메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages 156-165

Learning probabilistic phenotypes from heterogeneous EHR data

Author keywords

Clinical phenotype modeling; Computational disease models; Electronic health record; Medical information systems; Phenotyping; Probabilistic modeling

Indexed keywords

INTENSIVE CARE UNITS; MEDICAL INFORMATION SYSTEMS;

EID: 84947906337     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.10.001     Document Type: Article
Times cited : (120)

References (48)
  • 1
    • 84940373302 scopus 로고    scopus 로고
    • Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
    • Perotte A., Ranganath R., Hirsch J.S., Blei D., Elhadad N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J. Am. Med. Inf. Assoc.: JAMIA 2015, 22(4):872-880.
    • (2015) J. Am. Med. Inf. Assoc.: JAMIA , vol.22 , Issue.4 , pp. 872-880
    • Perotte, A.1    Ranganath, R.2    Hirsch, J.S.3    Blei, D.4    Elhadad, N.5
  • 2
    • 84983097259 scopus 로고    scopus 로고
    • The Survival Filter: Joint Survival Analysis with a Latent Time Series, in: UAI
    • R. Ranganath, A. Perotte, N. Elhadad, D.M. Blei, The Survival Filter: Joint Survival Analysis with a Latent Time Series, in: UAI, 2015.
    • (2015)
    • Ranganath, R.1    Perotte, A.2    Elhadad, N.3    Blei, D.M.4
  • 3
    • 84928601920 scopus 로고    scopus 로고
    • Extracting research-quality phenotypes from electronic health records to support precision medicine
    • Wei W.-Q., Denny J.C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Gen. Med. 2015, 7(1):41.
    • (2015) Gen. Med. , vol.7 , Issue.1 , pp. 41
    • Wei, W.-Q.1    Denny, J.C.2
  • 5
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak G., Albers D.J. Next-generation phenotyping of electronic health records. JAMIA 2013, 20(1):117-121.
    • (2013) JAMIA , vol.20 , Issue.1 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 6
    • 84881328205 scopus 로고    scopus 로고
    • Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
    • Newton K.M., Peissig P.L., Kho A.N. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. JAMIA 2013.
    • (2013) JAMIA
    • Newton, K.M.1    Peissig, P.L.2    Kho, A.N.3
  • 8
    • 84857720381 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in: IHI
    • B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel, Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in: IHI, 2012, pp. 389-398.
    • (2012) , pp. 389-398
    • Marlin, B.M.1    Kale, D.C.2    Khemani, R.G.3    Wetzel, R.C.4
  • 9
    • 84879468407 scopus 로고    scopus 로고
    • Omputational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko T.A., Denny J.C., Levy M.A. omputational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 2013, 8(6):e66341.
    • (2013) PLoS ONE , vol.8 , Issue.6 , pp. e66341
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 10
    • 84891815406 scopus 로고    scopus 로고
    • Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis
    • Doshi-Velez F., Ge Y., Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 2014, 133(1):e54-63.
    • (2014) Pediatrics , vol.133 , Issue.1 , pp. e54-63
    • Doshi-Velez, F.1    Ge, Y.2    Kohane, I.3
  • 11
    • 84947950229 scopus 로고    scopus 로고
    • Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery, in: AAAI
    • P. Schulam, F. Wigley, S. Saria, Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery, in: AAAI, 2015.
    • (2015)
    • Schulam, P.1    Wigley, F.2    Saria, S.3
  • 12
    • 84947950230 scopus 로고    scopus 로고
    • SNOMED Clinical Terms, 2009 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html.
    • (2009)
  • 13
    • 0020001973 scopus 로고
    • INTERNIST-1, an experimental computer-based diagnostic consultant for general internal medicine
    • Miller R.A., Pople H.E., Myers J.D. INTERNIST-1, an experimental computer-based diagnostic consultant for general internal medicine. New Engl. J. Med. 1982, 307(8):468-476.
