-
1
-
-
33947265676
-
Modulation of volatile sulfur compound by wine yeast
-
Swiegers JH, Pretorius IS. Modulation of volatile sulfur compound by wine yeast. Appl Microbiol Biotechnol. 2007;74(5):954-60.
-
(2007)
Appl Microbiol Biotechnol
, vol.74
, Issue.5
, pp. 954-960
-
-
Swiegers, J.H.1
Pretorius, I.S.2
-
2
-
-
63049112611
-
The production of hydrogen sulfide and other aroma compounds by wine yeasts of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations
-
Mendes-Ferreira A, Barbosa C, Falco V, Leao C, Mendes-Faia A. The production of hydrogen sulfide and other aroma compounds by wine yeasts of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J Ind Microbiol Biotechnol. 2009;36(4):571-83.
-
(2009)
J Ind Microbiol Biotechnol
, vol.36
, Issue.4
, pp. 571-583
-
-
Mendes-Ferreira, A.1
Barbosa, C.2
Falco, V.3
Leao, C.4
Mendes-Faia, A.5
-
3
-
-
0028252753
-
Considerations for the use of yeasts and bacteria starter cultures: SO2 and timing of inoculation
-
Henick-Kling T, Park YH. Considerations for the use of yeasts and bacteria starter cultures: SO2 and timing of inoculation. Am J Enol Vitic. 1994;45(4):464-9.
-
(1994)
Am J Enol Vitic
, vol.45
, Issue.4
, pp. 464-469
-
-
Henick-Kling, T.1
Park, Y.H.2
-
4
-
-
0037018877
-
Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni
-
Carreté R, Vidal MT, Bordons A, Constanti M. Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol Lett. 2002;211:155-9.
-
(2002)
FEMS Microbiol Lett
, vol.211
, pp. 155-159
-
-
Carreté, R.1
Vidal, M.T.2
Bordons, A.3
Constanti, M.4
-
5
-
-
64549096493
-
Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production
-
Cordente AG, Heinrich A, Pretorius IS, Swiegers JH. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res. 2009;9:446-59.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 446-459
-
-
Cordente, A.G.1
Heinrich, A.2
Pretorius, I.S.3
Swiegers, J.H.4
-
6
-
-
78650354040
-
Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of saccharomyces cerevisiae
-
Linderholm A, Dietzel K, Hirst M, Bisson LF. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of saccharomyces cerevisiae. Appl Environ Microbiol. 2010;76:7699-707.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 7699-7707
-
-
Linderholm, A.1
Dietzel, K.2
Hirst, M.3
Bisson, L.F.4
-
7
-
-
0031457095
-
Metabolism of sulfur amino acids in Saccharomyces cerevisiae
-
Thomas D, Surdin-Kerjan Y. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Mol Biol Rev. 1997;61:503-32.
-
(1997)
Mol Biol Rev
, vol.61
, pp. 503-532
-
-
Thomas, D.1
Surdin-Kerjan, Y.2
-
8
-
-
0032476584
-
Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA
-
Blaiseau PL, Thomas D. Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. EMBO J. 1998;17:6327-36.
-
(1998)
EMBO J
, vol.17
, pp. 6327-6336
-
-
Blaiseau, P.L.1
Thomas, D.2
-
9
-
-
0030979616
-
Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism
-
Blaiseau PL, Isnard AD, Surdin-Kerjan Y, Thomas D. Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism. Mol Cell Biol. 1997;17:3640-8.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 3640-3648
-
-
Blaiseau, P.L.1
Isnard, A.D.2
Surdin-Kerjan, Y.3
Thomas, D.4
-
10
-
-
0029944825
-
A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism
-
Kuras L, Cherest H, Surdin-Kerjan Y, Thomas D. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J. 1996;15:2519-29.
