-
1
-
-
84869106751
-
Common complications in the critically ill patient
-
K. B. To and L. M. Napolitano, "Common complications in the critically ill patient," Surgical Clinics North Amer., vol. 92, no. 6, pp. 1519-1557, 2012.
-
(2012)
Surgical Clinics North Amer.
, vol.92
, Issue.6
, pp. 1519-1557
-
-
To, K.B.1
Napolitano, L.M.2
-
2
-
-
0024004363
-
Common complications in critically ill patients
-
C. M. Wollschlager and A. R. Conrad, "Common complications in critically ill patients," Disease-a-Month, vol. 34, no. 5, pp. 225-293, 1988.
-
(1988)
Disease-a-Month
, vol.34
, Issue.5
, pp. 225-293
-
-
Wollschlager, C.M.1
Conrad, A.R.2
-
3
-
-
79251609700
-
Long-term complications of critical care
-
S. V. Desai, T. J. Law, and D. M. Needham, "Long-term complications of critical care," Critical Care Med., vol. 39, no. 2, pp. 371-379, 2011.
-
(2011)
Critical Care Med.
, vol.39
, Issue.2
, pp. 371-379
-
-
Desai, S.V.1
Law, T.J.2
Needham, D.M.3
-
4
-
-
84889259884
-
Critical care medicine in the United States: Addressing the intensivist shortage and image of the specialty
-
N. A. Halpern, S. M. Pastores, J. M. Oropello, and V. Kvetan, "Critical care medicine in the United States: Addressing the intensivist shortage and image of the specialty," Critical Care Med., vol. 41, no. 12, pp. 2754-2761, 2013.
-
(2013)
Critical Care Med.
, vol.41
, Issue.12
, pp. 2754-2761
-
-
Halpern, N.A.1
Pastores, S.M.2
Oropello, J.M.3
Kvetan, V.4
-
5
-
-
84962092181
-
Machine learning and decision support in critical care
-
Feb.
-
A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A. Clifton, and G. D. Clifford, "Machine learning and decision support in critical care," Proc. IEEE, vol. 104, no. 2, pp. 444-466, Feb. 2016.
-
(2016)
Proc. IEEE
, vol.104
, Issue.2
, pp. 444-466
-
-
Johnson, A.E.W.1
Ghassemi, M.M.2
Nemati, S.3
Niehaus, K.E.4
Clifton, D.A.5
Clifford, G.D.6
-
6
-
-
85099688310
-
Making big data useful for health care: A summary of the inaugural MIT critical data conference
-
O. Badawi et al., "Making big data useful for health care: A summary of the inaugural MIT critical data conference," JMIR Med. Informat., vol. 2, no. 2, p. e22, 2014.
-
(2014)
JMIR Med. Informat.
, vol.2
, Issue.2
, pp. e22
-
-
Badawi, O.1
-
7
-
-
85044948630
-
-
Boca Raton, FL, USA: CRC Press
-
C. K. Reddy and C. C. Aggarwal, Healthcare Data Analytics, vol. 36. Boca Raton, FL, USA: CRC Press, 2015.
-
(2015)
Healthcare Data Analytics
, vol.36
-
-
Reddy, C.K.1
Aggarwal, C.C.2
-
8
-
-
84880851453
-
ICDA: A platform for intelligent care delivery analytics
-
D. Gotz, H. Stavropoulos, J. Sun, and F. Wang, "ICDA: A platform for intelligent care delivery analytics," in Proc. AMIA Annu. Symp., 2012, pp. 264-273.
-
(2012)
Proc. AMIA Annu. Symp.
, pp. 264-273
-
-
Gotz, D.1
Stavropoulos, H.2
Sun, J.3
Wang, F.4
-
9
-
-
84880821054
-
Matrixflow: Temporal network visual analytics to track symptom evolution during disease progression
-
A. Perer and J. Sun, "Matrixflow: Temporal network visual analytics to track symptom evolution during disease progression," in Proc. AMIA Annu. Symp., 2012, pp. 716-725.
-
(2012)
Proc. AMIA Annu. Symp.
