplastic microenvironment: microregulators with far-reaching impact. Biomed Res Int 2013;2013:762183.
    • (2013) Biomed Res Int , vol.2013 , pp. 762183
    • Li, X.1    Wu, Z.2    Fu, X.3
  • 21
    • 84869159093 scopus 로고    scopus 로고
    • Roles of microRNA on cancer cell metabolism
    • Chen B, Li H, Zeng X, et al. Roles of microRNA on cancer cell metabolism. J Transl Med 2012;10:228.
    • (2012) J Transl Med , vol.10 , pp. 228
    • Chen, B.1    Li, H.2    Zeng, X.3
  • 23
    • 84964240053 scopus 로고    scopus 로고
    • Biological and therapeutic impact of intratumor heterogeneity in cancer evolution
    • McGranahan N, Swanton C, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015;27:15–26.
    • (2015) Cancer Cell , vol.27 , pp. 15-26
    • McGranahan, N.1    Swanton, C.2
  • 24
    • 84875211731 scopus 로고    scopus 로고
    • Cancer heterogeneity: implications for targeted therapeutics
    • Fisher R, Pusztai L, Swanton C, Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 2013;108:479–85.
    • (2013) Br J Cancer , vol.108 , pp. 479-485
    • Fisher, R.1    Pusztai, L.2    Swanton, C.3
  • 25
    • 84865841467 scopus 로고    scopus 로고
    • Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations
    • Somasundaram R, Villanueva J, Herlyn M, Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv Pharmacol 2012;65:335–59.
    • (2012) Adv Pharmacol , vol.65 , pp. 335-359
    • Somasundaram, R.1    Villanueva, J.2    Herlyn, M.3
  • 26
    • 0025363617 scopus 로고
    • Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes
    • Rupp RA, Kruse U, Multhaup G, et al. Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic Acids Res 1990;18:2607–16.
    • (1990) Nucleic Acids Res , vol.18 , pp. 2607-2616
    • Rupp, R.A.1    Kruse, U.2    Multhaup, G.3
  • 27
    • 0026410454 scopus 로고
    • Identification of a fourth nuclear factor I gene in chicken by cDNA cloning: NFI-X
    • Kruse U, Qian F, Sippel AE, Identification of a fourth nuclear factor I gene in chicken by cDNA cloning: NFI-X. Nucleic Acids Res 1991;19:6641.
    • (1991) Nucleic Acids Res , vol.19 , pp. 6641
    • Kruse, U.1    Qian, F.2    Sippel, A.E.3
  • 28
    • 77954495752 scopus 로고    scopus 로고
    • NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1
    • Piper M, Barry G, Hawkins J, et al. NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1. J Neurosci 2010;30:9127–39.
    • (2010) J Neurosci , vol.30 , pp. 9127-9139
    • Piper, M.1    Barry, G.2    Hawkins, J.3
  • 29
    • 84885176164 scopus 로고    scopus 로고
    • NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis
    • Heng YH, McLeay RC, Harvey TJ, et al. NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis. Cereb Cortex 2014;24:261–79.
    • (2014) Cereb Cortex , vol.24 , pp. 261-279
    • Heng, Y.H.1    McLeay, R.C.2    Harvey, T.J.3
  • 30
    • 84888268525 scopus 로고    scopus 로고
    • Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons
    • Betancourt J, Katzman S, Chen B, Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons. J Comp Neurol 2014;522:6–35.
    • (2014) J Comp Neurol , vol.522 , pp. 6-35
    • Betancourt, J.1    Katzman, S.2    Chen, B.3
  • 31
    • 11844283949 scopus 로고    scopus 로고
    • The transcription factor gene Nfib is essential for both lung maturation and brain development
    • Steele-Perkins G, Plachez C, Butz KG, et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 2005;25:685–98.
