메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages 7988-8001

Predicting Complications in Critical Care Using Heterogeneous Clinical Data

Author keywords

Clinical notes; collective matrix factorization; heterogeneous data; multi view learning; postoperative respiratory failure; topic models

Indexed keywords

FACTORIZATION; HOSPITALS; LEARNING SYSTEMS; MEDICAL COMPUTING;

EID: 85012871270     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2016.2618775     Document Type: Article
Times cited : (37)

References (67)
  • 1
    • 84869106751 scopus 로고    scopus 로고
    • Common complications in the critically ill patient
    • K. B. To and L. M. Napolitano, "Common complications in the critically ill patient," Surgical Clinics North Amer., vol. 92, no. 6, pp. 1519-1557, 2012.
    • (2012) Surgical Clinics North Amer. , vol.92 , Issue.6 , pp. 1519-1557
    • To, K.B.1    Napolitano, L.M.2
  • 2
    • 0024004363 scopus 로고
    • Common complications in critically ill patients
    • C. M. Wollschlager and A. R. Conrad, "Common complications in critically ill patients," Disease-a-Month, vol. 34, no. 5, pp. 225-293, 1988.
    • (1988) Disease-a-Month , vol.34 , Issue.5 , pp. 225-293
    • Wollschlager, C.M.1    Conrad, A.R.2
  • 3
    • 79251609700 scopus 로고    scopus 로고
    • Long-term complications of critical care
    • S. V. Desai, T. J. Law, and D. M. Needham, "Long-term complications of critical care," Critical Care Med., vol. 39, no. 2, pp. 371-379, 2011.
    • (2011) Critical Care Med. , vol.39 , Issue.2 , pp. 371-379
    • Desai, S.V.1    Law, T.J.2    Needham, D.M.3
  • 4
    • 84889259884 scopus 로고    scopus 로고
    • Critical care medicine in the United States: Addressing the intensivist shortage and image of the specialty
    • N. A. Halpern, S. M. Pastores, J. M. Oropello, and V. Kvetan, "Critical care medicine in the United States: Addressing the intensivist shortage and image of the specialty," Critical Care Med., vol. 41, no. 12, pp. 2754-2761, 2013.
    • (2013) Critical Care Med. , vol.41 , Issue.12 , pp. 2754-2761
    • Halpern, N.A.1    Pastores, S.M.2    Oropello, J.M.3    Kvetan, V.4
  • 6
    • 85099688310 scopus 로고    scopus 로고
    • Making big data useful for health care: A summary of the inaugural MIT critical data conference
    • O. Badawi et al., "Making big data useful for health care: A summary of the inaugural MIT critical data conference," JMIR Med. Informat., vol. 2, no. 2, p. e22, 2014.
    • (2014) JMIR Med. Informat. , vol.2 , Issue.2 , pp. e22
    • Badawi, O.1
  • 8
    • 84880851453 scopus 로고    scopus 로고
    • ICDA: A platform for intelligent care delivery analytics
    • D. Gotz, H. Stavropoulos, J. Sun, and F. Wang, "ICDA: A platform for intelligent care delivery analytics," in Proc. AMIA Annu. Symp., 2012, pp. 264-273.
    • (2012) Proc. AMIA Annu. Symp. , pp. 264-273
    • Gotz, D.1    Stavropoulos, H.2    Sun, J.3    Wang, F.4
  • 9
    • 84880821054 scopus 로고    scopus 로고
    • Matrixflow: Temporal network visual analytics to track symptom evolution during disease progression
    • A. Perer and J. Sun, "Matrixflow: Temporal network visual analytics to track symptom evolution during disease progression," in Proc. AMIA Annu. Symp., 2012, pp. 716-725.
    • (2012) Proc. AMIA Annu. Symp. , pp. 716-725
    • Perer, A.1    Sun, J.2
  • 11
    • 84877753184 scopus 로고    scopus 로고
    • Patient risk stratification for hospital-associated C. Diff as a time-series classification task
    • J. Wiens, E. Horvitz, and J. V. Guttag, "Patient risk stratification for hospital-associated C. Diff as a time-series classification task," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 467-475.
