-
1
-
-
47549090432
-
TGFβ in cancer
-
1 Massague, J., TGFβ in cancer. Cell 134 (2008), 215–230.
-
(2008)
Cell
, vol.134
, pp. 215-230
-
-
Massague, J.1
-
2
-
-
84946571753
-
The consensus molecular subtypes of colorectal cancer
-
2 Guinney, J., et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21 (2015), 1350–1356.
-
(2015)
Nat. Med.
, vol.21
, pp. 1350-1356
-
-
Guinney, J.1
-
3
-
-
84925818452
-
Stromal gene expression defines poor-prognosis subtypes in colorectal cancer
-
3 Calon, A., et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47 (2015), 320–329.
-
(2015)
Nat. Genet.
, vol.47
, pp. 320-329
-
-
Calon, A.1
-
4
-
-
84976539958
-
EMT: 2016
-
4 Nieto, M.A., et al. EMT: 2016. Cell 166 (2016), 21–45.
-
(2016)
Cell
, vol.166
, pp. 21-45
-
-
Nieto, M.A.1
-
5
-
-
84960402192
-
Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity
-
5 Beerling, E., et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14 (2016), 2281–2288.
-
(2016)
Cell Rep.
, vol.14
, pp. 2281-2288
-
-
Beerling, E.1
-
6
-
-
84948429460
-
Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
-
6 Fischer, K.R., et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527 (2015), 472–476.
-
(2015)
Nature
, vol.527
, pp. 472-476
-
-
Fischer, K.R.1
-
7
-
-
84948407218
-
Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer
-
7 Zheng, X., et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527 (2015), 525–530.
-
(2015)
Nature
, vol.527
, pp. 525-530
-
-
Zheng, X.1
-
8
-
-
84876954094
-
Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis
-
8 Akalay, I., et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 73 (2013), 2418–2427.
-
(2013)
Cancer Res.
, vol.73
, pp. 2418-2427
-
-
Akalay, I.1
-
9
-
-
84867992286
-
TGF-β signalling and its role in cancer progression and metastasis
-
9 Drabsch, Y., ten Dijke, P., TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31 (2012), 553–568.
-
(2012)
Cancer Metastasis Rev.
, vol.31
, pp. 553-568
-
-
Drabsch, Y.1
ten Dijke, P.2
-
10
-
-
0035501062
-
TGF-β signaling in cancer – a double-edged sword
-
10 Akhurst, R.J., Derynck, R., TGF-β signaling in cancer – a double-edged sword. Trends Cell Biol. 11 (2001), S44–S51.
-
(2001)
Trends Cell Biol.
, vol.11
, pp. S44-S51
-
-
Akhurst, R.J.1
Derynck, R.2
-
11
-
-
84866985855
-
Targeting the TGFβ signalling pathway in disease
-
11 Akhurst, R.J., Hata, A., Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11 (2012), 790–811.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 790-811
-
-
Akhurst, R.J.1
Hata, A.2
-
12
-
-
84939783826
-
Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-β signaling pathway
-
12 Herbertz, S., et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-β signaling pathway. Drug Des. Devel. Ther. 9 (2015), 4479–4499.
-
(2015)
Drug Des. Devel. Ther.
, vol.9
, pp. 4479-4499
-
-
Herbertz, S.1
-
13
-
-
84859437880
-
Role of Smads in TGFβ signaling
-
13 Heldin, C.H., Moustakas, A., Role of Smads in TGFβ signaling. Cell Tissue Res. 347 (2012), 21–36.
-
(2012)
Cell Tissue Res.
, vol.347
, pp. 21-36
-
-
Heldin, C.H.1
Moustakas, A.2
-
14
-
-
36448936383
-
TGFβ-SMAD signal transduction: molecular specificity and functional flexibility
-
14 Schmierer, B., Hill, C.S., TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8 (2007), 970–982.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 970-982
-
-
Schmierer, B.1
Hill, C.S.2
-
15
-
-
67649197398
-
Transforming growth factor-βs and mammary gland involution; functional roles and implications for cancer progression
-
15 Flanders, K.C., Wakefield, L.M., Transforming growth factor-βs and mammary gland involution; functional roles and implications for cancer progression. J. Mammary Gland Biol. Neoplasia 14 (2009), 131–144.
