-
1
-
-
84940373302
-
Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
-
Perotte A., Ranganath R., Hirsch J.S., Blei D., Elhadad N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J. Am. Med. Inf. Assoc.: JAMIA 2015, 22(4):872-880.
-
(2015)
J. Am. Med. Inf. Assoc.: JAMIA
, vol.22
, Issue.4
, pp. 872-880
-
-
Perotte, A.1
Ranganath, R.2
Hirsch, J.S.3
Blei, D.4
Elhadad, N.5
-
2
-
-
84983097259
-
-
The Survival Filter: Joint Survival Analysis with a Latent Time Series, in: UAI
-
R. Ranganath, A. Perotte, N. Elhadad, D.M. Blei, The Survival Filter: Joint Survival Analysis with a Latent Time Series, in: UAI, 2015.
-
(2015)
-
-
Ranganath, R.1
Perotte, A.2
Elhadad, N.3
Blei, D.M.4
-
3
-
-
84928601920
-
Extracting research-quality phenotypes from electronic health records to support precision medicine
-
Wei W.-Q., Denny J.C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Gen. Med. 2015, 7(1):41.
-
(2015)
Gen. Med.
, vol.7
, Issue.1
, pp. 41
-
-
Wei, W.-Q.1
Denny, J.C.2
-
4
-
-
84930651751
-
Development of phenotype algorithms using electronic medical records and incorporating natural language processing
-
Liao K.P., Cai T., Savova G.K., Murphy S.N., Karlson E.W., Ananthakrishnan A.N., Gainer V.S., Shaw S.Y., Xia Z., Szolovits P., Churchill S., Kohane I. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ 2015, 350(apr24 11):1885.
-
(2015)
BMJ
, vol.350
, Issue.apr24 11
, pp. 1885
-
-
Liao, K.P.1
Cai, T.2
Savova, G.K.3
Murphy, S.N.4
Karlson, E.W.5
Ananthakrishnan, A.N.6
Gainer, V.S.7
Shaw, S.Y.8
Xia, Z.9
Szolovits, P.10
Churchill, S.11
Kohane, I.12
-
5
-
-
84871854103
-
Next-generation phenotyping of electronic health records
-
Hripcsak G., Albers D.J. Next-generation phenotyping of electronic health records. JAMIA 2013, 20(1):117-121.
-
(2013)
JAMIA
, vol.20
, Issue.1
, pp. 117-121
-
-
Hripcsak, G.1
Albers, D.J.2
-
6
-
-
84881328205
-
Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
-
Newton K.M., Peissig P.L., Kho A.N. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. JAMIA 2013.
-
(2013)
JAMIA
-
-
Newton, K.M.1
Peissig, P.L.2
Kho, A.N.3
-
7
-
-
84954218290
-
Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources
-
Yu S., Liao K.P., Shaw S.Y., Gainer V.S., Churchill S.E., Szolovits P., Murphy S.N., Kohane I.S., Cai T. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. J. Am. Med. Inf. Assoc.: JAMIA 2015.
-
(2015)
J. Am. Med. Inf. Assoc.: JAMIA
-
-
Yu, S.1
Liao, K.P.2
Shaw, S.Y.3
Gainer, V.S.4
Churchill, S.E.5
Szolovits, P.6
Murphy, S.N.7
Kohane, I.S.8
Cai, T.9
-
8
-
-
84857720381
-
-
Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in: IHI
-
B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel, Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in: IHI, 2012, pp. 389-398.
-
(2012)
, pp. 389-398
-
-
Marlin, B.M.1
Kale, D.C.2
Khemani, R.G.3
Wetzel, R.C.4
-
9
-
-
84879468407
-
Omputational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko T.A., Denny J.C., Levy M.A. omputational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 2013, 8(6):e66341.
-
(2013)
PLoS ONE
, vol.8
, Issue.6
, pp. e66341
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
10
-
-
84891815406
-
Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis
-
Doshi-Velez F., Ge Y., Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 2014, 133(1):e54-63.
-
(2014)
Pediatrics
, vol.133
, Issue.1
, pp. e54-63
-
-
Doshi-Velez, F.1
Ge, Y.2
Kohane, I.3
-
11
-
-
84947950229
-
-
Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery, in: AAAI
-
P. Schulam, F. Wigley, S. Saria, Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery, in: AAAI, 2015.
-
(2015)
-
-
Schulam, P.1
Wigley, F.2
Saria, S.3
-
12
-
-
84947950230
-
-
SNOMED Clinical Terms, 2009 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html.