, pp. 716-725
-
-
Perer, A.1
Sun, J.2
-
10
-
-
84866007817
-
An integrated data mining approach to real-time clinical monitoring and deterioration warning
-
Y. Mao,W. Chen, Y. Chen, C. Lu, M. Kollef, and T. Bailey, "An integrated data mining approach to real-time clinical monitoring and deterioration warning," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining. 2012, pp. 1140-1148.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
, pp. 1140-1148
-
-
Mao, Y.1
Chen, W.2
Chen, Y.3
Lu, C.4
Kollef, M.5
Bailey, T.6
-
11
-
-
84877753184
-
Patient risk stratification for hospital-associated C. Diff as a time-series classification task
-
J. Wiens, E. Horvitz, and J. V. Guttag, "Patient risk stratification for hospital-associated C. Diff as a time-series classification task," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 467-475.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 467-475
-
-
Wiens, J.1
Horvitz, E.2
Guttag, J.V.3
-
12
-
-
84969249594
-
Learning individual and population level traits from clinical temporal data
-
(NIPS), Predictive Models Personalized Med. Workshop
-
S. Saria, D. Koller, and A. Penn, "Learning individual and population level traits from clinical temporal data," in Neural Inf. Process. Syst. (NIPS), Predictive Models Personalized Med. Workshop, 2010.
-
(2010)
Neural Inf. Process. Syst.
-
-
Saria, S.1
Koller, D.2
Penn, A.3
-
13
-
-
84919921759
-
Multitask Gaussian processes for multivariate physiological time-series analysis
-
Jan.
-
R. Dürichen, M. A. F. Pimentel, L. Clifton, A. Schweikard, and D. A. Clifton, "Multitask Gaussian processes for multivariate physiological time-series analysis," IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 314-322, Jan. 2015.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.1
, pp. 314-322
-
-
Dürichen, R.1
Pimentel, M.A.F.2
Clifton, L.3
Schweikard, A.4
Clifton, D.A.5
-
14
-
-
84959548610
-
Amultivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
-
M. Ghassemi et al., "Amultivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data," in Proc. AAAI Conf. Artif. Intell., 2015, pp. 446-453.
-
(2015)
Proc. AAAI Conf. Artif. Intell.
, pp. 446-453
-
-
Ghassemi, M.1
-
15
-
-
84856065603
-
A pattern mining approach for classifying multivariate temporal data
-
(BIBM)
-
I. Batal, H. Valizadegan, G. F. Cooper, and M. Hauskrecht, "A pattern mining approach for classifying multivariate temporal data," in Proc. IEEE Int. Conf. Bioinformatics Biomed. (BIBM), 2011, pp. 358-365.
-
(2011)
Proc. IEEE Int. Conf. Bioinformatics Biomed.
, pp. 358-365
-
-
Batal, I.1
Valizadegan, H.2
Cooper, G.F.3
Hauskrecht, M.4
-
16
-
-
84923282421
-
Efficient inference of Gaussian-process-modulated renewal processes with application to medical event data
-
T. A. Lasko, "Efficient inference of Gaussian-process-modulated renewal processes with application to medical event data," in Proc. Uncertainty Artif. Intell., 2014, p. 469-476.
-
(2014)
Proc. Uncertainty Artif. Intell.
, pp. 469-476
-
-
Lasko, T.A.1
-
17
-
-
84954176590
-
Dynamically modeling patient's health state from electronic medical records: A time series approach
-
Discovery Data Mining
-
K. L. C. Barajas and R. Akella, "Dynamically modeling patient's health state from electronic medical records: A time series approach," in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 69-78.
-
(2015)
Proc. 21st ACM SIGKDD Int. Conf. Knowl
, pp. 69-78
-
-
Barajas, K.L.C.1
Akella, R.2
-
18
-
-
84907021735
-
Unsupervised learning of disease progression models
-
X. Wang, D. Sontag, and F. Wang, "Unsupervised learning of disease progression models," in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 85-94.