-
(2009)
J. Mammary Gland Biol. Neoplasia
, vol.14
, pp. 131-144
-
-
Flanders, K.C.1
Wakefield, L.M.2
-
16
-
-
84973161362
-
Regulation of the bioavailability of TGF-β and TGF-β-related proteins
-
Published online June 1, 2016
-
16 Robertson, I.B., Rifkin, D.B., Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol., 2016 Published online June 1, 2016 http://dx.doi.org/10.1101/cshperspect.a021907.
-
(2016)
Cold Spring Harb. Perspect. Biol.
-
-
Robertson, I.B.1
Rifkin, D.B.2
-
17
-
-
84859443358
-
Non-Smad signaling pathways
-
17 Mu, Y., et al. Non-Smad signaling pathways. Cell Tissue Res. 347 (2012), 11–20.
-
(2012)
Cell Tissue Res.
, vol.347
, pp. 11-20
-
-
Mu, Y.1
-
18
-
-
34548386720
-
TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA
-
18 Lee, M.K., et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26 (2007), 3957–3967.
-
(2007)
EMBO J.
, vol.26
, pp. 3957-3967
-
-
Lee, M.K.1
-
19
-
-
84866742560
-
TGFβ signalling in context
-
19 Massague, J., TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13 (2012), 616–630.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 616-630
-
-
Massague, J.1
-
20
-
-
84980015797
-
Matters of context guide future research in TGFβ superfamily signaling
-
20 Akhurst, R.J., Padgett, R.W., Matters of context guide future research in TGFβ superfamily signaling. Sci. Signal., 8, 2015, re10.
-
(2015)
Sci. Signal.
, vol.8
, pp. re10
-
-
Akhurst, R.J.1
Padgett, R.W.2
-
21
-
-
85009113582
-
Signaling cross talk between TGF-β/Smad and other signaling pathways
-
Published online November 11, 2016
-
21 Luo, K., Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb. Perspect. Biol., 2016 Published online November 11, 2016 http://dx.doi.org/10.1101/cshperspect.a022137.
-
(2016)
Cold Spring Harb. Perspect. Biol.
-
-
Luo, K.1
-
22
-
-
84907486989
-
Active CREB1 promotes a malignant TGFβ2 autocrine loop in glioblastoma
-
22 Rodon, L., et al. Active CREB1 promotes a malignant TGFβ2 autocrine loop in glioblastoma. Cancer Discov. 4 (2014), 1230–1241.
-
(2014)
Cancer Discov.
, vol.4
, pp. 1230-1241
-
-
Rodon, L.1
-
23
-
-
84876817355
-
Beyond TGFβ: roles of other TGFβ superfamily members in cancer
-
23 Wakefield, L.M., Hill, C.S., Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat. Rev. Cancer 13 (2013), 328–341.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 328-341
-
-
Wakefield, L.M.1
Hill, C.S.2
-
24
-
-
79751489596
-
Molecular genetics of colorectal cancer
-
24 Fearon, E.R., Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6 (2011), 479–507.
-
(2011)
Annu. Rev. Pathol.
, vol.6
, pp. 479-507
-
-
Fearon, E.R.1
-
25
-
-
84930031024
-
Transforming growth factor β signaling in colorectal cancer cells with microsatellite instability despite biallelic mutations in TGFBR2
-
25 de Miranda, N.F., et al. Transforming growth factor β signaling in colorectal cancer cells with microsatellite instability despite biallelic mutations in TGFBR2. Gastroenterology 148 (2015), 1427–1437.
-
(2015)
Gastroenterology
, vol.148
, pp. 1427-1437
-
-
de Miranda, N.F.1
-
26
-
-
0033606964
-
Smad2 and Smad4 gene mutations in hepatocellular carcinoma
-
26 Yakicier, M.C., et al. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene 18 (1999), 4879–4883.
-
(1999)
Oncogene
, vol.18
, pp. 4879-4883
-
-
Yakicier, M.C.1
-
27
-
-
0030848192
-
Frequency of Smad gene mutations in human cancers
-
27 Riggins, G.J., et al. Frequency of Smad gene mutations in human cancers. Cancer Res. 57 (1997), 2578–2580.
-
(1997)
Cancer Res.
