메뉴 건너뛰기




Volumn , Issue , 2014, Pages 85-94

Unsupervised learning of disease progression models

Author keywords

bayesian network; disease progression modeling; markov jump process; medical informatics

Indexed keywords


EID: 84907021735     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623754     Document Type: Conference Paper
Times cited : (231)

References (18)
  • 1
    • 84877855384 scopus 로고    scopus 로고
    • Comorbidities and burden of COPD: A population based case-control study
    • F. Baty, P. M. Putora, B. Isenring, T. Blum, and M. Brutsche. Comorbidities and burden of COPD: a population based case-control study. PLoS ONE, 8(5):e63285, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.5
    • Baty, F.1    Putora, P.M.2    Isenring, B.3    Blum, T.4    Brutsche, M.5
  • 2
    • 77956642489 scopus 로고    scopus 로고
    • Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis
    • M. Cohen, A. Grossman, D. Morabito, M. M. Knudson, A. Butte, and G. Manley. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis. Critical Care, 14(1):R10, 2010.
    • (2010) Critical Care , vol.14 , Issue.1
    • Cohen, M.1    Grossman, A.2    Morabito, D.3    Knudson, M.M.4    Butte, A.5    Manley, G.6
  • 3
    • 33745779941 scopus 로고    scopus 로고
    • A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus
    • W. De Winter, J. DeJongh, T. Post, B. Ploeger, R. Urquhart, I. Moules, D. Eckland, and M. Danhof. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. Journal of pharmacokinetics and pharmacodynamics, 33(3):313-343, 2006.
    • (2006) Journal of Pharmacokinetics and Pharmacodynamics , vol.33 , Issue.3 , pp. 313-343
    • De Winter, W.1    DeJongh, J.2    Post, T.3    Ploeger, B.4    Urquhart, R.5    Moules, I.6    Eckland, D.7    Danhof, M.8
  • 4
    • 84859424158 scopus 로고    scopus 로고
    • Chronic obstructive pulmonary disease
    • Apr
    • M. Decramer, W. Janssens, and M. Miravitlles. Chronic obstructive pulmonary disease. Lancet, 379(9823):1341-1351, Apr 2012.
    • (2012) Lancet , vol.379 , Issue.9823 , pp. 1341-1351
    • Decramer, M.1    Janssens, W.2    Miravitlles, M.3
  • 7
    • 84888163727 scopus 로고    scopus 로고
    • Unsupervised learning of noisy-or bayesian networks
    • Y. Halpern and D. Sontag. Unsupervised learning of noisy-or bayesian networks. In UAI, pages 272-281, 2013.
    • (2013) UAI , pp. 272-281
    • Halpern, Y.1    Sontag, D.2
  • 10
    • 36849010656 scopus 로고    scopus 로고
    • Generator estimation of markov jump processes based on incomplete observations nonequidistant in time
    • P. Metzner, I. Horenko, and C. Schütte. Generator estimation of markov jump processes based on incomplete observations nonequidistant in time. Physical Review E, 76(6):066702, 2007.
    • (2007) Physical Review E , vol.76 , Issue.6 , pp. 066702
    • Metzner, P.1    Horenko, I.2    Schütte, C.3
  • 11
    • 84862625643 scopus 로고    scopus 로고
    • Models for disease progression: New approaches and uses
    • D. Mould. Models for disease progression: new approaches and uses. Clinical Pharmacology & Therapeutics, 92(1):125-131, 2012.
    • (2012) Clinical Pharmacology & Therapeutics , vol.92 , Issue.1 , pp. 125-131
    • Mould, D.1
  • 12
    • 23744516690 scopus 로고    scopus 로고
    • Disease system analysis: Basic disease progression models in degenerative disease
    • T. M. Post, J. I. Freijer, J. DeJongh, and M. Danhof. Disease system analysis: basic disease progression models in degenerative disease. Pharmaceutical research, 22(7):1038-1049, 2005.
    • (2005) Pharmaceutical Research , vol.22 , Issue.7 , pp. 1038-1049
    • Post, T.M.1    Freijer, J.I.2    DeJongh, J.3    Danhof, M.4
  • 13
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 15
    • 84882938880 scopus 로고    scopus 로고
    • Disease progression modeling using hidden markov models
    • IEEE
    • R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman. Disease progression modeling using hidden markov models. In EMBC, pages 2845-2848. IEEE, 2012.
    • (2012) EMBC , pp. 2845-2848
    • Sukkar, R.1    Katz, E.2    Zhang, Y.3    Raunig, D.4    Wyman, B.T.5
  • 16
    • 84907032880 scopus 로고    scopus 로고
    • Finding progression stages in time-evolving event sequences
    • J. Yang, J. J. McAuley, J. Leskovec, P. LePendu, and N. Shah. Finding progression stages in time-evolving event sequences. In WWW, pages 783-794, 2014.
    • (2014) WWW , pp. 783-794
    • Yang, J.1    McAuley, J.J.2    Leskovec, J.3    LePendu, P.4    Shah, N.5
  • 17
    • 84866037290 scopus 로고    scopus 로고
    • Modeling disease progression via fused sparse group lasso
    • ACM
    • J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling disease progression via fused sparse group lasso. In KDD, pages 1095-1103. ACM, 2012.
    • (2012) KDD , pp. 1095-1103
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4
  • 18
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • 0
    • J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling disease progression via multi-task learning. NeuroImage, 78(0):233-248, 2013.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.