-
(1996)
EMBO J
, vol.15
, pp. 2519-2529
-
-
Kuras, L.1
Cherest, H.2
Surdin-Kerjan, Y.3
Thomas, D.4
-
11
-
-
0026546494
-
MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae
-
Thomas D, Jacquemin I, Surdin-Kerjan Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1992;12:1719-27.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 1719-1727
-
-
Thomas, D.1
Jacquemin, I.2
Surdin-Kerjan, Y.3
-
12
-
-
0028806055
-
Met30p, a yeast transcriptional inhibitor that responds to S- adenosylmethionine, is an essential protein with WD40 repeats
-
Thomas D, Kuras L, Barbey R, Cherest H, Blaiseau P, Surdin-Kerjan Y. Met30p, a yeast transcriptional inhibitor that responds to S- adenosylmethionine, is an essential protein with WD40 repeats. Mol Cell Biol. 1995;15:6526-34.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6526-6534
-
-
Thomas, D.1
Kuras, L.2
Barbey, R.3
Cherest, H.4
Blaiseau, P.5
Surdin-Kerjan, Y.6
-
13
-
-
0032860066
-
The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction
-
Craig K, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol. 1999;72:299-328.
-
(1999)
Prog Biophys Mol Biol
, vol.72
, pp. 299-328
-
-
Craig, K.1
Tyers, M.2
-
14
-
-
0034677224
-
Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex
-
Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex. EMBO J. 2000;19:282-94.
-
(2000)
EMBO J
, vol.19
, pp. 282-294
-
-
Rouillon, A.1
Barbey, R.2
Patton, E.E.3
Tyers, M.4
Thomas, D.5
-
15
-
-
0033794872
-
Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae
-
Hansen J, Johannesen PF. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet. 2000;263:535-42.
-
(2000)
Mol Gen Genet
, vol.263
, pp. 535-542
-
-
Hansen, J.1
Johannesen, P.F.2
-
16
-
-
0034973590
-
Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
-
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol. 2001;21:4347-68.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4347-4368
-
-
Natarajan, K.1
Meyer, M.R.2
Jackson, B.M.3
Slade, D.4
Roberts, C.5
Hinnebusch, A.G.6
-
18
-
-
1542438465
-
2 formation by brewing yeast in response to sulfur-containing amino acids and ammonium ions
-
2 formation by brewing yeast in response to sulfur-containing amino acids and ammonium ions. J Am Soc Brew Chem. 2004;62:35-41.
-
(2004)
J Am Soc Brew Chem
, vol.62
, pp. 35-41
-
-
Duan, W.1
Roddick, F.2
Higgins, V.3
Rogers, P.4
-
19
-
-
0028010230
-
The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts
-
Giudici P, Kunkee RE. The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts. Am J Enol Vitic. 1994;45:107-12.
-
(1994)
Am J Enol Vitic
, vol.45
, pp. 107-112
-
-
Giudici, P.1
Kunkee, R.E.2
-
20
-
-
0028896541
-
Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen
-
Jiranek V, Langridge P, Henschke PA. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl Environ Microbiol. 1995;61:461-7.
-
(1995)
Appl Environ Microbiol
, vol.61
, pp. 461-467
-
-
Jiranek, V.1
Langridge, P.2
Henschke, P.A.3
-
21
-
-
0001419248
-
The origin and control of hydrogen sulfide during fermentation of grape must
-
Vos PJA, Gray RS. The origin and control of hydrogen sulfide during fermentation of grape must. Am J Enol Vitic. 1979;30:187-97.
-
(1979)
Am J Enol Vitic
, vol.30
, pp. 187-197
-
-
Vos, P.J.A.1
Gray, R.S.2
-
22
-
-
67149126775
-
Effect of nitrogen supplementation and saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine
-
Ugliano M, Fedrizzi B, Siebert T, Travis B, Magno F, Versini G, et al. Effect of nitrogen supplementation and saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine. J Agric Food Chem. 2009;57:4948-55.
-
(2009)
J Agric Food Chem
, vol.57
, pp. 4948-4955
-
-
Ugliano, M.1
Fedrizzi, B.2
Siebert, T.3
Travis, B.4
Magno, F.5
Versini, G.6
-
23
-
-
0001236532
-
Sulfite and sulfide formation during winemaking - a review
-
Eschenbruch R. Sulfite and sulfide formation during winemaking - a review. Am J Enol Vitic. 1974;25:157-61.