, vol.57
, pp. 2578-2580
-
-
Riggins, G.J.1
-
28
-
-
84959407882
-
TGF-β tumor suppression through a lethal EMT
-
28 David, C.J., et al. TGF-β tumor suppression through a lethal EMT. Cell 164 (2016), 1015–1030.
-
(2016)
Cell
, vol.164
, pp. 1015-1030
-
-
David, C.J.1
-
29
-
-
0034642605
-
Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer
-
29 Gryfe, R., et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N. Engl. J. Med. 342 (2000), 69–77.
-
(2000)
N. Engl. J. Med.
, vol.342
, pp. 69-77
-
-
Gryfe, R.1
-
30
-
-
85114283958
-
Mechanisms of TGFβ-induced epithelial–mesenchymal transition
-
30 Moustakas, A., Heldin, C.H., Mechanisms of TGFβ-induced epithelial–mesenchymal transition. J. Clin. Med., 5, 2016, 63.
-
(2016)
J. Clin. Med.
, vol.5
, pp. 63
-
-
Moustakas, A.1
Heldin, C.H.2
-
31
-
-
84997108006
-
Immunoregulation by members of the TGFβ superfamily
-
31 Chen, W.J., ten Dijke, P., Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 16 (2016), 723–740.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 723-740
-
-
Chen, W.J.1
ten Dijke, P.2
-
32
-
-
77954951446
-
The polarization of immune cells in the tumour environment by TGFβ
-
32 Flavell, R.A., et al. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol. 10 (2010), 554–567.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 554-567
-
-
Flavell, R.A.1
-
33
-
-
84954507389
-
The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia
-
33 Rouce, R.H., et al. The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30 (2016), 800–811.
-
(2016)
Leukemia
, vol.30
, pp. 800-811
-
-
Rouce, R.H.1
-
34
-
-
45549088943
-
Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17
-
34 Nam, J.S., et al. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res. 68 (2008), 3915–3923.
-
(2008)
Cancer Res.
, vol.68
, pp. 3915-3923
-
-
Nam, J.S.1
-
35
-
-
84929366910
-
TGFβ is a master regulator of radiation therapy-induced antitumor immunity
-
35 Vanpouille-Box, C., et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75 (2015), 2232–2242.
-
(2015)
Cancer Res.
, vol.75
, pp. 2232-2242
-
-
Vanpouille-Box, C.1
-
36
-
-
33745578957
-
Smad4 signalling in T cells is required for suppression of gastrointestinal cancer
-
36 Kim, B.G., et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441 (2006), 1015–1019.
-
(2006)
Nature
, vol.441
, pp. 1015-1019
-
-
Kim, B.G.1
-
37
-
-
0032524069
-
Mutations in the SMAD4/DPC4 gene in juvenile polyposis
-
37 Howe, J.R., et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280 (1998), 1086–1088.
-
(1998)
Science
, vol.280
, pp. 1086-1088
-
-
Howe, J.R.1
-
38
-
-
85009925257
-
Genetic risks and familial associations of small bowel carcinoma
-
38 Shenoy, S., Genetic risks and familial associations of small bowel carcinoma. World J. Gastrointest. Oncol. 8 (2016), 509–519.
-
(2016)
World J. Gastrointest. Oncol.
, vol.8
, pp. 509-519
-
-
Shenoy, S.1
-
39
-
-
85012001400
-
Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation
-
Published online June 4, 2016
-
39 Principe, D.R., et al. Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget., 2016 Published online June 4, 2016 http://dx.doi.org/10.18632/oncotarget.9830.
-
(2016)
Oncotarget.
-
-
Principe, D.R.1
-
40
-
-
77956187467
-
Signaling by members of the TGF-β family in vascular morphogenesis and disease
-
40 Pardali, E., et al. Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends Cell Biol. 20 (2010), 556–567.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 556-567
-
-
Pardali, E.1
-
41
-
-
85009818989
-
Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function
-
41 de Vinuesa, A.G., et al. Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem. Soc. Trans. 44 (2016), 1142–1149.