    • (2012) Proc. Adv. Neural Inf. Process. Syst. , pp. 467-475
    • Wiens, J.1    Horvitz, E.2    Guttag, J.V.3
  • 12
    • 84969249594 scopus 로고    scopus 로고
    • Learning individual and population level traits from clinical temporal data
    • (NIPS), Predictive Models Personalized Med. Workshop
    • S. Saria, D. Koller, and A. Penn, "Learning individual and population level traits from clinical temporal data," in Neural Inf. Process. Syst. (NIPS), Predictive Models Personalized Med. Workshop, 2010.
    • (2010) Neural Inf. Process. Syst.
    • Saria, S.1    Koller, D.2    Penn, A.3
  • 13
    • 84919921759 scopus 로고    scopus 로고
    • Multitask Gaussian processes for multivariate physiological time-series analysis
    • Jan.
    • R. Dürichen, M. A. F. Pimentel, L. Clifton, A. Schweikard, and D. A. Clifton, "Multitask Gaussian processes for multivariate physiological time-series analysis," IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 314-322, Jan. 2015.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.1 , pp. 314-322
    • Dürichen, R.1    Pimentel, M.A.F.2    Clifton, L.3    Schweikard, A.4    Clifton, D.A.5
  • 14
    • 84959548610 scopus 로고    scopus 로고
    • Amultivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
    • M. Ghassemi et al., "Amultivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data," in Proc. AAAI Conf. Artif. Intell., 2015, pp. 446-453.
    • (2015) Proc. AAAI Conf. Artif. Intell. , pp. 446-453
    • Ghassemi, M.1
  • 16
    • 84923282421 scopus 로고    scopus 로고
    • Efficient inference of Gaussian-process-modulated renewal processes with application to medical event data
    • T. A. Lasko, "Efficient inference of Gaussian-process-modulated renewal processes with application to medical event data," in Proc. Uncertainty Artif. Intell., 2014, p. 469-476.
    • (2014) Proc. Uncertainty Artif. Intell. , pp. 469-476
    • Lasko, T.A.1
  • 17
    • 84954176590 scopus 로고    scopus 로고
    • Dynamically modeling patient's health state from electronic medical records: A time series approach
    • Discovery Data Mining
    • K. L. C. Barajas and R. Akella, "Dynamically modeling patient's health state from electronic medical records: A time series approach," in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 69-78.
    • (2015) Proc. 21st ACM SIGKDD Int. Conf. Knowl , pp. 69-78
    • Barajas, K.L.C.1    Akella, R.2
  • 19
    • 77956642489 scopus 로고    scopus 로고
    • Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis
    • M. J. Cohen, A. D. Grossman, D. Morabito, M. M. Knudson, A. J. Butte, and G. T. Manley, "Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis," Critical Care, vol. 14, no. 1, p. 1, 2010.
    • (2010) Critical Care , vol.14 , Issue.1 , pp. 1
    • Cohen, M.J.1    Grossman, A.D.2    Morabito, D.3    Knudson, M.M.4    Butte, A.J.5    Manley, G.T.6
  • 21
    • 84963511141 scopus 로고    scopus 로고
    • Constructing disease network and temporal progression model via context-sensitive hawkes process
    • E. Choi, N. Du, R. Chen, L. Song, and J. Sun, "Constructing disease network and temporal progression model via context-sensitive hawkes process," in Proc. IEEE Int. Conf. Data Mining (ICDM), 2015, pp. 721-726.
    • (2015) Proc. IEEE Int. Conf. Data Mining (ICDM) , pp. 721-726
    • Choi, E.1    Du, N.2    Chen, R.3    Song, L.4    Sun, J.5
  • 25
    • 84970890007 scopus 로고    scopus 로고
    • Computational discovery of physiomes in critically ill children using deep learning
    • D. C. Kale, Z. Che, Y. Liu, and R. Wetzel, "Computational discovery of physiomes in critically ill children using deep learning," in Proc. Workshop DMMI AMIA, 2014, pp. 1-2.
    • (2014) Proc. Workshop DMMI AMIA , pp. 1-2
    • Kale, D.C.1    Che, Z.2    Liu, Y.3    Wetzel, R.4
  • 26
    • 84907024756 scopus 로고    scopus 로고
    • Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization
    • J. C. Ho, J. Ghosh, and J. Sun, "Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization," in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 115-124.
    • (2014) Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining , pp. 115-124
    • Ho, J.C.1    Ghosh, J.2    Sun, J.3
  • 27
    • 84907034165 scopus 로고    scopus 로고
    • From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records
    • J. Zhou, F. Wang, J. Hu, and J. Ye, "From micro to macro: Data driven phenotyping by densification of longitudinal electronic medical records," in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 135-144.
