메뉴 건너뛰기




Volumn 15, Issue 1, 2016, Pages

Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments

Author keywords

Diversity; Flux balance analysis; Metabolic flux; Modeling; S. cerevisiae

Indexed keywords

ACETALDEHYDE; GLUTAMATE DEHYDROGENASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; CARBON;

EID: 85007500885     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-016-0456-0     Document Type: Article
Times cited : (29)

References (60)
  • 1
    • 0347506028 scopus 로고    scopus 로고
    • It is all about metabolic fluxes
    • Nielsen J. It is all about metabolic fluxes. J Bacteriol. 2003;185:7031-5.
    • (2003) J Bacteriol , vol.185 , pp. 7031-7035
    • Nielsen, J.1
  • 2
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. 13C metabolic flux analysis. Metab Eng. 2001;3:195-206.
    • (2001) Metab Eng , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 4
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007;3:119.
    • (2007) Mol Syst Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 5
    • 0038293216 scopus 로고    scopus 로고
    • Optimization-based framework for inferring and testing hypothesized metabolic objective functions
    • Burgard AP, Maranas CD. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng. 2003;82:670-7.
    • (2003) Biotechnol Bioeng , vol.82 , pp. 670-677
    • Burgard, A.P.1    Maranas, C.D.2
  • 6
    • 84914124771 scopus 로고    scopus 로고
    • Comparison and analysis of objective functions in flux balance analysis
    • García Sánchez CE, Torres Sáez RG, CE. Comparison and analysis of objective functions in flux balance analysis. Biotechnol Prog. 2014;30:985-91.
    • (2014) Biotechnol Prog , vol.30 , pp. 985-991
    • García Sánchez, C.E.1    Torres Sáez, R.G.C.E.2
  • 7
    • 0035017810 scopus 로고    scopus 로고
    • Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints
    • Ramakrishna R, Edwards JS, McCulloch A, Palsson BO. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol. 2001;280:R695-704.
    • (2001) Am J Physiol Regul Integr Comp Physiol , vol.280 , pp. R695-R704
    • Ramakrishna, R.1    Edwards, J.S.2    McCulloch, A.3    Palsson, B.O.4
  • 8
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci. 2002;99:15112-7.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.M.3
  • 9
    • 84862182291 scopus 로고    scopus 로고
    • A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
    • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng. 2012;14:366-79.
    • (2012) Metab Eng , vol.14 , pp. 366-379
    • Celton, M.1    Goelzer, A.2    Camarasa, C.3    Fromion, V.4    Dequin, S.5
  • 11
    • 77952886804 scopus 로고    scopus 로고
    • The biomass objective function
    • (Ecology and industrial microbiology special section: systems biology)
    • Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010;13:344-9 (Ecology and industrial microbiology special section: systems biology).
    • (2010) Curr Opin Microbiol , vol.13 , pp. 344-349
    • Feist, A.M.1    Palsson, B.O.2
  • 12
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genom. 2012;13:317.
    • (2012) BMC Genom , vol.13 , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3    Fromion, V.4    Camarasa, C.5    Dequin, S.6
  • 14
    • 84943659706 scopus 로고    scopus 로고
    • Applications of computational modeling in metabolic engineering of yeast
    • Kerkhoven EJ, Lahtvee P-J, Nielsen J. Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Res. 2014;15:1-13.
    • (2014) FEMS Yeast Res , vol.15 , pp. 1-13
    • Kerkhoven, E.J.1    Lahtvee, P.-J.2    Nielsen, J.3
  • 15
  • 16
    • 84864932596 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: developments and impacts
    • österlund T, Nookaew I, Nielsen J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv. 2012;30:979-88.
    • (2012) Biotechnol Adv , vol.30 , pp. 979-988
    • Österlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 17
    • 15044342010 scopus 로고    scopus 로고
    • Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
    • Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005;5:545-58.
    • (2005) FEMS Yeast Res , vol.5 , pp. 545-558
    • Blank, L.M.1    Lehmbeck, F.2    Sauer, U.3
  • 18
    • 35748944864 scopus 로고    scopus 로고
    • Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function
    • (In Memoriam W.-D. Deckwer: merging process engineering and systems biology)
    • Velagapudi VR, Wittmann C, Schneider K, Heinzle E. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol. 2007;132:395-404 (In Memoriam W.-D. Deckwer: merging process engineering and systems biology).
    • (2007) J Biotechnol , vol.132 , pp. 395-404
    • Velagapudi, V.R.1    Wittmann, C.2    Schneider, K.3    Heinzle, E.4
  • 19
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • Patil KR, Nielsen J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA. 2005;102:2685-9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 20
    • 84879236195 scopus 로고    scopus 로고
    • Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production