-
(2016)
Biochem. Soc. Trans.
, vol.44
, pp. 1142-1149
-
-
de Vinuesa, A.G.1
-
42
-
-
84875143880
-
Endoglin for tumor imaging and targeted cancer therapy
-
42 Paauwe, M., et al. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin. Ther. Targets 17 (2013), 421–435.
-
(2013)
Expert Opin. Ther. Targets
, vol.17
, pp. 421-435
-
-
Paauwe, M.1
-
43
-
-
0842288323
-
TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia
-
43 Bhowmick, N.A., et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303 (2004), 848–851.
-
(2004)
Science
, vol.303
, pp. 848-851
-
-
Bhowmick, N.A.1
-
44
-
-
23744452875
-
Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks
-
44 Cheng, N., et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24 (2005), 5053–5068.
-
(2005)
Oncogene
, vol.24
, pp. 5053-5068
-
-
Cheng, N.1
-
45
-
-
34250321214
-
Enhanced hepatocyte growth factor signaling by type II transforming growth factor-β receptor knockout fibroblasts promotes mammary tumorigenesis
-
45 Cheng, N., et al. Enhanced hepatocyte growth factor signaling by type II transforming growth factor-β receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res. 67 (2007), 4869–4877.
-
(2007)
Cancer Res.
, vol.67
, pp. 4869-4877
-
-
Cheng, N.1
-
46
-
-
84855425160
-
Interactions between cancer stem cells and their niche govern metastatic colonization
-
46 Malanchi, I., et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481 (2012), 85–89.
-
(2012)
Nature
, vol.481
, pp. 85-89
-
-
Malanchi, I.1
-
47
-
-
84877600884
-
Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions
-
47 De Sousa, F., Melo, E., et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19 (2013), 614–618.
-
(2013)
Nat. Med.
, vol.19
, pp. 614-618
-
-
De Sousa, F.1
Melo, E.2
-
48
-
-
84869021181
-
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation
-
48 Calon, A., et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22 (2012), 571–584.
-
(2012)
Cancer Cell
, vol.22
, pp. 571-584
-
-
Calon, A.1
-
49
-
-
0029958887
-
Myofibroblasts differentiate from fibroblasts when plated at low density
-
49 Masur, S.K., et al. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 4219–4223.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 4219-4223
-
-
Masur, S.K.1
-
50
-
-
49249120549
-
Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells
-
50 Mishra, P.J., et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68 (2008), 4331–4339.
-
(2008)
Cancer Res.
, vol.68
, pp. 4331-4339
-
-
Mishra, P.J.1
-
51
-
-
53449094862
-
Stromal myofibroblasts are drivers of invasive cancer growth
-
51 De Wever, O., et al. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123 (2008), 2229–2238.
-
(2008)
Int. J. Cancer
, vol.123
, pp. 2229-2238
-
-
De Wever, O.1
-
52
-
-
84990838759
-
Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1
-
52 Barcellos-de-Souza, P., et al. Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem. Cells 34 (2016), 2536–2547.
-
(2016)
Stem. Cells
, vol.34
, pp. 2536-2547
-
-
Barcellos-de-Souza, P.1
-
53
-
-
79751501829
-
Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth
-
53 Quante, M., et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19 (2011), 257–272.
-
(2011)
Cancer Cell
, vol.19
, pp. 257-272
-
-
Quante, M.1
-
54
-
-
35948945337
-
Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts
-
54 Zeisberg, E.M., et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67 (2007), 10123–10128.
-
(2007)
Cancer Res.
, vol.67
, pp. 10123-10128
-
-
Zeisberg, E.M.1
-
55
-
-
84956913971
-
IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis
-
55 Pallangyo, C.K., et al. IKKβ acts as a tumor suppressor in cancer-associated fibroblasts during intestinal tumorigenesis. J. Exp. Med. 212 (2015), 2253–2266.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 2253-2266
-
-
Pallangyo, C.K.1
-
56
-
-
84956878669
-
IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer
-
56 Koliaraki, V., et al. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J. Exp. Med. 212 (2015), 2235–2251.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 2235-2251
-
-
Koliaraki, V.1
-
57
-
-
68349160814
-
Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis
-
57 Korpal, M., et al. Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat. Med. 15 (2009), 960–966.
-
(2009)
Nat. Med.