    • (2005) Mol Cell Biol , vol.25 , pp. 685-698
    • Steele-Perkins, G.1    Plachez, C.2    Butz, K.G.3
  • 32
    • 84899090833 scopus 로고    scopus 로고
    • An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation
    • Lajoie M, Hsu YC, Gronostajski RM, et al. An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation. BMC Genomics 2014;15:231.
    • (2014) BMC Genomics , vol.15 , pp. 231
    • Lajoie, M.1    Hsu, Y.C.2    Gronostajski, R.M.3
  • 33
    • 77049114286 scopus 로고    scopus 로고
    • Nfix regulates fetal-specific transcription in developing skeletal muscle
    • Messina G, Biressi S, Monteverde S, et al. Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 2010;140:554–66.
    • (2010) Cell , vol.140 , pp. 554-566
    • Messina, G.1    Biressi, S.2    Monteverde, S.3
  • 34
    • 34547653028 scopus 로고    scopus 로고
    • Cellular heterogeneity during vertebrate skeletal muscle development
    • Biressi S, Molinaro M, Cossu G, Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007;308:281–93.
    • (2007) Dev Biol , vol.308 , pp. 281-293
    • Biressi, S.1    Molinaro, M.2    Cossu, G.3
  • 35
    • 84960328417 scopus 로고    scopus 로고
    • Nfix regulates temporal progression of muscle regeneration through modulation of myostatin expression
    • Rossi G, Antonini S, Bonfanti C, et al. Nfix regulates temporal progression of muscle regeneration through modulation of myostatin expression. Cell Rep 2016;14:2238–49.
    • (2016) Cell Rep , vol.14 , pp. 2238-2249
    • Rossi, G.1    Antonini, S.2    Bonfanti, C.3
  • 36
    • 84891691316 scopus 로고    scopus 로고
    • Nfix is a novel regulator of murine hematopoietic stem and progenitor cell survival
    • Holmfeldt P, Pardieck J, Saulsberry AC, et al. Nfix is a novel regulator of murine hematopoietic stem and progenitor cell survival. Blood 2013;122:2987–96.
    • (2013) Blood , vol.122 , pp. 2987-2996
    • Holmfeldt, P.1    Pardieck, J.2    Saulsberry, A.C.3
  • 37
    • 84882709882 scopus 로고    scopus 로고
    • Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence
    • Martynoga B, Mateo JL, Zhou B, et al. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 2013;27:1769–86.
    • (2013) Genes Dev , vol.27 , pp. 1769-1786
    • Martynoga, B.1    Mateo, J.L.2    Zhou, B.3
  • 38
    • 84874674052 scopus 로고    scopus 로고
    • NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche
    • Chang CY, Pasolli HA, Giannopoulou EG, et al. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature 2013;495:98–102.
    • (2013) Nature , vol.495 , pp. 98-102
    • Chang, C.Y.1    Pasolli, H.A.2    Giannopoulou, E.G.3
  • 39
    • 84978379634 scopus 로고    scopus 로고
    • Nfib promotes metastasis through a widespread increase in chromatin accessibility
    • Denny SK, Yang D, Chuang CH, et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 2016;166:328–42.
    • (2016) Cell , vol.166 , pp. 328-342
    • Denny, S.K.1    Yang, D.2    Chuang, C.H.3
  • 40
    • 0023663639 scopus 로고
    • Site-specific DNA binding of nuclear factor I: effect of the spacer region
    • Gronostajski RM, Site-specific DNA binding of nuclear factor I: effect of the spacer region. Nucleic Acids Res 1987;15:5545–59.
    • (1987) Nucleic Acids Res , vol.15 , pp. 5545-5559
    • Gronostajski, R.M.1
  • 41
    • 0024296421 scopus 로고
    • Stimulation of transcription in vitro by binding sites for nuclear factor I
    • Gronostajski RM, Knox J, Berry D, et al. Stimulation of transcription in vitro by binding sites for nuclear factor I. Nucleic Acids Res 1988;16:2087–98.