    • Agren R, Otero JM, Nielsen J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol. 2013;40:735-47.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 735-747
    • Agren, R.1    Otero, J.M.2    Nielsen, J.3
  • 21
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng. 2006;8:102-11.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 22
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE. 2013;8:e54144.
    • (2013) PLoS ONE , vol.8
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5    Nielsen, J.6
  • 24
    • 6044250373 scopus 로고    scopus 로고
    • Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry
    • Cannizzaro C, Christensen B, Nielsen J, von Stockar U. Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab Eng. 2004;6:340-51.
    • (2004) Metab Eng , vol.6 , pp. 340-351
    • Cannizzaro, C.1    Christensen, B.2    Nielsen, J.3    von Stockar, U.4
  • 26
    • 79953882386 scopus 로고    scopus 로고
    • Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics
    • Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res. 2011;11:263-72.
    • (2011) FEMS Yeast Res , vol.11 , pp. 263-272
    • Christen, S.1    Sauer, U.2
  • 27
    • 33645096818 scopus 로고    scopus 로고
    • Evidence for domesticated and wild populations of Saccharomyces cerevisiae
    • Fay JC, Benavides JA. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 2005;1:e5.
    • (2005) PLoS Genet , vol.1
    • Fay, J.C.1    Benavides, J.A.2
  • 28
    • 19944415015 scopus 로고    scopus 로고
    • Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains
    • Legras J-L, Ruh O, Merdinoglu D, Karst F. Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol. 2005;102:73-83.
    • (2005) Int J Food Microbiol , vol.102 , pp. 73-83
    • Legras, J.-L.1    Ruh, O.2    Merdinoglu, D.3    Karst, F.4
  • 29
    • 34248192358 scopus 로고    scopus 로고
    • Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history
    • Legras JL, Merdinoglu D, Cornuet J, Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol. 2007;16:2091-102.
    • (2007) Mol Ecol , vol.16 , pp. 2091-2102
    • Legras, J.L.1    Merdinoglu, D.2    Cornuet, J.3    Karst, F.4
  • 31
    • 62649126517 scopus 로고    scopus 로고
    • Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae
    • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature. 2009;458:342-5.
    • (2009) Nature , vol.458 , pp. 342-345
    • Schacherer, J.1    Shapiro, J.A.2    Ruderfer, D.M.3    Kruglyak, L.4
  • 34
    • 84929658508 scopus 로고    scopus 로고
    • The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen
    • Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015;25:762-74.
    • (2015) Genome Res , vol.25 , pp. 762-774
    • Strope, P.K.1    Skelly, D.A.2    Kozmin, S.G.3    Mahadevan, G.4    Stone, E.A.5    Magwene, P.M.6    Dietrich, F.S.7    McCusker, J.H.8
  • 35
    • 74049104785 scopus 로고    scopus 로고
    • Nichedriven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae
    • Spor A, Nidelet T, Simon J, Bourgais A, de Vienne D, Sicard D. Nichedriven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae. BMC Evol Biol. 2009;9:296.
    • (2009) BMC Evol Biol , vol.9 , pp. 296
    • Spor, A.1    Nidelet, T.2    Simon, J.3    Bourgais, A.4    de Vienne, D.5    Sicard, D.6
  • 36
    • 80052842089 scopus 로고    scopus 로고
    • Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origindependent metabolic traits
    • Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S. Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origindependent metabolic traits. PLoS ONE. 2011;6:e25147.
    • (2011) PLoS ONE , vol.6
    • Camarasa, C.1    Sanchez, I.2    Brial, P.3    Bigey, F.4    Dequin, S.5
  • 39
    • 85018194017 scopus 로고    scopus 로고
    • Diversity and adaptive evolution of Saccharomyces wine yeast: a review
    • Marsit S, Dequin S. Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res. 2015;15:67.
    • (2015) FEMS Yeast Res , vol.15 , pp. 67
    • Marsit, S.1    Dequin, S.2
  • 40
    • 4644220226 scopus 로고    scopus 로고
    • Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states
    • Reed JL, Palsson BØ. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 2004;14:1797-805.
    • (2004) Genome Res , vol.14 , pp. 1797-1805
    • Reed, J.L.1    Palsson, B.Ø.2
  • 41
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • Heavner BD, Smallbone K, Price ND, Walker LP. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database. 2013;2013:bat059.
    • (2013) Database , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 42
    • 38849180187 scopus 로고    scopus 로고
    • Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains
    • Heux S, Cadiere A, Dequin S. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res. 2008;8:217-24.
    • (2008) FEMS Yeast Res , vol.8 , pp. 217-224
    • Heux, S.1    Cadiere, A.2    Dequin, S.3
  • 43
    • 71449083602 scopus 로고    scopus 로고
    • Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae
    • Heyland J, Fu J, Blank LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology. 2009;155:3827-37.
    • (2009) Microbiology , vol.155 , pp. 3827-3837
    • Heyland, J.1    Fu, J.2    Blank, L.M.3
  • 44