    • (2014) Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining , pp. 135-144
    • Zhou, J.1    Wang, F.2    Hu, J.3    Ye, J.4
  • 28
    • 84960123355 scopus 로고    scopus 로고
    • Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery
    • P. Schulam, F. Wigley, and S. Saria, "Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery," in Proc. 29th AAAI Conf. Artif. Intell., 2015, pp. 2956-2964.
    • (2015) Proc. 29th AAAI Conf. Artif. Intell. , pp. 2956-2964
    • Schulam, P.1    Wigley, F.2    Saria, S.3
  • 30
    • 84952653681 scopus 로고    scopus 로고
    • Building the graph of medicine from millions of clinical narratives
    • S. G. Finlayson, P. LePendu, and N. H. Shah, "Building the graph of medicine from millions of clinical narratives," Sci. Data, vol. 1, 2014, Art. no. 140032, doi:10. 1038/sdata. 2014. 32.
    • (2014) Sci. Data , vol.1
    • Finlayson, S.G.1    LePendu, P.2    Shah, N.H.3
  • 31
    • 84922770448 scopus 로고    scopus 로고
    • A matching framework for modeling symptom and medication relationships from clinical notes
    • Y. Ling, Y. An, and X. Hu, "A matching framework for modeling symptom and medication relationships from clinical notes," in Proc. IEEE Int. Conf. Bioinformatics Biomed. (BIBM), 2014, pp. 515-520.
    • (2014) Proc. IEEE Int. Conf. Bioinformatics Biomed. (BIBM) , pp. 515-520
    • Ling, Y.1    An, Y.2    Hu, X.3
  • 33
    • 84925709587 scopus 로고    scopus 로고
    • Text mining for adverse drug events: The promise, challenges, and state of the art
    • R. Harpaz et al., "Text mining for adverse drug events: The promise, challenges, and state of the art," Drug Safety, vol. 37, no. 10, pp. 777-790, 2014.
    • (2014) Drug Safety , vol.37 , Issue.10 , pp. 777-790
    • Harpaz, R.1
  • 34
  • 35
    • 33847644460 scopus 로고    scopus 로고
    • Automated identification of adverse events related to central venous catheters
    • J. F. E. Penz, A. B. Wilcox, and J. F. Hurdle, "Automated identification of adverse events related to central venous catheters," J. Biomed. Informat., vol. 40, no. 2, pp. 174-182, 2007.
    • (2007) J. Biomed. Informat. , vol.40 , Issue.2 , pp. 174-182
    • Penz, J.F.E.1    Wilcox, A.B.2    Hurdle, J.F.3
  • 36
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • H. J. Murff et al., "Automated identification of postoperative complications within an electronic medical record using natural language processing," JAMA, vol. 306, no. 8, pp. 848-855, 2011.
    • (2011) JAMA , vol.306 , Issue.8 , pp. 848-855
    • Murff, H.J.1
  • 37
    • 84880830110 scopus 로고    scopus 로고
    • Risk stratification of ICU patients using topic models inferred from unstructured progress notes
    • L.-W. Lehman, M. Saeed, W. Long, J. Lee, and R. Mark, "Risk stratification of ICU patients using topic models inferred from unstructured progress notes," in Proc. AMIA Annu. Symp., 2012, pp. 505-511.
    • (2012) Proc. AMIA Annu. Symp. , pp. 505-511
    • Lehman, L.-W.1    Saeed, M.2    Long, W.3    Lee, J.4    Mark, R.5
  • 41
    • 0036945542 scopus 로고    scopus 로고
    • Mimic II: A massive temporal ICU patient database to support research in intelligent patient monitoring
    • M. Saeed, C. Lieu, G. Raber, and R. G. Mark, "Mimic II: A massive temporal ICU patient database to support research in intelligent patient monitoring," in Proc. Comput. Cardiol., 2002, pp. 641-644.
    • (2002) Proc. Comput. Cardiol. , pp. 641-644
    • Saeed, M.1    Lieu, C.2    Raber, G.3    Mark, R.G.4
  • 42
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
    • A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. e215-e220, 2000.
    • (2000) Circulation , vol.101 , Issue.23 , pp. e215-e220
    • Goldberger, A.L.1
  • 43
  • 44
  • 45
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, "Canonical correlation analysis: An overview with application to learning methods," Neural Comput., vol. 16, no. 12, pp. 2639-2664, 2004.