    • (1988) Nucleic Acids Res , vol.16 , pp. 2087-2098
    • Gronostajski, R.M.1    Knox, J.2    Berry, D.3
  • 42
    • 0023947915 scopus 로고
    • A quantitative analysis of nuclear factor I/DNA interactions
    • Meisterernst M, Gander I, Rogge L, et al. A quantitative analysis of nuclear factor I/DNA interactions. Nucleic Acids Res 1988;16:4419–35.
    • (1988) Nucleic Acids Res , vol.16 , pp. 4419-4435
    • Meisterernst, M.1    Gander, I.2    Rogge, L.3
  • 43
    • 84873700173 scopus 로고    scopus 로고
    • Nuclear factor I genomic binding associates with chromatin boundaries
    • Pjanic M, Schmid CD, Gaussin A, et al. Nuclear factor I genomic binding associates with chromatin boundaries. BMC Genomics 2013;14:99.
    • (2013) BMC Genomics , vol.14 , pp. 99
    • Pjanic, M.1    Schmid, C.D.2    Gaussin, A.3
  • 44
    • 79953680185 scopus 로고    scopus 로고
    • Nuclear factor I revealed as family of promoter binding transcription activators
    • Pjanic M, Pjanic P, Schmid C, et al. Nuclear factor I revealed as family of promoter binding transcription activators. BMC Genomics 2011;12:181.
    • (2011) BMC Genomics , vol.12 , pp. 181
    • Pjanic, M.1    Pjanic, P.2    Schmid, C.3
  • 45
    • 0023739967 scopus 로고
    • A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs
    • Santoro C, Mermod N, Andrews PC, et al. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature 1988;334:218–24.
    • (1988) Nature , vol.334 , pp. 218-224
    • Santoro, C.1    Mermod, N.2    Andrews, P.C.3
  • 46
    • 0026738762 scopus 로고
    • Purified cofactors and histone H1 mediate transcriptional regulation by CTF/NF-I
    • Dusserre Y, Mermod N, Purified cofactors and histone H1 mediate transcriptional regulation by CTF/NF-I. Mol Cell Biol 1992;12:5228–37.
    • (1992) Mol Cell Biol , vol.12 , pp. 5228-5237
    • Dusserre, Y.1    Mermod, N.2
  • 47
    • 0029417271 scopus 로고
    • A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3
    • Alevizopoulos A, Dusserre Y, TsaiPflugfelder M, et al. A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev 1995;9:3051–66.
    • (1995) Genes Dev , vol.9 , pp. 3051-3066
    • Alevizopoulos, A.1    Dusserre, Y.2    TsaiPflugfelder, M.3
  • 48
    • 0033569716 scopus 로고    scopus 로고
    • Stimulation of DNA replication in Saccharomyces cerevisiae by a glutamine- and proline-rich transcriptional activation domain
    • Li R, Stimulation of DNA replication in Saccharomyces cerevisiae by a glutamine- and proline-rich transcriptional activation domain. J Biol Chem 1999;274:30310–4.
    • (1999) J Biol Chem , vol.274 , pp. 30310-30314
    • Li, R.1
  • 49
    • 0037424263 scopus 로고    scopus 로고
    • Dynamic chromatin alterations triggered by natural and synthetic activation domains
    • Erkine AM, Gross DS, Dynamic chromatin alterations triggered by natural and synthetic activation domains. J Biol Chem 2003;278:7755–64.
    • (2003) J Biol Chem , vol.278 , pp. 7755-7764
    • Erkine, A.M.1    Gross, D.S.2
  • 50
    • 0039601066 scopus 로고    scopus 로고
    • The histone-interacting domain of nuclear factor I activates simian virus 40 DNA replication in vivo
    • Muller K, Mermod N, The histone-interacting domain of nuclear factor I activates simian virus 40 DNA replication in vivo. J Biol Chem 2000;275:1645–50.