-
(1974)
Am J Enol Vitic
, vol.25
, pp. 157-161
-
-
Eschenbruch, R.1
-
24
-
-
0000966687
-
Production of sulphite and sulphide by low-and high-sulphite forming wine yeasts
-
Eschenbruch R, Bonish P. Production of sulphite and sulphide by low-and high-sulphite forming wine yeasts. Arch Microbiol. 1976;107:299-302.
-
(1976)
Arch Microbiol
, vol.107
, pp. 299-302
-
-
Eschenbruch, R.1
Bonish, P.2
-
25
-
-
2842586123
-
The influence of pH on sulphite formation by yeasts
-
Eschenbruch R, Bonish P. The influence of pH on sulphite formation by yeasts. Arch Microbiol. 1976;107:229-31.
-
(1976)
Arch Microbiol
, vol.107
, pp. 229-231
-
-
Eschenbruch, R.1
Bonish, P.2
-
26
-
-
0014767008
-
Hydrogen sulphide production by yeast under conditions of methionine, pantothenate or vitamin B6 deficiency
-
Wainwright T. Hydrogen sulphide production by yeast under conditions of methionine, pantothenate or vitamin B6 deficiency. J Gen Microbiol. 1970;61:107-19.
-
(1970)
J Gen Microbiol
, vol.61
, pp. 107-119
-
-
Wainwright, T.1
-
27
-
-
77956918968
-
Survey of hydrogen sulfide production in wine strains of saccharomyces cerevisiae
-
Kumar GR, Ramakrishnan V, Bisson LF. Survey of hydrogen sulfide production in wine strains of saccharomyces cerevisiae. Am J Enol Vitic. 2010;61:365-71.
-
(2010)
Am J Enol Vitic
, vol.61
, pp. 365-371
-
-
Kumar, G.R.1
Ramakrishnan, V.2
Bisson, L.F.3
-
28
-
-
0033765632
-
Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces
-
Spiropoulos A, Tanaka J, Flerianos I, Bisson LF. Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces. Am J Enol Vitic. 2000;51:233-48.
-
(2000)
Am J Enol Vitic
, vol.51
, pp. 233-248
-
-
Spiropoulos, A.1
Tanaka, J.2
Flerianos, I.3
Bisson, L.F.4
-
29
-
-
0036224994
-
Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1
-
Donalies UE, Stahl U. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast. 2002;19:475-84.
-
(2002)
Yeast
, vol.19
, pp. 475-484
-
-
Donalies, U.E.1
Stahl, U.2
-
30
-
-
0030582441
-
Inactivation of MET2 in brewer's yeast increases the level of sulfite in beer
-
Hansen J, Kielland-brandt MC. Inactivation of MET2 in brewer's yeast increases the level of sulfite in beer. J Biotechnol. 1996;50:75-87.
-
(1996)
J Biotechnol
, vol.50
, pp. 75-87
-
-
Hansen, J.1
Kielland-brandt, M.C.2
-
32
-
-
0033770997
-
MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae
-
Spiropoulos A, Bisson LF. MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2000;66:4421-6.
-
(2000)
Appl Environ Microbiol
, vol.66
, pp. 4421-4426
-
-
Spiropoulos, A.1
Bisson, L.F.2
-
33
-
-
33846486106
-
Allele diversity among genes of the sulfate reduction pathway in wine strains of Saccharomyces cerevisiae
-
Linderholm AL, Olineka TL, Hong Y, Bisson LF. Allele diversity among genes of the sulfate reduction pathway in wine strains of Saccharomyces cerevisiae. Am J Enol Vitic. 2006;57:431-40.
-
(2006)
Am J Enol Vitic
, vol.57
, pp. 431-440
-
-
Linderholm, A.L.1
Olineka, T.L.2
Hong, Y.3
Bisson, L.F.4
-
34
-
-
40549135958
-
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae
-
Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:1418-27.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 1418-1427
-
-
Linderholm, A.L.1
Findleton, C.L.2
Kumar, G.3
Hong, Y.4
Bisson, L.F.5
-
35
-
-
84865592644
-
Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach
-
Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guérin C, et al. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3. 2011;1:263-81.