-
(2009)
-
-
-
13
-
-
0020001973
-
INTERNIST-1, an experimental computer-based diagnostic consultant for general internal medicine
-
Miller R.A., Pople H.E., Myers J.D. INTERNIST-1, an experimental computer-based diagnostic consultant for general internal medicine. New Engl. J. Med. 1982, 307(8):468-476.
-
(1982)
New Engl. J. Med.
, vol.307
, Issue.8
, pp. 468-476
-
-
Miller, R.A.1
Pople, H.E.2
Myers, J.D.3
-
14
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms
-
Shwe M.A., Middleton B., Heckerman D.E., Henrion M., Horvitz E.J., Lehmann H.P., Cooper G.F. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. I. The probabilistic model and inference algorithms. Meth. Inf. Med. 1991, 30(4):241-255.
-
(1991)
Meth. Inf. Med.
, vol.30
, Issue.4
, pp. 241-255
-
-
Shwe, M.A.1
Middleton, B.2
Heckerman, D.E.3
Henrion, M.4
Horvitz, E.J.5
Lehmann, H.P.6
Cooper, G.F.7
-
15
-
-
0033330288
-
Variational probabilistic inference and the QMR-DT network
-
Jaakkola T.S., Jordan M.I. Variational probabilistic inference and the QMR-DT network. JAIR 1999.
-
(1999)
JAIR
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
16
-
-
66249129037
-
A dynamic network approach for the study of human phenotypes
-
Hidalgo C.A., Blumm N., Barabási A.-L., Christakis N.A. A dynamic network approach for the study of human phenotypes. PLoS Comput. Biol. 2009, 5(4):e1000353.
-
(2009)
PLoS Comput. Biol.
, vol.5
, Issue.4
, pp. e1000353
-
-
Hidalgo, C.A.1
Blumm, N.2
Barabási, A.-L.3
Christakis, N.A.4
-
17
-
-
65249119617
-
Exploring clinical associations using '-omics' based enrichment analyses
-
Hanauer D.A., Rhodes D.R., Chinnaiyan A.M. Exploring clinical associations using '-omics' based enrichment analyses. PLoS ONE 2009, 4(4):e5203.
-
(2009)
PLoS ONE
, vol.4
, Issue.4
, pp. e5203
-
-
Hanauer, D.A.1
Rhodes, D.R.2
Chinnaiyan, A.M.3
-
18
-
-
80052329143
-
Using electronic patient records to discover disease correlations and stratify patient cohorts
-
Roque F.S., Jensen P.B., Schmock H., Dalgaard M., Andreatta M., Hansen T., Søeby K., Bredkjær S., Juul A., Werge T., Jensen L.J., Brunak S. Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput. Biol. 2011, 7(8):e1002141.
-
(2011)
PLoS Comput. Biol.
, vol.7
, Issue.8
, pp. e1002141
-
-
Roque, F.S.1
Jensen, P.B.2
Schmock, H.3
Dalgaard, M.4
Andreatta, M.5
Hansen, T.6
Søeby, K.7
Bredkjær, S.8
Juul, A.9
Werge, T.10
Jensen, L.J.11
Brunak, S.12
-
19
-
-
84907024756
-
-
Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in: KDD
-
J.C. Ho, J. Ghosh, J. Sun, Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in: KDD, 2014.
-
(2014)
-
-
Ho, J.C.1
Ghosh, J.2
Sun, J.3
-
20
-
-
0141607824
-
Latent Dirichlet allocation
-
Blei D., Ng A., Jordan M. Latent Dirichlet allocation. JMLR 2003, 3:993-1022.
-
(2003)
JMLR
, vol.3
, pp. 993-1022
-
-
Blei, D.1
Ng, A.2
Jordan, M.3
-
21
-
-
84964987498
-
-
Clinical case-based retrieval using latent topic analysis, in: AMIA
-
C.W. Arnold, S.M. El-Saden, A.A. Bui, R. Taira, Clinical case-based retrieval using latent topic analysis, in: AMIA, 2010.
-
(2010)
-
-
Arnold, C.W.1
El-Saden, S.M.2
Bui, A.A.3
Taira, R.4
-
22
-
-
84898043055
-
-
An empirical analysis of topic modeling for mining cancer clinical notes, in: IEEE ICDMW
-
K.R. Chan, X. Lou, T. Karaletsos, C. Crosbie, S. Gardos, D. Artz, G. Ratsch, An empirical analysis of topic modeling for mining cancer clinical notes, in: IEEE ICDMW, 2013.