, vol.15
, pp. 960-966
-
-
Korpal, M.1
-
58
-
-
84862492510
-
The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis
-
58 Garrison, K., et al. The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol. Immunother. 61 (2012), 511–521.
-
(2012)
Cancer Immunol. Immunother.
, vol.61
, pp. 511-521
-
-
Garrison, K.1
-
59
-
-
84939960795
-
Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts
-
59 Maier, A., et al. Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell Oncol. 38 (2015), 131–144.
-
(2015)
Cell Oncol.
, vol.38
, pp. 131-144
-
-
Maier, A.1
-
60
-
-
84907494552
-
Neutralizing murine TGFβR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis
-
60 Ostapoff, K.T., et al. Neutralizing murine TGFβR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 74 (2014), 4996–5007.
-
(2014)
Cancer Res.
, vol.74
, pp. 4996-5007
-
-
Ostapoff, K.T.1
-
61
-
-
84918767156
-
−/− transgenic model of melanoma
-
−/− transgenic model of melanoma. J. Clin. Oncol., 32(Suppl), 2014, A3011.
-
(2014)
J. Clin. Oncol.
, vol.32
, pp. A3011
-
-
Hanks, B.A.1
-
62
-
-
76749102053
-
Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells
-
62 Zhong, Z., et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16 (2010), 1191–1205.
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 1191-1205
-
-
Zhong, Z.1
-
63
-
-
0036087521
-
Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects
-
63 Yang, Y.A., et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109 (2002), 1607–1615.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1607-1615
-
-
Yang, Y.A.1
-
64
-
-
34547187636
-
Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies
-
64 Hau, P., et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17 (2007), 201–212.
-
(2007)
Oligonucleotides
, vol.17
, pp. 201-212
-
-
Hau, P.1
-
65
-
-
79951602633
-
Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study
-
65 Bogdahn, U., et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro. Oncol. 13 (2011), 132–142.
-
(2011)
Neuro. Oncol.
, vol.13
, pp. 132-142
-
-
Bogdahn, U.1
-
66
-
-
84943665476
-
A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer
-
66 Giaccone, G., et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 51 (2015), 2321–2329.
-
(2015)
Eur. J. Cancer
, vol.51
, pp. 2321-2329
-
-
Giaccone, G.1
-
67
-
-
84897566294
-
Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma
-
67 Morris, J.C., et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One, 9, 2014, e90353.
-
(2014)
PLoS One
, vol.9
, pp. e90353
-
-
Morris, J.C.1
-
68
-
-
80053585761
-
Induction of heart valve lesions by small-molecule ALK5 inhibitors
-
68 Anderton, M.J., et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39 (2011), 916–924.
-
(2011)
Toxicol. Pathol.
, vol.39
, pp. 916-924
-
-
Anderton, M.J.1
-
69
-
-
84899071195
-
Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model
-
69 Gueorguieva, I., et al. Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. Br. J. Clin. Pharmacol. 77 (2014), 796–807.
-
(2014)
Br. J. Clin. Pharmacol.
, vol.77
, pp. 796-807
-
-
Gueorguieva, I.1
-
70
-
-
84942370577
-
Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study
-
70 Kovacs, R.J., et al. Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc. Toxicol. 15 (2015), 309–323.
-
(2015)
Cardiovasc. Toxicol.
, vol.15
, pp. 309-323
-
-
Kovacs, R.J.1
-
71
-
-
84939789948
-
Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer
-
71 Rodon, J., et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest. New Drugs 33 (2015), 357–370.
-
(2015)
Invest. New Drugs
, vol.33
, pp. 357-370
-
-
Rodon, J.1
-
72
-
-
84961288435
-
First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma
-
72 Rodon, J., et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21 (2015), 553–560.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 553-560
-
-
Rodon, J.1
-
73
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
73 Parsons, D.W., et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321 (2008), 1807–1812.
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
-
74
-
-
84870677094
-
Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial–mesenchymal transition (EMT)
-
74 Grassian, A.R., et al. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial–mesenchymal transition (EMT). J. Biol. Chem. 287 (2012), 42180–42194.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42180-42194
-
-
Grassian, A.R.1
-
75
-
-
84982131467
-
A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma
-
75 Brandes, A.A., et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro. Oncol. 18 (2016), 1146–1156.
-
(2016)
Neuro. Oncol.