-
(2014)
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 85-94
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
19
-
-
77956642489
-
Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis
-
M. J. Cohen, A. D. Grossman, D. Morabito, M. M. Knudson, A. J. Butte, and G. T. Manley, "Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis," Critical Care, vol. 14, no. 1, p. 1, 2010.
-
(2010)
Critical Care
, vol.14
, Issue.1
, pp. 1
-
-
Cohen, M.J.1
Grossman, A.D.2
Morabito, D.3
Knudson, M.M.4
Butte, A.J.5
Manley, G.T.6
-
20
-
-
84866037290
-
Modeling disease progression via fused sparse group lasso
-
J. Zhou, J. Liu, V. A. Narayan, and J. Ye, "Modeling disease progression via fused sparse group lasso," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 1095-1103.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1095-1103
-
-
Zhou, J.1
Liu, J.2
Narayan, V.A.3
Ye, J.4
-
21
-
-
84963511141
-
Constructing disease network and temporal progression model via context-sensitive hawkes process
-
E. Choi, N. Du, R. Chen, L. Song, and J. Sun, "Constructing disease network and temporal progression model via context-sensitive hawkes process," in Proc. IEEE Int. Conf. Data Mining (ICDM), 2015, pp. 721-726.
-
(2015)
Proc. IEEE Int. Conf. Data Mining (ICDM)
, pp. 721-726
-
-
Choi, E.1
Du, N.2
Chen, R.3
Song, L.4
Sun, J.5
-
22
-
-
84947906337
-
Learning probabilistic phenotypes from heterogeneous EHR data
-
Dec.
-
R. Pivovarov, A. J. Perotte, E. Grave, J. Angiolillo, C. H. Wiggins, and N. Elhadad, "Learning probabilistic phenotypes from heterogeneous EHR data," J. Biomed. Informat., vol. 58, pp. 156-165, Dec. 2015.
-
(2015)
J. Biomed. Informat.
, vol.58
, pp. 156-165
-
-
Pivovarov, R.1
Perotte, A.J.2
Grave, E.3
Angiolillo, J.4
Wiggins, C.H.5
Elhadad, N.6
-
23
-
-
84857720381
-
Unsupervised pattern discovery in electronic health care data using probabilistic clustering models
-
B. M. Marlin, D. C. Kale, R. G. Khemani, and R. C. Wetzel, "Unsupervised pattern discovery in electronic health care data using probabilistic clustering models," in Proc. 2nd ACM SIGHIT Int. Health Informat. Symp., 2012, pp. 389-398.
-
(2012)
Proc. 2nd ACM SIGHIT Int. Health Informat. Symp.
, pp. 389-398
-
-
Marlin, B.M.1
Kale, D.C.2
Khemani, R.G.3
Wetzel, R.C.4
-
24
-
-
84954158331
-
Deep computational phenotyping
-
Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, "Deep computational phenotyping," in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 507-516.
-
(2015)
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 507-516
-
-
Che, Z.1
Kale, D.2
Li, W.3
Bahadori, M.T.4
Liu, Y.5
-
25
-
-
84970890007
-
Computational discovery of physiomes in critically ill children using deep learning
-
D. C. Kale, Z. Che, Y. Liu, and R. Wetzel, "Computational discovery of physiomes in critically ill children using deep learning," in Proc. Workshop DMMI AMIA, 2014, pp. 1-2.
-
(2014)
Proc. Workshop DMMI AMIA
, pp. 1-2
-
-
Kale, D.C.1
Che, Z.2
Liu, Y.3
Wetzel, R.4
-
26
-
-
84907024756
-
Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization
-
J. C. Ho, J. Ghosh, and J. Sun, "Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization," in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 115-124.
-
(2014)
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 115-124
-
-
Ho, J.C.1
Ghosh, J.2
Sun, J.3
-
27
-
-
84907034165
-
From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records
-
J. Zhou, F. Wang, J. Hu, and J. Ye, "From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records," in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 135-144.
-
(2014)
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 135-144
-
-
Zhou, J.1
Wang, F.2
Hu, J.3
Ye, J.4
-
28
-
-
84960123355
-
Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery
-
P. Schulam, F. Wigley, and S. Saria, "Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery," in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 2956-2964.