    • (2000) J Biol Chem , vol.275 , pp. 1645-1650
    • Muller, K.1    Mermod, N.2
  • 51
    • 11244349704 scopus 로고    scopus 로고
    • Chromatin domain boundaries delimited by a histone-binding protein in yeast
    • Ferrari S, Simmen KC, Dusserre Y, et al. Chromatin domain boundaries delimited by a histone-binding protein in yeast. J Biol Chem 2004;279:55520–30.
    • (2004) J Biol Chem , vol.279 , pp. 55520-55530
    • Ferrari, S.1    Simmen, K.C.2    Dusserre, Y.3
  • 52
    • 12744269354 scopus 로고    scopus 로고
    • Reversal of the silencing of tetracycline-controlled genes requires the coordinate action of distinctly acting transcription factors
    • Pankiewicz R, Karlen Y, Imhof MO, et al. Reversal of the silencing of tetracycline-controlled genes requires the coordinate action of distinctly acting transcription factors. J Gene Med 2005;7:117–32.
    • (2005) J Gene Med , vol.7 , pp. 117-132
    • Pankiewicz, R.1    Karlen, Y.2    Imhof, M.O.3
  • 53
    • 65449135248 scopus 로고    scopus 로고
    • Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing
    • Esnault G, Majocchi S, Martinet D, et al. Transcription factor CTF1 acts as a chromatin domain boundary that shields human telomeric genes from silencing. Mol Cell Biol 2009;29:2409–18.
    • (2009) Mol Cell Biol , vol.29 , pp. 2409-2418
    • Esnault, G.1    Majocchi, S.2    Martinet, D.3
  • 54
    • 52149122501 scopus 로고    scopus 로고
    • [Transcription factors of the nuclear factor 1 (NF1) family. Role in chromatin remodelation]
    • Chikhirzhina GI, Al'-Shekhadat RI, Chikhirzhina EV, [Transcription factors of the nuclear factor 1 (NF1) family. Role in chromatin remodelation]. Mol Biol (Mosk) 2008;42:388–404.
    • (2008) Mol Biol (Mosk) , vol.42 , pp. 388-404
    • Chikhirzhina, G.I.1    Al'-Shekhadat, R.I.2    Chikhirzhina, E.V.3
  • 55
    • 0030995542 scopus 로고    scopus 로고
    • Nucleosome-mediated synergism between transcription factors on the mouse mammary tumor virus promoter
    • Chavez S, Beato M, Nucleosome-mediated synergism between transcription factors on the mouse mammary tumor virus promoter. Proc Natl Acad Sci USA 1997;94:2885–90.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 2885-2890
    • Chavez, S.1    Beato, M.2
  • 56
    • 0037307280 scopus 로고    scopus 로고
    • Nuclear factor 1 is required for both hormone-dependent chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter
    • Hebbar PB, Archer TK, Nuclear factor 1 is required for both hormone-dependent chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter. Mol Cell Biol 2003;23:887–98.
    • (2003) Mol Cell Biol , vol.23 , pp. 887-898
    • Hebbar, P.B.1    Archer, T.K.2
  • 57
    • 1642320127 scopus 로고    scopus 로고
    • Chromatin-mediated restriction of nuclear factor 1/CTF binding in a repressed and hormone-activated promoter in vivo
    • Belikov S, Astrand C, Holmqvist PH, et al. Chromatin-mediated restriction of nuclear factor 1/CTF binding in a repressed and hormone-activated promoter in vivo. Mol Cell Biol 2004;24:3036–47.
    • (2004) Mol Cell Biol , vol.24 , pp. 3036-3047
    • Belikov, S.1    Astrand, C.2    Holmqvist, P.H.3
  • 58
    • 9644270350 scopus 로고    scopus 로고
    • Nuclear factor 1 and octamer transcription factor 1 binding preset the chromatin structure of the mouse mammary tumor virus promoter for hormone induction
    • Belikov S, Holmqvist PH, Astrand C, et al. Nuclear factor 1 and octamer transcription factor 1 binding preset the chromatin structure of the mouse mammary tumor virus promoter for hormone induction. J Biol Chem 2004;279:49857–67.