, vol.18
, pp. 1146-1156
-
-
Brandes, A.A.1
-
76
-
-
85009903727
-
A phase II, double-blind study of galunisertib + gemcitabine (GG) vs gemcitabine + placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC)
-
76 Melisi, D., et al. A phase II, double-blind study of galunisertib + gemcitabine (GG) vs gemcitabine + placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC). J. Clin. Oncol., 34(Suppl), 2016, A4019.
-
(2016)
J. Clin. Oncol.
, vol.34
, pp. A4019
-
-
Melisi, D.1
-
77
-
-
85009885916
-
A phase 2 study of galunisertib, a novel transforming growth factor-beta (TGF-β) receptor I kinase inhibitor, in patients with advanced hepatocellular carcinoma (HCC) and low serum alpha fetoprotein (AFP)
-
77 Faivre, S.J., A phase 2 study of galunisertib, a novel transforming growth factor-beta (TGF-β) receptor I kinase inhibitor, in patients with advanced hepatocellular carcinoma (HCC) and low serum alpha fetoprotein (AFP). J. Clin. Oncol., 34(Suppl), 2016, A4070.
-
(2016)
J. Clin. Oncol.
, vol.34
, pp. A4070
-
-
Faivre, S.J.1
-
78
-
-
84884856886
-
TGF-β: an emerging player in drug resistance
-
78 Brunen, D., et al. TGF-β: an emerging player in drug resistance. Cell Cycle 12 (2013), 2960–2968.
-
(2013)
Cell Cycle
, vol.12
, pp. 2960-2968
-
-
Brunen, D.1
-
79
-
-
84870020040
-
MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling
-
79 Huang, S., et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 151 (2012), 937–950.
-
(2012)
Cell
, vol.151
, pp. 937-950
-
-
Huang, S.1
-
80
-
-
84897531613
-
Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma
-
80 Sun, C., et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508 (2014), 118–122.
-
(2014)
Nature
, vol.508
, pp. 118-122
-
-
Sun, C.1
-
81
-
-
84874607100
-
TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer
-
81 Bhola, N.E., et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123 (2013), 1348–1358.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 1348-1358
-
-
Bhola, N.E.1
-
82
-
-
84940757323
-
Effects of TGF-β signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients
-
82 Serova, M., et al. Effects of TGF-β signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients. Oncotarget 6 (2015), 21614–21627.
-
(2015)
Oncotarget
, vol.6
, pp. 21614-21627
-
-
Serova, M.1
-
83
-
-
84874106140
-
Combined treatment with erlotinib and a transforming growth factor-β type I receptor inhibitor effectively suppresses the enhanced motility of erlotinib-resistant non-small-cell lung cancer cells
-
83 Serizawa, M., et al. Combined treatment with erlotinib and a transforming growth factor-β type I receptor inhibitor effectively suppresses the enhanced motility of erlotinib-resistant non-small-cell lung cancer cells. J. Thorac. Oncol. 8 (2013), 259–269.
-
(2013)
J. Thorac. Oncol.
, vol.8
, pp. 259-269
-
-
Serizawa, M.1
-
84
-
-
84915749487
-
Cancer stem cells – important players in tumor therapy resistance
-
84 Colak, S., Medema, J.P., Cancer stem cells – important players in tumor therapy resistance. FEBS J. 281 (2014), 4779–4791.
-
(2014)
FEBS J.
, vol.281
, pp. 4779-4791
-
-
Colak, S.1
Medema, J.P.2
-
85
-
-
84902264905
-
Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells
-
85 Colak, S., et al. Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ. 21 (2014), 1170–1177.
-
(2014)
Cell Death Differ.