-
(2015)
Proc. 29th AAAI Conf. Artif. Intell.
, pp. 2956-2964
-
-
Schulam, P.1
Wigley, F.2
Saria, S.3
-
29
-
-
84954089313
-
Temporal phenotyping from longitudinal electronic health records: A graph based framework
-
C. Liu, F. Wang, J. Hu, and H. Xiong, "Temporal phenotyping from longitudinal electronic health records: A graph based framework," in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 705-714.
-
(2015)
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 705-714
-
-
Liu, C.1
Wang, F.2
Hu, J.3
Xiong, H.4
-
30
-
-
84952653681
-
Building the graph of medicine from millions of clinical narratives
-
S. G. Finlayson, P. LePendu, and N. H. Shah, "Building the graph of medicine from millions of clinical narratives," Sci. Data, vol. 1, 2014, Art. no. 140032, doi:10. 1038/sdata. 2014. 32.
-
(2014)
Sci. Data
, vol.1
-
-
Finlayson, S.G.1
LePendu, P.2
Shah, N.H.3
-
31
-
-
84922770448
-
A matching framework for modeling symptom and medication relationships from clinical notes
-
Y. Ling, Y. An, and X. Hu, "A matching framework for modeling symptom and medication relationships from clinical notes," in Proc. IEEE Int. Conf. Bioinformatics Biomed. (BIBM), 2014, pp. 515-520.
-
(2014)
Proc. IEEE Int. Conf. Bioinformatics Biomed. (BIBM)
, pp. 515-520
-
-
Ling, Y.1
An, Y.2
Hu, X.3
-
32
-
-
84866006478
-
Sympgraph: A framework for mining clinical notes through symptom relation graphs
-
P. Sondhi, J. Sun, H. Tong, and C. Zhai, "Sympgraph: A framework for mining clinical notes through symptom relation graphs," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 1167-1175.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1167-1175
-
-
Sondhi, P.1
Sun, J.2
Tong, H.3
Zhai, C.4
-
33
-
-
84925709587
-
Text mining for adverse drug events: The promise, challenges, and state of the art
-
R. Harpaz et al., "Text mining for adverse drug events: The promise, challenges, and state of the art," Drug Safety, vol. 37, no. 10, pp. 777-790, 2014.
-
(2014)
Drug Safety
, vol.37
, Issue.10
, pp. 777-790
-
-
Harpaz, R.1
-
34
-
-
0028955263
-
Unlocking clinical data from narrative reports: A study of natural language processing
-
G. Hripcsak, C. Friedman, P. O. Alderson, W. DuMouchel, S. B. Johnson, and P. D. Clayton, "Unlocking clinical data from narrative reports: A study of natural language processing," Ann. Internal Med., vol. 122, no. 9, pp. 681-688, 1995.
-
(1995)
Ann. Internal Med.
, vol.122
, Issue.9
, pp. 681-688
-
-
Hripcsak, G.1
Friedman, C.2
Alderson, P.O.3
DuMouchel, W.4
Johnson, S.B.5
Clayton, P.D.6
-
35
-
-
33847644460
-
Automated identification of adverse events related to central venous catheters
-
J. F. E. Penz, A. B. Wilcox, and J. F. Hurdle, "Automated identification of adverse events related to central venous catheters," J. Biomed. Informat., vol. 40, no. 2, pp. 174-182, 2007.
-
(2007)
J. Biomed. Informat.
, vol.40
, Issue.2
, pp. 174-182
-
-
Penz, J.F.E.1
Wilcox, A.B.2
Hurdle, J.F.3
-
36
-
-
80052063328
-
Automated identification of postoperative complications within an electronic medical record using natural language processing
-
H. J. Murff et al., "Automated identification of postoperative complications within an electronic medical record using natural language processing," JAMA, vol. 306, no. 8, pp. 848-855, 2011.