    • (2004) Neural Comput. , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 46
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling, "Relations between two sets of variates," Biometrika, vol. 28, nos. 3-4, pp. 321-377, 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 48
    • 84877621868 scopus 로고    scopus 로고
    • Bayesian canonical correlation analysis
    • A. Klami, S. Virtanen, and S. Kaski, "Bayesian canonical correlation analysis," J. Mach. Learn. Res., vol. 14, no. 1, pp. 965-1003, 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , Issue.1 , pp. 965-1003
    • Klami, A.1    Virtanen, S.2    Kaski, S.3
  • 51
    • 81055141262 scopus 로고    scopus 로고
    • Development and validation of a risk calculator predicting postoperative respiratory failure
    • H. Gupta et al., "Development and validation of a risk calculator predicting postoperative respiratory failure," Chest J., vol. 140, no. 5, pp. 1207-1215, 2011.
    • (2011) Chest J. , vol.140 , Issue.5 , pp. 1207-1215
    • Gupta, H.1
  • 52
    • 0033866548 scopus 로고    scopus 로고
    • Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery
    • A. M. Arozullah, J. Daley,W. G. Henderson, and S. F. Khuri, "Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery," Ann. Surgery, vol. 232, no. 2, pp. 242-253, 2000.
    • (2000) Ann. Surgery , vol.232 , Issue.2 , pp. 242-253
    • Arozullah, A.M.1    Daley, J.2    Henderson, W.G.3    Khuri, S.F.4
  • 53
    • 34249292627 scopus 로고    scopus 로고
    • Multivariable predictors of postoperative respiratory failure after general and vascular surgery: Results from the patient safety in surgery study
    • R. G. Johnson, A. M. Arozullah, L. Neumayer, W. G. Henderson, P. Hosokawa, and S. F. Khuri, "Multivariable predictors of postoperative respiratory failure after general and vascular surgery: Results from the patient safety in surgery study," J. Amer. College Surgeons, vol. 204, no. 6, pp. 1188-1198, 2007.
    • (2007) J. Amer. College Surgeons , vol.204 , Issue.6 , pp. 1188-1198
    • Johnson, R.G.1    Arozullah, A.M.2    Neumayer, L.3    Henderson, W.G.4    Hosokawa, P.5    Khuri, S.F.6
  • 54
    • 78650172031 scopus 로고    scopus 로고
    • Prediction of postoperative pulmonary complications in a population-based surgical cohort
    • J. Canet et al., "Prediction of postoperative pulmonary complications in a population-based surgical cohort," The J. Amer. Soc. Anesthesiologists, vol. 113, no. 6, pp. 1338-1350, 2010.
    • (2010) The J. Amer. Soc. Anesthesiologists , vol.113 , Issue.6 , pp. 1338-1350
    • Canet, J.1
  • 55
    • 78650060535 scopus 로고    scopus 로고
    • Early identification of patients at risk of acute lung injury: Evaluation of lung injury prediction score in a multicenter cohort study
    • O. Gajic et al., "Early identification of patients at risk of acute lung injury: Evaluation of lung injury prediction score in a multicenter cohort study," Amer. J. Respiratory Critical Care Med., vol. 183, no. 4, pp. 462-470, 2011.
    • (2011) Amer. J. Respiratory Critical Care Med. , vol.183 , Issue.4 , pp. 462-470
    • Gajic, O.1
  • 56
    • 24944566109 scopus 로고    scopus 로고
    • Determinants of long-term survival after major surgery and the adverse effect of postoperative complications
    • S. F. Khuri et al., "Determinants of long-term survival after major surgery and the adverse effect of postoperative complications," Ann. Surgery, vol. 242, no. 3, p. 326-341, 2005.
    • (2005) Ann. Surgery , vol.242 , Issue.3 , pp. 326-341
    • Khuri, S.F.1
  • 57
    • 6944244108 scopus 로고    scopus 로고
    • Hospital costs associated with surgical complications: A report from the private-sector national surgical quality improvement program
    • J. B. Dimick, S. L. Chen, P. A. Taheri,W. G. Henderson, S. F. Khuri, and D. A. Campbell Jr., "Hospital costs associated with surgical complications: A report from the private-sector national surgical quality improvement program," J. Amer. College Surgeons, vol. 199, no. 4, pp. 531-537, 2004.