    • 79955158679 scopus 로고    scopus 로고
    • Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway
    • Cadière A, Ortiz-Julien A, Camarasa C, Dequin S. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng. 2011;13:263-71.
    • (2011) Metab Eng , vol.13 , pp. 263-271
    • Cadière, A.1    Ortiz-Julien, A.2    Camarasa, C.3    Dequin, S.4
  • 45
    • 0034847012 scopus 로고    scopus 로고
    • The potential of genetic engineering for improving brewing, wine-making and baking yeasts
    • Dequin S. The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol. 2001;56:577-88.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 577-588
    • Dequin, S.1
  • 46
    • 49549120655 scopus 로고    scopus 로고
    • Improvement of Saccharomyces Yeast Strains Used in Brewing, Wine Making and Baking
    • Stahl U, Donalies UEB, Nevoigt E, editors. Springer: Berlin (Advances in biochemical engineering/biotechnology, vol. 111)
    • Donalies UEB, Nguyen HTT, Stahl U, Nevoigt E. Improvement of Saccharomyces Yeast Strains Used in Brewing, Wine Making and Baking. In: Stahl U, Donalies UEB, Nevoigt E, editors. Food Biotechnology. Springer: Berlin; 2008 p. 67-98 (Advances in biochemical engineering/biotechnology, vol. 111).
    • (2008) Food Biotechnology , pp. 67-98
    • Donalies, U.E.B.1    Nguyen, H.T.T.2    Stahl, U.3    Nevoigt, E.4
  • 48
    • 23844550230 scopus 로고    scopus 로고
    • The use of genetically modified Saccharomyces cerevisiae strains in the wine industry
    • Schuller D, Casal M. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol. 2005;68:292-304.
    • (2005) Appl Microbiol Biotechnol , vol.68 , pp. 292-304
    • Schuller, D.1    Casal, M.2
  • 49
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-Butanediol dehydrogenase to reduce acetoin formation by glyceroloverproducing, low-alcohol Saccharomyces cerevisiae
    • Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S. Engineering of 2,3-Butanediol dehydrogenase to reduce acetoin formation by glyceroloverproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:3196-205.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3196-3205
    • Ehsani, M.1    Fernández, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 53
    • 0030792275 scopus 로고    scopus 로고
    • Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae Strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase
    • Michnick S, Roustan J-L, Remize F, Barre P, Dequin S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae Strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783-93.
    • (1997) Yeast , vol.13 , pp. 783-793
    • Michnick, S.1    Roustan, J.-L.2    Remize, F.3    Barre, P.4    Dequin, S.5
  • 54
    • 84896919039 scopus 로고    scopus 로고
    • Reducing ethanol and improving glycerol yield by adaptive evolution of Saccharomyces cerevisiae wine yeast under hyperosmotic conditions
    • Tilloy V, Ortiz-Julien A, Dequin S. Reducing ethanol and improving glycerol yield by adaptive evolution of Saccharomyces cerevisiae wine yeast under hyperosmotic conditions. Appl Environ Microbiol. 2014. doi:10.1128/AEM.03710-13.
    • (2014) Appl Environ Microbiol
    • Tilloy, V.1    Ortiz-Julien, A.2    Dequin, S.3
  • 55
    • 0037087377 scopus 로고    scopus 로고
    • Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene
    • Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barros Lopes M. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast. 2002;19:295-301.
    • (2002) Yeast , vol.19 , pp. 295-301
    • Eglinton, J.M.1    Heinrich, A.J.2    Pollnitz, A.P.3    Langridge, P.4    Henschke, P.A.5    de Barros Lopes, M.6
  • 56
    • 0033856517 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2 + and mitochondrial K + acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation
    • Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2 + and mitochondrial K + acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol. 2000;66:3151-9.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3151-3159
    • Remize, F.1    Andrieu, E.2    Dequin, S.3
  • 57
    • 0029852388 scopus 로고    scopus 로고
    • Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD +] levels enhance glycerol production in Saccharomyces cerevisiae
    • Nevoigt E, Stahl U. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD +] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast. 1996;12:1331-7.
    • (1996) Yeast , vol.12 , pp. 1331-1337
    • Nevoigt, E.1    Stahl, U.2
  • 58
    • 84929318248 scopus 로고    scopus 로고
    • Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation
    • Noble J, Sanchez I, Blondin B. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Microb Cell Fact. 2015;14:1-16.
    • (2015) Microb Cell Fact , vol.14 , pp. 1-16
    • Noble, J.1    Sanchez, I.2    Blondin, B.3
  • 60
    • 84856051805 scopus 로고    scopus 로고
    • RStudio. A Platform-Independent IDE for R and Sweave
    • Racine JS, RStudio. A Platform-Independent IDE for R and Sweave. J Appl Econom. 2012;27:167-72.
    • (2012) J Appl Econom , vol.27 , pp. 167-172
    • Racine, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.