-
(2011)
JAMA
, vol.306
, Issue.8
, pp. 848-855
-
-
Murff, H.J.1
-
37
-
-
84880830110
-
Risk stratification of ICU patients using topic models inferred from unstructured progress notes
-
L.-W. Lehman, M. Saeed, W. Long, J. Lee, and R. Mark, "Risk stratification of ICU patients using topic models inferred from unstructured progress notes," in Proc. AMIA Annu. Symp., 2012, pp. 505-511.
-
(2012)
Proc. AMIA Annu. Symp.
, pp. 505-511
-
-
Lehman, L.-W.1
Saeed, M.2
Long, W.3
Lee, J.4
Mark, R.5
-
39
-
-
84900027892
-
Predicting depression via social media
-
M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz, "Predicting depression via social media," in Proc. ICWSM, 2013, p. 2.
-
(2013)
Proc. ICWSM
, pp. 2
-
-
De Choudhury, M.1
Gamon, M.2
Counts, S.3
Horvitz, E.4
-
40
-
-
84960156699
-
Graph-sparse LDA: A topic model with structured sparsity
-
F. Doshi-Velez, B. C. Wallace, R. Adams, "Graph-sparse LDA: A topic model with structured sparsity," in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 2575-2581.
-
(2015)
Proc. 29th AAAI Conf. Artif. Intell.
, pp. 2575-2581
-
-
Doshi-Velez, F.1
Wallace, B.C.2
Adams, R.3
-
41
-
-
0036945542
-
Mimic II: A massive temporal ICU patient database to support research in intelligent patient monitoring
-
M. Saeed, C. Lieu, G. Raber, and R. G. Mark, "Mimic II: A massive temporal ICU patient database to support research in intelligent patient monitoring," in Proc. Comput. Cardiol., 2002, pp. 641-644.
-
(2002)
Proc. Comput. Cardiol.
, pp. 641-644
-
-
Saeed, M.1
Lieu, C.2
Raber, G.3
Mark, R.G.4
-
42
-
-
14844283547
-
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
-
A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. e215-e220, 2000.
-
(2000)
Circulation
, vol.101
, Issue.23
, pp. e215-e220
-
-
Goldberger, A.L.1
-
43
-
-
84929501081
-
Predicting postoperative acute respiratory failure in critical care using nursing notes and physiological signals
-
V. Huddar, V. Rajan, S. Bhattacharya, and S. Roy, "Predicting postoperative acute respiratory failure in critical care using nursing notes and physiological signals," in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2014, pp. 2702-2705.
-
(2014)
Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC
, pp. 2702-2705
-
-
Huddar, V.1
Rajan, V.2
Bhattacharya, S.3
Roy, S.4
-
44
-
-
0141607824
-
Latent Dirichlet allocation
-
Mar.
-
D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
45
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, "Canonical correlation analysis: An overview with application to learning methods," Neural Comput., vol. 16, no. 12, pp. 2639-2664, 2004.
-
(2004)
Neural Comput.
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
46
-
-
0000107975
-
Relations between two sets of variates
-
H. Hotelling, "Relations between two sets of variates," Biometrika, vol. 28, nos. 3-4, pp. 321-377, 1936.
-
(1936)
Biometrika
, vol.28
, Issue.3-4
, pp. 321-377
-
-
Hotelling, H.1
-
47
-
-
33749236995
-
Robust probabilistic projections
-
C. Archambeau, N. Delannay, and M. Verleysen, "Robust probabilistic projections," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 33-40.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn.
, pp. 33-40
-
-
Archambeau, C.1
Delannay, N.2
Verleysen, M.3
-
48
-
-
84877621868
-
Bayesian canonical correlation analysis
-
A. Klami, S. Virtanen, and S. Kaski, "Bayesian canonical correlation analysis," J. Mach. Learn. Res., vol. 14, no. 1, pp. 965-1003, 2013.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, Issue.1
, pp. 965-1003
-
-
Klami, A.1
Virtanen, S.2
Kaski, S.3
-
49
-
-
84877624534
-
Factorized multi-modal topic model
-
S. Virtanen, Y. Jia, A. Klami, and T. Darrell, "Factorized multi-modal topic model," in Proc. 28th Conf. Annu. Conf. Uncertainty Artif. Intell. (UAI-12), 2012, pp. 843-851.