    • (1982) New Engl. J. Med. , vol.307 , Issue.8 , pp. 468-476
    • Miller, R.A.1    Pople, H.E.2    Myers, J.D.3
  • 14
    • 0026056182 scopus 로고
    • Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms
    • Shwe M.A., Middleton B., Heckerman D.E., Henrion M., Horvitz E.J., Lehmann H.P., Cooper G.F. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Meth. Inf. Med. 1991, 30(4):241-255.
    • (1991) Meth. Inf. Med. , vol.30 , Issue.4 , pp. 241-255
    • Shwe, M.A.1    Middleton, B.2    Heckerman, D.E.3    Henrion, M.4    Horvitz, E.J.5    Lehmann, H.P.6    Cooper, G.F.7
  • 15
    • 0033330288 scopus 로고    scopus 로고
    • Variational probabilistic inference and the QMR-DT network
    • Jaakkola T.S., Jordan M.I. Variational probabilistic inference and the QMR-DT network. JAIR 1999.
    • (1999) JAIR
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 17
    • 65249119617 scopus 로고    scopus 로고
    • Exploring clinical associations using '-omics' based enrichment analyses
    • Hanauer D.A., Rhodes D.R., Chinnaiyan A.M. Exploring clinical associations using '-omics' based enrichment analyses. PLoS ONE 2009, 4(4):e5203.
    • (2009) PLoS ONE , vol.4 , Issue.4 , pp. e5203
    • Hanauer, D.A.1    Rhodes, D.R.2    Chinnaiyan, A.M.3
  • 19
    • 84907024756 scopus 로고    scopus 로고
    • Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in: KDD
    • J.C. Ho, J. Ghosh, J. Sun, Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in: KDD, 2014.
    • (2014)
    • Ho, J.C.1    Ghosh, J.2    Sun, J.3
  • 20
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • Blei D., Ng A., Jordan M. Latent Dirichlet allocation. JMLR 2003, 3:993-1022.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 21
    • 84964987498 scopus 로고    scopus 로고
    • Clinical case-based retrieval using latent topic analysis, in: AMIA
    • C.W. Arnold, S.M. El-Saden, A.A. Bui, R. Taira, Clinical case-based retrieval using latent topic analysis, in: AMIA, 2010.
    • (2010)
    • Arnold, C.W.1    El-Saden, S.M.2    Bui, A.A.3    Taira, R.4
  • 22
    • 84898043055 scopus 로고    scopus 로고
    • An empirical analysis of topic modeling for mining cancer clinical notes, in: IEEE ICDMW
    • K.R. Chan, X. Lou, T. Karaletsos, C. Crosbie, S. Gardos, D. Artz, G. Ratsch, An empirical analysis of topic modeling for mining cancer clinical notes, in: IEEE ICDMW, 2013.
    • (2013)
    • Chan, K.R.1    Lou, X.2    Karaletsos, T.3    Crosbie, C.4    Gardos, S.5    Artz, D.6    Ratsch, G.7
  • 25
    • 84947950235 scopus 로고    scopus 로고
    • Learning individual and population level traits from clinical temporal data, in: NIPS, 2010.
    • S. Saria, D. Koller, A. Penn, Learning individual and population level traits from clinical temporal data, in: NIPS, 2010.
    • Saria, S.1    Koller, D.2    Penn, A.3
  • 26
    • 85162354796 scopus 로고    scopus 로고
    • Hierarchically supervised latent Dirichlet allocation, in: NIPS
    • A.J. Perotte, F. Wood, N. Elhadad, N. Bartlett, Hierarchically supervised latent Dirichlet allocation, in: NIPS, 2011.
    • (2011)
    • Perotte, A.J.1    Wood, F.2    Elhadad, N.3    Bartlett, N.4
  • 27
    • 84895802181 scopus 로고    scopus 로고
    • Redundancy-aware topic modeling for patient record notes
    • Cohen R., Aviram I., Elhadad M., Elhadad N. Redundancy-aware topic modeling for patient record notes. PLoS ONE 2014, 9(2):e87555.
    • (2014) PLoS ONE , vol.9 , Issue.2 , pp. e87555
    • Cohen, R.1    Aviram, I.2    Elhadad, M.3    Elhadad, N.4
  • 28
    • 84907021735 scopus 로고    scopus 로고
    • Unsupervised learning of disease progression models, in: KDD
    • X. Wang, D. Sontag, F. Wang, Unsupervised learning of disease progression models, in: KDD, 2014.
    • (2014)
    • Wang, X.1    Sontag, D.2    Wang, F.3
  • 31
    • 79960498353 scopus 로고    scopus 로고