    • (2004) J Biol Chem , vol.279 , pp. 49857-49867
    • Belikov, S.1    Holmqvist, P.H.2    Astrand, C.3
  • 59
    • 84894046977 scopus 로고    scopus 로고
    • NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development
    • Piper M, Barry G, Harvey TJ, et al. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development. J Neurosci 2014;34:2921–30.
    • (2014) J Neurosci , vol.34 , pp. 2921-2930
    • Piper, M.1    Barry, G.2    Harvey, T.J.3
  • 60
    • 24944581376 scopus 로고    scopus 로고
    • BAF complex is closely related to and interacts with NF1/CTF and RNA polymerase II in gene transcriptional activation
    • Zhao LH, Ba XQ, Wang XG, et al. BAF complex is closely related to and interacts with NF1/CTF and RNA polymerase II in gene transcriptional activation. Acta Biochim Biophys Sin 2005;37:440–6.
    • (2005) Acta Biochim Biophys Sin , vol.37 , pp. 440-446
    • Zhao, L.H.1    Ba, X.Q.2    Wang, X.G.3
  • 61
    • 0035838992 scopus 로고    scopus 로고
    • Regulation of CSF1 promoter by the SWI/SNF-like BAF complex
    • Liu R, Liu H, Chen X, et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 2001;106:309–18.
    • (2001) Cell , vol.106 , pp. 309-318
    • Liu, R.1    Liu, H.2    Chen, X.3
  • 62
    • 84893664978 scopus 로고    scopus 로고
    • Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects
    • Simon JM, Hacker KE, Singh D, et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2014;24:241–50.
    • (2014) Genome Res , vol.24 , pp. 241-250
    • Simon, J.M.1    Hacker, K.E.2    Singh, D.3
  • 63
    • 84865755978 scopus 로고    scopus 로고
    • The accessible chromatin landscape of the human genome
    • Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature 2012;489:75–82.
    • (2012) Nature , vol.489 , pp. 75-82
    • Thurman, R.E.1    Rynes, E.2    Humbert, R.3
  • 64
    • 84882766972 scopus 로고    scopus 로고
    • Developmental fate and cellular maturity encoded in human regulatory DNA landscapes
    • Stergachis AB, Neph S, Reynolds A, et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013;154:888–903.
    • (2013) Cell , vol.154 , pp. 888-903
    • Stergachis, A.B.1    Neph, S.2    Reynolds, A.3
  • 65
    • 84978388629 scopus 로고    scopus 로고
    • Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients
    • Semenova EA, Kwon MC, Monkhorst K, et al. Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients. Cell Rep 2016;16:631–43.
    • (2016) Cell Rep , vol.16 , pp. 631-643
    • Semenova, E.A.1    Kwon, M.C.2    Monkhorst, K.3
  • 66
    • 84872531927 scopus 로고    scopus 로고
    • Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family
    • Ray BK, Dhar S, Henry C, et al. Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family. Cancer Res 2013;73:736–44.
    • (2013) Cancer Res , vol.73 , pp. 736-744
    • Ray, B.K.1    Dhar, S.2    Henry, C.3
  • 67
    • 0031837109 scopus 로고    scopus 로고
    • Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription
    • Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19:187–91.
    • (1998) Nat Genet , vol.19 , pp. 187-191
    • Jones, P.L.1    Veenstra, G.J.2    Wade, P.A.3
  • 68
    • 0032574977 scopus 로고    scopus 로고
    • Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
    • Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386–9.
    • (1998) Nature , vol.393 , pp. 386-389
    • Nan, X.1    Ng, H.H.2    Johnson, C.A.3
  • 69
    • 20144379888 scopus 로고    scopus 로고
    • Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing
    • Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 2005;37:254–64.
    • (2005) Nat Genet , vol.37 , pp. 254-264
    • Harikrishnan, K.N.1    Chow, M.Z.2    Baker, E.K.3
  • 70
    • 13544272030 scopus 로고    scopus 로고
    • Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation
    • Champ PC, Maurice S, Vargason JM, et al. Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Res 2004;32:6501–10.