    • (2004) J. Amer. College Surgeons , vol.199 , Issue.4 , pp. 531-537
    • Dimick, J.B.1    Chen, S.L.2    Taheri, P.A.3    Henderson, W.G.4    Khuri, S.F.5    Campbell, D.A.6
  • 58
    • 84858129014 scopus 로고    scopus 로고
    • Postoperative pulmonary complications: Pneumonia and acute respiratory failure
    • G. Sachdev and L. M. Napolitano, "Postoperative pulmonary complications: Pneumonia and acute respiratory failure," Surgical Clinics North Amer., vol. 92, no. 2, pp. 321-344, 2012.
    • (2012) Surgical Clinics North Amer. , vol.92 , Issue.2 , pp. 321-344
    • Sachdev, G.1    Napolitano, L.M.2
  • 59
    • 84895067436 scopus 로고    scopus 로고
    • Postoperative respiratory failure: Pathogenesis, prediction, and prevention
    • J. Canet and L. Gallart, "Postoperative respiratory failure: Pathogenesis, prediction, and prevention," Current Opinion Critical Care, vol. 20, no. 1, pp. 56-62, 2014.
    • (2014) Current Opinion Critical Care , vol.20 , Issue.1 , pp. 56-62
    • Canet, J.1    Gallart, L.2
  • 60
    • 33646012328 scopus 로고    scopus 로고
    • Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American college of physicians
    • G. W. Smetana, V. A. Lawrence, and J. E. Cornell, "Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American college of physicians," Ann. Internal Med., vol. 144, no. 8, pp. 581-595, 2006.
    • (2006) Ann. Internal Med. , vol.144 , Issue.8 , pp. 581-595
    • Smetana, G.W.1    Lawrence, V.A.2    Cornell, J.E.3
  • 61
    • 79959513244 scopus 로고    scopus 로고
    • Derivation and diagnostic accuracy of the surgical lung injury prediction model
    • D. J. Kor et al., "Derivation and diagnostic accuracy of the surgical lung injury prediction model," J. Amer. Soc. Anesthesiologists, vol. 115, no. 1, pp. 117-128, 2011.
    • (2011) J. Amer. Soc. Anesthesiologists , vol.115 , Issue.1 , pp. 117-128
    • Kor, D.J.1
  • 62
    • 79959501639 scopus 로고    scopus 로고
    • Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery
    • S. K. Ramachandran, O. O. Nau, A. Ghaferi, K. K. Tremper, A. Shanks, and S. Kheterpal, "Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery," J. Amer. Soc. Anesthesiologists, vol. 115, no. 1, pp. 44-53, 2011.
    • (2011) J. Amer. Soc. Anesthesiologists , vol.115 , Issue.1 , pp. 44-53
    • Ramachandran, S.K.1    Nau, O.O.2    Ghaferi, A.3    Tremper, K.K.4    Shanks, A.5    Kheterpal, S.6
  • 63
    • 84871617460 scopus 로고    scopus 로고
    • Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population
    • J. M. Blum et al., "Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population," J. Amer. Soc. Anesthesiologists, vol. 118, no. 1, pp. 19-29, 2013.
    • (2013) J. Amer. Soc. Anesthesiologists , vol.118 , Issue.1 , pp. 19-29
    • Blum, J.M.1
  • 64
    • 84878642376 scopus 로고    scopus 로고
    • Development and validation of a score for prediction of postoperative respiratory complications
    • B. Brueckmann et al., "Development and validation of a score for prediction of postoperative respiratory complications," The J. Amer. Soc. Anesthesiologists, vol. 118, no. 6, pp. 1276-1285, 2013.
    • (2013) The J. Amer. Soc. Anesthesiologists , vol.118 , Issue.6 , pp. 1276-1285
    • Brueckmann, B.1
  • 65
    • 84862996772 scopus 로고    scopus 로고
    • A scoring system to predict unplanned intubation in patients having undergone major surgical procedures
    • M. Hua, J. Brady, and G. Li, "A scoring system to predict unplanned intubation in patients having undergone major surgical procedures," Anes-thesia Analgesia, vol. 115, no. 1, pp. 88-94, 2012.
    • (2012) Anes-thesia Analgesia , vol.115 , Issue.1 , pp. 88-94
    • Hua, M.1    Brady, J.2    Li, G.3
  • 66
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Oct.
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.