, vol.21
, pp. 1170-1177
-
-
Colak, S.1
-
86
-
-
43049165453
-
The epithelial–mesenchymal transition generates cells with properties of stem cells
-
86 Mani, S.A., et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133 (2008), 704–715.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
-
87
-
-
78649986150
-
high glioma-initiating cell population in human glioblastoma
-
high glioma-initiating cell population in human glioblastoma. Cancer Cell 18 (2010), 655–668.
-
(2010)
Cancer Cell
, vol.18
, pp. 655-668
-
-
Anido, J.1
-
88
-
-
84865140762
-
Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β
-
88 Hardee, M.E., et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 72 (2012), 4119–4129.
-
(2012)
Cancer Res.
, vol.72
, pp. 4119-4129
-
-
Hardee, M.E.1
-
89
-
-
84875900723
-
Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer
-
89 Panis, C., et al. Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer. Anticancer Res. 33 (2013), 737–742.
-
(2013)
Anticancer Res.
, vol.33
, pp. 737-742
-
-
Panis, C.1
-
90
-
-
84873143684
-
Plasma levels of transforming growth factor-β1 before and after removal of low- and high-grade astrocytomas
-
90 Loh, J.K., et al. Plasma levels of transforming growth factor-β1 before and after removal of low- and high-grade astrocytomas. Cytokine 61 (2013), 413–418.
-
(2013)
Cytokine
, vol.61
, pp. 413-418
-
-
Loh, J.K.1
-
91
-
-
84942330446
-
High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with Sorafenib
-
91 Lin, T.H., et al. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with Sorafenib. Clin. Cancer Res. 21 (2015), 3678–3684.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 3678-3684
-
-
Lin, T.H.1
-
92
-
-
41149157649
-
TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4
-
92 Padua, D., et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133 (2008), 66–77.
-
(2008)
Cell
, vol.133
, pp. 66-77
-
-
Padua, D.1
-
93
-
-
67651005826
-
Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer
-
93 Bierie, B., et al. Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. J. Clin. Invest. 119 (2009), 1571–1582.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1571-1582
-
-
Bierie, B.1
-
94
-
-
46249085489
-
Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer
-
94 Coulouarn, C., et al. Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47 (2008), 2059–2067.
-
(2008)
Hepatology
, vol.47
, pp. 2059-2067
-
-
Coulouarn, C.1
-
95
-
-
84989964522
-
Targeting the microenvironment in advanced colorectal cancer
-
95 Tauriello, D.V., Batlle, E., Targeting the microenvironment in advanced colorectal cancer. Trends Cancer 2 (2016), 495–504.
-
(2016)
Trends Cancer
, vol.2
, pp. 495-504
-
-
Tauriello, D.V.1
Batlle, E.2
-
96
-
-
84977616813
-
TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype
-
96 Fessler, E., et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8 (2016), 745–760.
-
(2016)
EMBO Mol. Med.
, vol.8
, pp. 745-760
-
-
Fessler, E.1
-
97
-
-
84989953478
-
Colorectal cancer subtypes: developmental origin and microenvironmental regulation
-
97 Fessler, E., Medema, J.P., Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Trends Cancer 2 (2016), 505–518.
-
(2016)
Trends Cancer
, vol.2
, pp. 505-518
-
-
Fessler, E.1
Medema, J.P.2
-
98
-
-
84942370095
-
Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma
-
98 Liu, Q., et al. Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma. Acta. Neuropathol. 130 (2015), 587–597.
-
(2015)
Acta. Neuropathol.
, vol.130
, pp. 587-597
-
-
Liu, Q.1
-
99
-
-
79953756460
-
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
-
99 Collisson, E.A., et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17 (2011), 500–503.
-
(2011)
Nat. Med.
, vol.17
, pp. 500-503
-
-
Collisson, E.A.1
-
100
-
-
79960015997
-
Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies
-
100 Lehmann, B.D., et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121 (2011), 2750–2767.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2750-2767
-
-
Lehmann, B.D.1
-
101
-
-
84873582060
-
Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer
-
101 Yang, D., et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23 (2013), 186–199.
-
(2013)
Cancer Cell
, vol.23
, pp. 186-199
-
-
Yang, D.1
-
102
-
-
84886787846
-
Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer
-
102 Kim, H.S., et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155 (2013), 552–566.
-
(2013)
Cell
, vol.155
, pp. 552-566
-
-
Kim, H.S.1
-
103
-
-
84858004513
-
USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma
-
103 Eichhorn, P.J., et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med. 18 (2012), 429–435.
-
(2012)
Nat. Med.