    • (2004) Nucleic Acids Res , vol.32 , pp. 6501-6510
    • Champ, P.C.1    Maurice, S.2    Vargason, J.M.3
  • 71
    • 0037474235 scopus 로고    scopus 로고
    • Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines
    • Chen H, Toyooka S, Gazdar AF, et al. Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 2003;278:3121–30.
    • (2003) J Biol Chem , vol.278 , pp. 3121-3130
    • Chen, H.1    Toyooka, S.2    Gazdar, A.F.3
  • 72
    • 73249115584 scopus 로고    scopus 로고
    • Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck
    • Persson M, Andren Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA 2009;106:18740–4.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 18740-18744
    • Persson, M.1    Andren, Y.2    Mark, J.3
  • 73
    • 84908339061 scopus 로고    scopus 로고
    • MYB-NFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features
    • D'Alfonso TM, Mosquera JM, MacDonald TY, et al. MYB-NFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features. Hum Pathol 2014;45:2270–80.
    • (2014) Hum Pathol , vol.45 , pp. 2270-2280
    • D'Alfonso, T.M.1    Mosquera, J.M.2    MacDonald, T.Y.3
  • 74
    • 84994086938 scopus 로고    scopus 로고
    • A new NFIA:RAF1 fusion activating the MAPK pathway in pilocytic astrocytoma
    • Yde CW, Sehested A, Mateu-Regué À, et al. A new NFIA:RAF1 fusion activating the MAPK pathway in pilocytic astrocytoma. Cancer Genet 2016;209:440–4.
    • (2016) Cancer Genet , vol.209 , pp. 440-444
    • Yde, C.W.1    Sehested, A.2    Mateu-Regué, À.3
  • 75
    • 84876130509 scopus 로고    scopus 로고
    • High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24)
    • Micci F, Thorsen J, Panagopoulos I, et al. High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24). Leukemia 2013;27:980–2.
    • (2013) Leukemia , vol.27 , pp. 980-982
    • Micci, F.1    Thorsen, J.2    Panagopoulos, I.3
  • 76
    • 84856091317 scopus 로고    scopus 로고
    • Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer
    • Robinson DR, Kalyana-Sundaram S, Wu YM, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 2011;17:1646–51.
    • (2011) Nat Med , vol.17 , pp. 1646-1651
    • Robinson, D.R.1    Kalyana-Sundaram, S.2    Wu, Y.M.3
  • 77
    • 84937857359 scopus 로고    scopus 로고
    • Single-cell chromatin accessibility reveals principles of regulatory variation
    • Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015;523:486–90.
    • (2015) Nature , vol.523 , pp. 486-490
    • Buenrostro, J.D.1    Wu, B.2    Litzenburger, U.M.3
  • 78
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015;161:1202–14.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 79
    • 44349136891 scopus 로고    scopus 로고
    • Telomere dysfunction and tumour suppression: the senescence connection
    • Deng Y, Chan SS, Chang S, Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 2008;8:450–8.
    • (2008) Nat Rev Cancer , vol.8 , pp. 450-458
    • Deng, Y.1    Chan, S.S.2    Chang, S.3
  • 80
    • 84910626311 scopus 로고    scopus 로고
    • Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances
    • Robin JD, Ludlow AT, Batten K, et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev 2014;28:2464–76.
    • (2014) Genes Dev , vol.28 , pp. 2464-2476
    • Robin, J.D.1    Ludlow, A.T.2    Batten, K.3
  • 81
    • 84883306098 scopus 로고    scopus 로고
    • DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer
    • Gnyszka A, Jastrzebski Z, Flis S, DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res 2013;33:2989–96.
    • (2013) Anticancer Res , vol.33 , pp. 2989-2996
    • Gnyszka, A.1    Jastrzebski, Z.2    Flis, S.3
  • 82
    • 84892942381 scopus 로고    scopus 로고
    • New and emerging HDAC inhibitors for cancer treatment
    • West AC, Johnstone RW, New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014;124:30–9.