-
(2011)
G3
, vol.1
, pp. 263-281
-
-
Ambroset, C.1
Petit, M.2
Brion, C.3
Sanchez, I.4
Delobel, P.5
Guérin, C.6
-
36
-
-
34547906098
-
Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains
-
Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P, Dubourdieu D, et al. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res. 2007;7:941-52.
-
(2007)
FEMS Yeast Res
, vol.7
, pp. 941-952
-
-
Marullo, P.1
Aigle, M.2
Bely, M.3
Masneuf-Pomarede, I.4
Durrens, P.5
Dubourdieu, D.6
-
37
-
-
84867900218
-
QTL mapping of the production of wine aroma compounds by yeast
-
Steyer D, Ambroset C, Brion C, Claudel P, Delobel P, Sanchez I, et al. QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics. 2012;13:573.
-
(2012)
BMC Genomics
, vol.13
, pp. 573
-
-
Steyer, D.1
Ambroset, C.2
Brion, C.3
Claudel, P.4
Delobel, P.5
Sanchez, I.6
-
38
-
-
84860571592
-
Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
-
Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012;22:975-84.
-
(2012)
Genome Res
, vol.22
, pp. 975-984
-
-
Swinnen, S.1
Schaerlaekens, K.2
Pais, T.3
Claesen, J.4
Hubmann, G.5
Yang, Y.6
-
39
-
-
0014470721
-
Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation
-
Rankine CC, Pocock KF. Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J Sci Fd Agric. 1969;20:104-9.
-
(1969)
J Sci Fd Agric
, vol.20
, pp. 104-109
-
-
Rankine, C.C.1
Pocock, K.F.2
-
40
-
-
0026497671
-
Mechanism of resistance to sulfite in Saccharomyces cerevisiae
-
Casalone E, Colella CM, Daly S, Gallori E, Moriani L. Mechanism of resistance to sulfite in Saccharomyces cerevisiae. Curr Genet. 1992;22(6):435-40.
-
(1992)
Curr Genet
, vol.22
, Issue.6
, pp. 435-440
-
-
Casalone, E.1
Colella, C.M.2
Daly, S.3
Gallori, E.4
Moriani, L.5
-
41
-
-
0346882674
-
Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation
-
Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast. 2003;20:1369-85.
-
(2003)
Yeast
, vol.20
, pp. 1369-1385
-
-
Rossignol, T.1
Dulau, L.2
Julien, A.3
Blondin, B.4
-
42
-
-
84882489611
-
Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen sulfide
-
Guidici P, Zambonelli C, Kunkee RE. Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen sulfide. Am J Enol Vitic. 1993;44:17-21.
-
(1993)
Am J Enol Vitic
, vol.44
, pp. 17-21
-
-
Guidici, P.1
Zambonelli, C.2
Kunkee, R.E.3
-
43
-
-
0037177625
-
Genetic dissection of transcriptional regulation in budding yeast
-
Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002;296:752-5.
-
(2002)
Science
, vol.296
, pp. 752-755
-
-
Brem, R.B.1
Yvert, G.2
Clinton, R.3
Kruglyak, L.4
-
44
-
-
79953042531
-
Assessing the complex architecture of polygenic traits in diverged yeast populations
-
Cubillos FA, Billi E, Zorgo E, Parts L, Fargier P, Omholt S, et al. Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol. 2011;20:1401-13.
-
(2011)
Mol Ecol
, vol.20
, pp. 1401-1413
-
-
Cubillos, F.A.1
Billi, E.2
Zorgo, E.3
Parts, L.4
Fargier, P.5
Omholt, S.6
-
45
-
-
43049121687
-
2 levels, using integrated metabolome and transcriptome analysis
-
2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol. 2008;74:2787-96.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 2787-2796
-
-
Yoshida, S.1
Imoto, J.2
Minato, T.3
Oouchi, R.4
Sugihara, M.5
Imai, T.6
-
46
-
-
0037149488
-
Dissecting the architecture of a quantitative trait locus in yeast
-
Steinmetz LM, Sinha H, Richards D, Spiegelman JI, Oefner PJ, McCusker JH, et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002;416:326-30.