, vol.18
, pp. 429-435
-
-
Eichhorn, P.J.1
-
104
-
-
33846821916
-
High TGFβ–Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene
-
104 Bruna, A., et al. High TGFβ–Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11 (2007), 147–160.
-
(2007)
Cancer Cell
, vol.11
, pp. 147-160
-
-
Bruna, A.1
-
105
-
-
84873857204
-
The prognostic role of TGF-β signaling pathway in breast cancer patients
-
105 de Kruijf, E.M., et al. The prognostic role of TGF-β signaling pathway in breast cancer patients. Ann. Oncol. 24 (2013), 384–390.
-
(2013)
Ann. Oncol.
, vol.24
, pp. 384-390
-
-
de Kruijf, E.M.1
-
106
-
-
84964700391
-
Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy
-
106 Alix-Panabieres, C., Pantel, K., Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6 (2016), 479–491.
-
(2016)
Cancer Discov.
, vol.6
, pp. 479-491
-
-
Alix-Panabieres, C.1
Pantel, K.2
-
107
-
-
84863100828
-
Considerations in the development of circulating tumor cell technology for clinical use
-
107 Parkinson, D.R., et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med., 10, 2012, 138.
-
(2012)
J. Transl. Med.
, vol.10
, pp. 138
-
-
Parkinson, D.R.1
-
108
-
-
84898542288
-
Liquid biopsies: genotyping circulating tumor DNA
-
108 Diaz, L.A. Jr., Bardelli, A., Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32 (2014), 579–586.
-
(2014)
J. Clin. Oncol.
, vol.32
, pp. 579-586
-
-
Diaz, L.A.1
Bardelli, A.2
-
109
-
-
84905719521
-
Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer
-
109 Gazzaniga, P., et al. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer. Int. J. Cancer 135 (2014), 1978–1982.
-
(2014)
Int. J. Cancer
, vol.135
, pp. 1978-1982
-
-
Gazzaniga, P.1
-
110
-
-
84905160299
-
Circulating tumor cells predict survival in early average-to-high risk breast cancer patients
-
110 Rack, B., et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J. Natl. Cancer Inst., 106, 2014, dju066.
-
(2014)
J. Natl. Cancer Inst.
, vol.106
, pp. dju066
-
-
Rack, B.1
-
111
-
-
84882655536
-
Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma
-
111 Schulze, K., et al. Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int. J. Cancer 133 (2013), 2165–2171.
-
(2013)
Int. J. Cancer
, vol.133
, pp. 2165-2171
-
-
Schulze, K.1
-
112
-
-
84877865227
-
Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing
-
112 Heitzer, E., et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73 (2013), 2965–2975.
-
(2013)
Cancer Res.
, vol.73
, pp. 2965-2975
-
-
Heitzer, E.1
-
113
-
-
84873811988
-
Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition
-
113 Yu, M., et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339 (2013), 580–584.
-
(2013)
Science
, vol.339
, pp. 580-584
-
-
Yu, M.1
-
114
-
-
79957458567
-
Cell-free nucleic acids as biomarkers in cancer patients
-
114 Schwarzenbach, H., et al. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11 (2011), 426–437.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 426-437
-
-
Schwarzenbach, H.1
-
115
-
-
84891879491
-
First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study
-
115 Douillard, J.Y., et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br. J. Cancer 110 (2014), 55–62.
-
(2014)
Br. J. Cancer
, vol.110
, pp. 55-62
-
-
Douillard, J.Y.1
-
116
-
-
84925536864
-
Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008)
-
116 Lacouture, M.E., et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64 (2015), 437–446.
-
(2015)
Cancer Immunol. Immunother.
, vol.64
, pp. 437-446
-
-
Lacouture, M.E.1
|