    • (2014) J Clin Invest , vol.124 , pp. 30-39
    • West, A.C.1    Johnstone, R.W.2
  • 83
    • 84949908674 scopus 로고    scopus 로고
    • Epigenetic treatment of solid tumours: a review of clinical trials
    • Nervi C, De Marinis E, Codacci-Pisanelli G, Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenet 2015;7:127.
    • (2015) Clin Epigenet , vol.7 , pp. 127
    • Nervi, C.1    De Marinis, E.2    Codacci-Pisanelli, G.3
  • 84
    • 84957798869 scopus 로고    scopus 로고
    • Targeting transcription factors in cancer
    • Bhagwat AS, Vakoc CR, Targeting transcription factors in cancer. Trends Cancer 2015;1:53–65.
    • (2015) Trends Cancer , vol.1 , pp. 53-65
    • Bhagwat, A.S.1    Vakoc, C.R.2
  • 85
    • 84928747110 scopus 로고    scopus 로고
    • Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer
    • Lee HK, Lee DS, Park JC, Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer. BMC Cancer 2015;15:113.
    • (2015) BMC Cancer , vol.15 , pp. 113
    • Lee, H.K.1    Lee, D.S.2    Park, J.C.3
  • 86
    • 84891518516 scopus 로고    scopus 로고
    • Sulfotransferase 1A1 (SULT1A1) gene expression is regulated by members of the NFI transcription factors in human breast cancer cells
    • Yao-Borengasser A, Rogers LJ, Edavana VK, et al. Sulfotransferase 1A1 (SULT1A1) gene expression is regulated by members of the NFI transcription factors in human breast cancer cells. BMC Clin Pathol 2014;14:1.
    • (2014) BMC Clin Pathol , vol.14 , pp. 1
    • Yao-Borengasser, A.1    Rogers, L.J.2    Edavana, V.K.3
  • 87
    • 81855166112 scopus 로고    scopus 로고
    • NFIB is a potential target for estrogen receptor-negative breast cancers
    • Moon HG, Hwang KT, Kim JA, et al. NFIB is a potential target for estrogen receptor-negative breast cancers. Mol Oncol 2011;5:538–44.
    • (2011) Mol Oncol , vol.5 , pp. 538-544
    • Moon, H.G.1    Hwang, K.T.2    Kim, J.A.3
  • 88
    • 33748679908 scopus 로고    scopus 로고
    • A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer
    • Eeckhoute J, Carroll JS, Geistlinger TR, et al. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 2006;20:2513–26.
    • (2006) Genes Dev , vol.20 , pp. 2513-2526
    • Eeckhoute, J.1    Carroll, J.S.2    Geistlinger, T.R.3
  • 89
    • 84903386073 scopus 로고    scopus 로고
    • miR-365 Promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB)
    • Zhou MJ, Zhou L, Zheng L, et al. miR-365 Promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). PLoS One 2014;9.
    • (2014) PLoS One , vol.9
    • Zhou, M.J.1    Zhou, L.2    Zheng, L.3
  • 90
    • 1842432447 scopus 로고    scopus 로고
    • NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression
    • Baldwin A, Pirisi L, Creek KE, NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J Virol 2004;78:3953–64.
    • (2004) J Virol , vol.78 , pp. 3953-3964
    • Baldwin, A.1    Pirisi, L.2    Creek, K.E.3
  • 91
    • 44949176018 scopus 로고    scopus 로고
    • A novel diffuse gastric cancer susceptibility variant in E-cadherin (CDH1) intron 2: a case control study in an Italian population
    • Nasri S, More H, Graziano F, et al. A novel diffuse gastric cancer susceptibility variant in E-cadherin (CDH1) intron 2: a case control study in an Italian population. BMC Cancer 2008;8:138.