-
(2012)
Proc. 28th Conf. Annu. Conf. Uncertainty Artif. Intell. (UAI-12)
, pp. 843-851
-
-
Virtanen, S.1
Jia, Y.2
Klami, A.3
Darrell, T.4
-
51
-
-
81055141262
-
Development and validation of a risk calculator predicting postoperative respiratory failure
-
H. Gupta et al., "Development and validation of a risk calculator predicting postoperative respiratory failure," Chest J., vol. 140, no. 5, pp. 1207-1215, 2011.
-
(2011)
Chest J.
, vol.140
, Issue.5
, pp. 1207-1215
-
-
Gupta, H.1
-
52
-
-
0033866548
-
Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery
-
A. M. Arozullah, J. Daley,W. G. Henderson, and S. F. Khuri, "Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery," Ann. Surgery, vol. 232, no. 2, pp. 242-253, 2000.
-
(2000)
Ann. Surgery
, vol.232
, Issue.2
, pp. 242-253
-
-
Arozullah, A.M.1
Daley, J.2
Henderson, W.G.3
Khuri, S.F.4
-
53
-
-
34249292627
-
Multivariable predictors of postoperative respiratory failure after general and vascular surgery: Results from the patient safety in surgery study
-
R. G. Johnson, A. M. Arozullah, L. Neumayer, W. G. Henderson, P. Hosokawa, and S. F. Khuri, "Multivariable predictors of postoperative respiratory failure after general and vascular surgery: Results from the patient safety in surgery study," J. Amer. College Surgeons, vol. 204, no. 6, pp. 1188-1198, 2007.
-
(2007)
J. Amer. College Surgeons
, vol.204
, Issue.6
, pp. 1188-1198
-
-
Johnson, R.G.1
Arozullah, A.M.2
Neumayer, L.3
Henderson, W.G.4
Hosokawa, P.5
Khuri, S.F.6
-
54
-
-
78650172031
-
Prediction of postoperative pulmonary complications in a population-based surgical cohort
-
J. Canet et al., "Prediction of postoperative pulmonary complications in a population-based surgical cohort," The J. Amer. Soc. Anesthesiologists, vol. 113, no. 6, pp. 1338-1350, 2010.
-
(2010)
The J. Amer. Soc. Anesthesiologists
, vol.113
, Issue.6
, pp. 1338-1350
-
-
Canet, J.1
-
55
-
-
78650060535
-
Early identification of patients at risk of acute lung injury: Evaluation of lung injury prediction score in a multicenter cohort study
-
O. Gajic et al., "Early identification of patients at risk of acute lung injury: Evaluation of lung injury prediction score in a multicenter cohort study," Amer. J. Respiratory Critical Care Med., vol. 183, no. 4, pp. 462-470, 2011.
-
(2011)
Amer. J. Respiratory Critical Care Med.
, vol.183
, Issue.4
, pp. 462-470
-
-
Gajic, O.1
-
56
-
-
24944566109
-
Determinants of long-term survival after major surgery and the adverse effect of postoperative complications
-
S. F. Khuri et al., "Determinants of long-term survival after major surgery and the adverse effect of postoperative complications," Ann. Surgery, vol. 242, no. 3, p. 326-341, 2005.
-
(2005)
Ann. Surgery
, vol.242
, Issue.3
, pp. 326-341
-
-
Khuri, S.F.1
-
57
-
-
6944244108
-
Hospital costs associated with surgical complications: A report from the private-sector national surgical quality improvement program
-
J. B. Dimick, S. L. Chen, P. A. Taheri,W. G. Henderson, S. F. Khuri, and D. A. Campbell Jr., "Hospital costs associated with surgical complications: A report from the private-sector national surgical quality improvement program," J. Amer. College Surgeons, vol. 199, no. 4, pp. 531-537, 2004.