-
(2013)
-
-
Chan, K.R.1
Lou, X.2
Karaletsos, T.3
Crosbie, C.4
Gardos, S.5
Artz, D.6
Ratsch, G.7
-
23
-
-
84947950234
-
-
Unfolding physiological state, in: KDD
-
M. Ghassemi, T. Naumann, F. Doshi-Velez, N. Brimmer, R. Joshi, A. Rumshisky, P. Szolovits, Unfolding physiological state, in: KDD, 2014.
-
(2014)
-
-
Ghassemi, M.1
Naumann, T.2
Doshi-Velez, F.3
Brimmer, N.4
Joshi, R.5
Rumshisky, A.6
Szolovits, P.7
-
24
-
-
84930725063
-
Building bridges across electronic health record systems through inferred phenotypic topics
-
Chen Y., Ghosh J., Bejan C.A., Gunter C.A., Gupta S., Kho A., Liebovitz D., Sun J., Denny J., Malin B. Building bridges across electronic health record systems through inferred phenotypic topics. J. Biomed. Inf. 2015, 1-12.
-
(2015)
J. Biomed. Inf.
, pp. 1-12
-
-
Chen, Y.1
Ghosh, J.2
Bejan, C.A.3
Gunter, C.A.4
Gupta, S.5
Kho, A.6
Liebovitz, D.7
Sun, J.8
Denny, J.9
Malin, B.10
-
25
-
-
84947950235
-
-
Learning individual and population level traits from clinical temporal data, in: NIPS, 2010.
-
S. Saria, D. Koller, A. Penn, Learning individual and population level traits from clinical temporal data, in: NIPS, 2010.
-
-
-
Saria, S.1
Koller, D.2
Penn, A.3
-
26
-
-
85162354796
-
-
Hierarchically supervised latent Dirichlet allocation, in: NIPS
-
A.J. Perotte, F. Wood, N. Elhadad, N. Bartlett, Hierarchically supervised latent Dirichlet allocation, in: NIPS, 2011.
-
(2011)
-
-
Perotte, A.J.1
Wood, F.2
Elhadad, N.3
Bartlett, N.4
-
27
-
-
84895802181
-
Redundancy-aware topic modeling for patient record notes
-
Cohen R., Aviram I., Elhadad M., Elhadad N. Redundancy-aware topic modeling for patient record notes. PLoS ONE 2014, 9(2):e87555.
-
(2014)
PLoS ONE
, vol.9
, Issue.2
, pp. e87555
-
-
Cohen, R.1
Aviram, I.2
Elhadad, M.3
Elhadad, N.4
-
28
-
-
84907021735
-
-
Unsupervised learning of disease progression models, in: KDD
-
X. Wang, D. Sontag, F. Wang, Unsupervised learning of disease progression models, in: KDD, 2014.
-
(2014)
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
29
-
-
85161973867
-
-
Reading tea leaves: How humans interpret topic models, in: NIPS
-
J. Chang, J.L. Boyd-Graber, S. Gerrish, C. Wang, D.M. Blei, Reading tea leaves: How humans interpret topic models, in: NIPS, 2009.
-
(2009)
-
-
Chang, J.1
Boyd-Graber, J.L.2
Gerrish, S.3
Wang, C.4
Blei, D.M.5
-
30
-
-
71149089356
-
-
Evaluation methods for topic models, in: ICML
-
H.M. Wallach, I. Murray, R. Salakhutdinov, D. Mimno, Evaluation methods for topic models, in: ICML, 2009.
-
(2009)
-
-
Wallach, H.M.1
Murray, I.2
Salakhutdinov, R.3
Mimno, D.4
-
31
-
-
79960498353
-
-
Automatic evaluation of topic coherence, in: ACL.
-
D. Newman, J. Lau, K. Grieser, Automatic evaluation of topic coherence, in: ACL, 2010.
-
(2010)
-
-
Newman, D.1
Lau, J.2
Grieser, K.3
-
32
-
-
84905694259
-
-
Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality, in: ACL
-
J.H. Lau, D. Newman, T. Baldwin, Machine reading tea leaves: Automatically evaluating topic coherence and topic model quality, in: ACL, 2014.
-
(2014)
-
-
Lau, J.H.1
Newman, D.2
Baldwin, T.3
-
33
-
-
1842788824
-
Finding scientific topics
-
Griffiths T.L., Steyvers M. Finding scientific topics. PNAS 2004, 101(suppl. 1):5228-5235.
-
(2004)
PNAS
, vol.101
, pp. 5228-5235
-
-
Griffiths, T.L.1
Steyvers, M.2
-
34
-
-
79955479858
-
Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database
-
Saeed M., Villarroel M., Reisner A.T., Clifford G., Lehman L.-W., Moody G., Heldt T., Kyaw T.H., Moody B., Mark R.G. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 2011, 39:952-960.