    • Automatic evaluation of topic coherence, in: ACL.
    • D. Newman, J. Lau, K. Grieser, Automatic evaluation of topic coherence, in: ACL, 2010.
    • (2010)
    • Newman, D.1    Lau, J.2    Grieser, K.3
  • 32
    • 84905694259 scopus 로고    scopus 로고
    • Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality, in: ACL
    • J.H. Lau, D. Newman, T. Baldwin, Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality, in: ACL, 2014.
    • (2014)
    • Lau, J.H.1    Newman, D.2    Baldwin, T.3
  • 33
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • Griffiths T.L., Steyvers M. Finding scientific topics. PNAS 2004, 101(suppl. 1):5228-5235.
    • (2004) PNAS , vol.101 , pp. 5228-5235
    • Griffiths, T.L.1    Steyvers, M.2
  • 35
    • 85161966449 scopus 로고    scopus 로고
    • Evaluating probabilities under high-dimensional latent variable models, in: NIPS
    • I. Murray, R. Salakhutdinov, Evaluating probabilities under high-dimensional latent variable models, in: NIPS, 2009.
    • (2009)
    • Murray, I.1    Salakhutdinov, R.2
  • 36
    • 84947950243 scopus 로고    scopus 로고
    • MALLET: A Machine Learning for Language Toolkit
    • A. McCallum, MALLET: A Machine Learning for Language Toolkit, 2002 http://www.cs.umass.edu/mccallum/mallet.
    • (2002)
    • McCallum, A.1
  • 37
    • 84859058588 scopus 로고    scopus 로고
    • Interactive topic modeling, in: ACL,
    • Y. Hu, J. Boyd-Graber, B. Satinoff, Interactive topic modeling, in: ACL, 2011.
    • (2011)
    • Hu, Y.1    Boyd-Graber, J.2    Satinoff, B.3
  • 40
    • 84947950245 scopus 로고    scopus 로고
    • Semeval-2015 Task 14: Analysis of Clinical Text
    • Semeval-2015 Task 14: Analysis of Clinical Text, 2015 http://alt.qcri.org/semeval2015/task14/.
    • (2015)
  • 41
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): integrating biomedical terminology
    • Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl. Acids Res. 2004, 32(database issue):D267-70.
    • (2004) Nucl. Acids Res. , vol.32 , Issue.DATABASE ISSUE , pp. D267-D270
    • Bodenreider, O.1
  • 42
    • 85162045375 scopus 로고    scopus 로고
    • Rethinking LDA: why priors matter, in: NIPS
    • A. McCallum, D.M. Mimno, H.M. Wallach, Rethinking LDA: why priors matter, in: NIPS, 2009.
    • (2009)
    • McCallum, A.1    Mimno, D.M.2    Wallach, H.M.3
  • 44
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models, in: ICML
    • D. Blei, J. Lafferty, Dynamic topic models, in: ICML, 2006.
    • (2006)
    • Blei, D.1    Lafferty, J.2
  • 45
    • 84964314838 scopus 로고    scopus 로고
    • Using anchors to estimate clinical state without labeled data, in: AMIA
    • Y. Halpern, Y. Choi, S. Horng, D. Sontag, Using anchors to estimate clinical state without labeled data, in: AMIA, 2014.
    • (2014)
    • Halpern, Y.1    Choi, Y.2    Horng, S.3    Sontag, D.4
  • 46
    • 71149108475 scopus 로고    scopus 로고
    • Incorporating domain knowledge into topic modeling via Dirichlet forest priors, in: ICML
    • D. Andrzejewski, X. Zhu, M. Craven, Incorporating domain knowledge into topic modeling via Dirichlet forest priors, in: ICML, 2009.
    • (2009)
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3
  • 47
    • 84881083774 scopus 로고    scopus 로고
    • A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic, in: IJCAI, 2011.
    • D. Andrzejewski, X. Zhu, M. Craven, B. Recht, A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic, in: IJCAI, 2011.
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3    Recht, B.4
  • 48
    • 84947950251 scopus 로고    scopus 로고
    • Graph-sparse LDA: a topic model with structured sparsity, in: arxiv
    • F. Doshi-Velez, B. Wallace, R. Adams, Graph-sparse LDA: a topic model with structured sparsity, in: arxiv, 2015.
    • (2015)
    • Doshi-Velez, F.1    Wallace, B.2    Adams, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.