-
(2004)
J. Amer. College Surgeons
, vol.199
, Issue.4
, pp. 531-537
-
-
Dimick, J.B.1
Chen, S.L.2
Taheri, P.A.3
Henderson, W.G.4
Khuri, S.F.5
Campbell, D.A.6
-
58
-
-
84858129014
-
Postoperative pulmonary complications: Pneumonia and acute respiratory failure
-
G. Sachdev and L. M. Napolitano, "Postoperative pulmonary complications: Pneumonia and acute respiratory failure," Surgical Clinics North Amer., vol. 92, no. 2, pp. 321-344, 2012.
-
(2012)
Surgical Clinics North Amer.
, vol.92
, Issue.2
, pp. 321-344
-
-
Sachdev, G.1
Napolitano, L.M.2
-
59
-
-
84895067436
-
Postoperative respiratory failure: Pathogenesis, prediction, and prevention
-
J. Canet and L. Gallart, "Postoperative respiratory failure: Pathogenesis, prediction, and prevention," Current Opinion Critical Care, vol. 20, no. 1, pp. 56-62, 2014.
-
(2014)
Current Opinion Critical Care
, vol.20
, Issue.1
, pp. 56-62
-
-
Canet, J.1
Gallart, L.2
-
60
-
-
33646012328
-
Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American college of physicians
-
G. W. Smetana, V. A. Lawrence, and J. E. Cornell, "Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American college of physicians," Ann. Internal Med., vol. 144, no. 8, pp. 581-595, 2006.
-
(2006)
Ann. Internal Med.
, vol.144
, Issue.8
, pp. 581-595
-
-
Smetana, G.W.1
Lawrence, V.A.2
Cornell, J.E.3
-
61
-
-
79959513244
-
Derivation and diagnostic accuracy of the surgical lung injury prediction model
-
D. J. Kor et al., "Derivation and diagnostic accuracy of the surgical lung injury prediction model," J. Amer. Soc. Anesthesiologists, vol. 115, no. 1, pp. 117-128, 2011.
-
(2011)
J. Amer. Soc. Anesthesiologists
, vol.115
, Issue.1
, pp. 117-128
-
-
Kor, D.J.1
-
62
-
-
79959501639
-
Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery
-
S. K. Ramachandran, O. O. Nau, A. Ghaferi, K. K. Tremper, A. Shanks, and S. Kheterpal, "Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery," J. Amer. Soc. Anesthesiologists, vol. 115, no. 1, pp. 44-53, 2011.
-
(2011)
J. Amer. Soc. Anesthesiologists
, vol.115
, Issue.1
, pp. 44-53
-
-
Ramachandran, S.K.1
Nau, O.O.2
Ghaferi, A.3
Tremper, K.K.4
Shanks, A.5
Kheterpal, S.6
-
63
-
-
84871617460
-
Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population
-
J. M. Blum et al., "Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population," J. Amer. Soc. Anesthesiologists, vol. 118, no. 1, pp. 19-29, 2013.
-
(2013)
J. Amer. Soc. Anesthesiologists
, vol.118
, Issue.1
, pp. 19-29
-
-
Blum, J.M.1
-
64
-
-
84878642376
-
Development and validation of a score for prediction of postoperative respiratory complications
-
B. Brueckmann et al., "Development and validation of a score for prediction of postoperative respiratory complications," The J. Amer. Soc. Anesthesiologists, vol. 118, no. 6, pp. 1276-1285, 2013.
-
(2013)
The J. Amer. Soc. Anesthesiologists
, vol.118
, Issue.6
, pp. 1276-1285
-
-
Brueckmann, B.1
-
65
-
-
84862996772
-
A scoring system to predict unplanned intubation in patients having undergone major surgical procedures
-
M. Hua, J. Brady, and G. Li, "A scoring system to predict unplanned intubation in patients having undergone major surgical procedures," Anes-thesia Analgesia, vol. 115, no. 1, pp. 88-94, 2012.
-
(2012)
Anes-thesia Analgesia
, vol.115
, Issue.1
, pp. 88-94
-
-
Hua, M.1
Brady, J.2
Li, G.3
-
66
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Oct.
-
F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
67
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, no. 1, pp. 321-357, 2002.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, A.P.4
|