-
(2011)
Crit. Care Med.
, vol.39
, pp. 952-960
-
-
Saeed, M.1
Villarroel, M.2
Reisner, A.T.3
Clifford, G.4
Lehman, L.-W.5
Moody, G.6
Heldt, T.7
Kyaw, T.H.8
Moody, B.9
Mark, R.G.10
-
35
-
-
85161966449
-
-
Evaluating probabilities under high-dimensional latent variable models, in: NIPS
-
I. Murray, R. Salakhutdinov, Evaluating probabilities under high-dimensional latent variable models, in: NIPS, 2009.
-
(2009)
-
-
Murray, I.1
Salakhutdinov, R.2
-
36
-
-
84947950243
-
-
MALLET: A Machine Learning for Language Toolkit
-
A. McCallum, MALLET: A Machine Learning for Language Toolkit, 2002 http://www.cs.umass.edu/mccallum/mallet.
-
(2002)
-
-
McCallum, A.1
-
37
-
-
84859058588
-
-
Interactive topic modeling, in: ACL,
-
Y. Hu, J. Boyd-Graber, B. Satinoff, Interactive topic modeling, in: ACL, 2011.
-
(2011)
-
-
Hu, Y.1
Boyd-Graber, J.2
Satinoff, B.3
-
38
-
-
0003612818
-
-
MIT Press, Cambridge, MA, USA
-
Manning C.D., Schütze H. Foundations of Statistical Natural Language Processing 1999, MIT Press, Cambridge, MA, USA.
-
(1999)
Foundations of Statistical Natural Language Processing
-
-
Manning, C.D.1
Schütze, H.2
-
39
-
-
84929512461
-
Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
-
Pradhan S., Elhadad N., South B.R., Martinez D., Christensen L., Vogel A., Suominen H., Chapman W.W., Savova G. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. JAMIA 2015.
-
(2015)
JAMIA
-
-
Pradhan, S.1
Elhadad, N.2
South, B.R.3
Martinez, D.4
Christensen, L.5
Vogel, A.6
Suominen, H.7
Chapman, W.W.8
Savova, G.9
-
40
-
-
84947950245
-
-
Semeval-2015 Task 14: Analysis of Clinical Text
-
Semeval-2015 Task 14: Analysis of Clinical Text, 2015 http://alt.qcri.org/semeval2015/task14/.
-
(2015)
-
-
-
41
-
-
0345863927
-
The Unified Medical Language System (UMLS): integrating biomedical terminology
-
Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucl. Acids Res. 2004, 32(database issue):D267-70.
-
(2004)
Nucl. Acids Res.
, vol.32
, Issue.DATABASE ISSUE
, pp. D267-D270
-
-
Bodenreider, O.1
-
44
-
-
33749242628
-
-
Dynamic topic models, in: ICML
-
D. Blei, J. Lafferty, Dynamic topic models, in: ICML, 2006.
-
(2006)
-
-
Blei, D.1
Lafferty, J.2
-
45
-
-
84964314838
-
-
Using anchors to estimate clinical state without labeled data, in: AMIA
-
Y. Halpern, Y. Choi, S. Horng, D. Sontag, Using anchors to estimate clinical state without labeled data, in: AMIA, 2014.
-
(2014)
-
-
Halpern, Y.1
Choi, Y.2
Horng, S.3
Sontag, D.4
-
46
-
-
71149108475
-
-
Incorporating domain knowledge into topic modeling via Dirichlet forest priors, in: ICML
-
D. Andrzejewski, X. Zhu, M. Craven, Incorporating domain knowledge into topic modeling via Dirichlet forest priors, in: ICML, 2009.
-
(2009)
-
-
Andrzejewski, D.1
Zhu, X.2
Craven, M.3
-
47
-
-
84881083774
-
-
A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic, in: IJCAI, 2011.
-
D. Andrzejewski, X. Zhu, M. Craven, B. Recht, A framework for incorporating general domain knowledge into latent Dirichlet allocation using first-order logic, in: IJCAI, 2011.
-
-
-
Andrzejewski, D.1
Zhu, X.2
Craven, M.3
Recht, B.4
-
48
-
-
84947950251
-
-
Graph-sparse LDA: a topic model with structured sparsity, in: arxiv
-
F. Doshi-Velez, B. Wallace, R. Adams, Graph-sparse LDA: a topic model with structured sparsity, in: arxiv, 2015.
-
(2015)
-
-
Doshi-Velez, F.1
Wallace, B.2
Adams, R.3
|