-
(2002)
Nature
, vol.416
, pp. 326-330
-
-
Steinmetz, L.M.1
Sinha, H.2
Richards, D.3
Spiegelman, J.I.4
Oefner, P.J.5
McCusker, J.H.6
-
47
-
-
0030602813
-
SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-Box
-
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-Box. Cell. 1996;86:263-74.
-
(1996)
Cell
, vol.86
, pp. 263-274
-
-
Bai, C.1
Sen, P.2
Hofmann, K.3
Ma, L.4
Goebl, M.5
Harper, J.W.6
-
48
-
-
0000234488
-
Feedback inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae
-
Stadtman ER, Cohen GN, Lebras G, Robichon-Szulmajster H. Feedback inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae. J Biol Chem. 1961;236:2033-8.
-
(1961)
J Biol Chem
, vol.236
, pp. 2033-2038
-
-
Stadtman, E.R.1
Cohen, G.N.2
Lebras, G.3
Robichon-Szulmajster, H.4
-
49
-
-
70350539079
-
Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach
-
Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, et al. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res. 2009;9:1148-60.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 1148-1160
-
-
Marullo, P.1
Mansour, C.2
Dufour, M.3
Albertin, W.4
Sicard, D.5
Bely, M.6
-
50
-
-
0024799254
-
High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier
-
Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989;16:339-46.
-
(1989)
Curr Genet
, vol.16
, pp. 339-346
-
-
Schiestl, R.H.1
Gietz, R.D.2
-
51
-
-
0000263524
-
Description of alcoholic fermentation kinetics: its variability and significance
-
Bely M, Sablayrolles JM, Barre P. Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic. 1990;41:319-24.
-
(1990)
Am J Enol Vitic
, vol.41
, pp. 319-324
-
-
Bely, M.1
Sablayrolles, J.M.2
Barre, P.3
-
52
-
-
56649114285
-
Development of a method to measure hydrogen sulfide in wine fermentation
-
Park SK. Development of a method to measure hydrogen sulfide in wine fermentation. J Microbiol Biotechnol. 2008;18(9):1550-4.
-
(2008)
J Microbiol Biotechnol
, vol.18
, Issue.9
, pp. 1550-1554
-
-
Park, S.K.1
-
53
-
-
74549188917
-
Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation
-
Ugliano M, Henschke PA. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation. Analytical Chimica Acta. 2010;660:87-91.
-
(2010)
Analytical Chimica Acta
, vol.660
, pp. 87-91
-
-
Ugliano, M.1
Henschke, P.A.2
-
54
-
-
0023277545
-
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction
-
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156-9.
-
(1987)
Anal Biochem
, vol.162
, pp. 156-159
-
-
Chomczynski, P.1
Sacchi, N.2
-
56
-
-
4544341015
-
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
-
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):Article 3.
-
(2004)
Stat Appl Genet Mol Biol
, vol.3
, Issue.1
-
-
Smyth, G.K.1
-
57
-
-
33644872577
-
Limma: linear models for microarray data
-
Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. New-York: Springer
-
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and bioconductor. New-York: Springer; 2005. p. 397-420.
-
(2005)
Bioinformatics and computational biology solutions using R and bioconductor
, pp. 397-420
-
-
Smyth, G.K.1
-
58
-
-
0242333835
-
Normalization of cDNA microarray data
-
Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 2003;31:265-73.
-
(2003)
Methods
, vol.31
, pp. 265-273
-
-
Smyth, G.K.1
Speed, T.2
-
59
-
-
18744369640
-
Use of within-array replicate spots for assessing differential expression in microarray experiments
-
Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21:2067-75.
-
(2005)
Bioinformatics
, vol.21
, pp. 2067-2075
-
-
Smyth, G.K.1
Michaud, J.2
Scott, H.S.3
-
60
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289-300.
-
(1995)
J R Stat Soc Ser B Methodol
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
62
-
-
0024508964
-
Mapping mendelian factors underlying quantitative traits using RFLP linkage maps
-
Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121:185-99.
-
(1989)
Genetics
, vol.121
, pp. 185-199
-
-
Lander, E.S.1
Botstein, D.2
|