    • (2008) BMC Cancer , vol.8 , pp. 138
    • Nasri, S.1    More, H.2    Graziano, F.3
  • 92
    • 84949220651 scopus 로고    scopus 로고
    • MiR-1290 promotes cancer progression by targeting nuclear factor I/X(NFIX) in esophageal squamous cell carcinoma (ESCC)
    • Mao Y, Liu J, Zhang D, et al. MiR-1290 promotes cancer progression by targeting nuclear factor I/X(NFIX) in esophageal squamous cell carcinoma (ESCC). Biomed Pharmacother 2015;76:82–93.
    • (2015) Biomed Pharmacother , vol.76 , pp. 82-93
    • Mao, Y.1    Liu, J.2    Zhang, D.3
  • 93
    • 84911427872 scopus 로고    scopus 로고
    • miR-29a activates Hes1 by targeting Nfia in esophageal carcinoma cell line TE-1
    • Liu C, Duan P, Li B, et al. miR-29a activates Hes1 by targeting Nfia in esophageal carcinoma cell line TE-1. Oncol Lett 2015;9:96–102.
    • (2015) Oncol Lett , vol.9 , pp. 96-102
    • Liu, C.1    Duan, P.2    Li, B.3
  • 94
    • 84969903092 scopus 로고    scopus 로고
    • Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma
    • Stringer BW, Bunt J, Day BW, et al. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 2016;7:29306–29320.
    • (2016) Oncotarget , vol.7 , pp. 29306-29320
    • Stringer, B.W.1    Bunt, J.2    Day, B.W.3
  • 95
    • 84893153918 scopus 로고    scopus 로고
    • A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and PAI1
    • Lee JS, Xiao JP, Patel P, et al. A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and PAI1. Neuro-Oncology 2014;16:191–203.
    • (2014) Neuro-Oncology , vol.16 , pp. 191-203
    • Lee, J.S.1    Xiao, J.P.2    Patel, P.3
  • 96
    • 84881525787 scopus 로고    scopus 로고
    • The miR-223/nuclear factor I-A axis regulates glial precursor proliferation and tumorigenesis in the CNS
    • Glasgow SM, Laug D, Brawley VS, et al. The miR-223/nuclear factor I-A axis regulates glial precursor proliferation and tumorigenesis in the CNS. J Neurosci 2013;33:13560–8.
    • (2013) J Neurosci , vol.33 , pp. 13560-13568
    • Glasgow, S.M.1    Laug, D.2    Brawley, V.S.3
  • 97
    • 84921657405 scopus 로고    scopus 로고
    • p53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFIB
    • Zhang Q, Cao LY, Cheng SJ, et al. p53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFIB. Oncol Rep 2015;33:1335–41.
    • (2015) Oncol Rep , vol.33 , pp. 1335-1341
    • Zhang, Q.1    Cao, L.Y.2    Cheng, S.J.3
  • 98
    • 84988568903 scopus 로고    scopus 로고
    • Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma
    • Becker-Santos DD, Thu KL, English JC, et al. Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma. J Pathol 2016;240:161–72.
    • (2016) J Pathol , vol.240 , pp. 161-172
    • Becker-Santos, D.D.1    Thu, K.L.2    English, J.C.3
  • 99
    • 84941765323 scopus 로고    scopus 로고
    • A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma
    • Mirabello L, Koster R, Moriarity BS, et al. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma. Cancer Discov 2015;5:920–31.
    • (2015) Cancer Discov , vol.5 , pp. 920-931
    • Mirabello, L.1    Koster, R.2    Moriarity, B.S.3
  • 100
    • 79960463418 scopus 로고    scopus 로고
    • Nuclear factor I/B is an oncogene in small cell lung cancer
    • Dooley AL, Winslow MM, Chiang DY, et al. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev 2011;25:1470–5.
    • (2011) Genes Dev , vol.25 , pp. 1470-1475
    • Dooley, A.L.1    Winslow, M.M.2    Chiang, D.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.