-
1
-
-
84963543290
-
Programmed necrosis in inflammation: toward identification of the effector molecules
-
1 Wallach, D., et al. Programmed necrosis in inflammation: toward identification of the effector molecules. Science, 352, 2016, aaf2154.
-
(2016)
Science
, vol.352
, pp. aaf2154
-
-
Wallach, D.1
-
2
-
-
84898027331
-
Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3
-
2 Wang, H., et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54 (2014), 133–146.
-
(2014)
Mol. Cell
, vol.54
, pp. 133-146
-
-
Wang, H.1
-
3
-
-
84891343566
-
Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis
-
3 Cai, Z., et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16 (2014), 55–65.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 55-65
-
-
Cai, Z.1
-
4
-
-
84891739370
-
Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death
-
4 Chen, X., et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24 (2014), 105–121.
-
(2014)
Cell Res.
, vol.24
, pp. 105-121
-
-
Chen, X.1
-
5
-
-
84901280344
-
MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates
-
5 Dondelinger, Y., et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7 (2014), 971–981.
-
(2014)
Cell Rep.
, vol.7
, pp. 971-981
-
-
Dondelinger, Y.1
-
6
-
-
84927745897
-
Pyroptotic cell death defends against intracellular pathogens
-
6 Jorgensen, I., Miao, E.A., Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265 (2015), 130–142.
-
(2015)
Immunol. Rev.
, vol.265
, pp. 130-142
-
-
Jorgensen, I.1
Miao, E.A.2
-
7
-
-
78449269290
-
Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
-
7 Miao, E.A., et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11 (2010), 1136–1142.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1136-1142
-
-
Miao, E.A.1
-
8
-
-
84988813074
-
Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis
-
8 Jorgensen, I., et al. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213 (2016), 2113–2128.
-
(2016)
J. Exp. Med.
, vol.213
, pp. 2113-2128
-
-
Jorgensen, I.1
-
9
-
-
58449083290
-
Pyroptosis: host cell death and inflammation
-
9 Bergsbaken, T., et al. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7 (2009), 99–109.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 99-109
-
-
Bergsbaken, T.1
-
10
-
-
0026507126
-
A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes
-
10 Thornberry, N.A., et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356 (1992), 768–774.
-
(1992)
Nature
, vol.356
, pp. 768-774
-
-
Thornberry, N.A.1
-
11
-
-
0026517239
-
Molecular cloning of the interleukin-1 beta converting enzyme
-
11 Cerretti, D.P., et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science 256 (1992), 97–100.
-
(1992)
Science
, vol.256
, pp. 97-100
-
-
Cerretti, D.P.1
-
12
-
-
0036671894
-
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta
-
12 Martinon, F., et al. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10 (2002), 417–426.
-
(2002)
Mol. Cell
, vol.10
, pp. 417-426
-
-
Martinon, F.1
-
13
-
-
84976516826
-
Inflammasomes: mechanism of assembly, regulation and signalling
-
13 Broz, P., Dixit, V.M., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16 (2016), 407–420.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 407-420
-
-
Broz, P.1
Dixit, V.M.2
-
14
-
-
84946925072
-
Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence
-
14 Zhao, Y., Shao, F., Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Curr. Opin. Microbiol. 29 (2015), 37–42.
-
(2015)
Curr. Opin. Microbiol.
, vol.29
, pp. 37-42
-
-
Zhao, Y.1
Shao, F.2
-
15
-
-
0028984948
-
Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock
-
15 Li, P., et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80 (1995), 401–411.
-
(1995)
Cell
, vol.80
, pp. 401-411
-
-
Li, P.1
-
16
-
-
0029808205
-
Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE
-
16 Wang, S., et al. Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271 (1996), 20580–20587.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 20580-20587
-
-
Wang, S.1
-
17
-
-
0032548919
-
Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE
-
17 Wang, S., et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92 (1998), 501–509.
-
(1998)
Cell
, vol.92
, pp. 501-509
-
-
Wang, S.1
-
18
-
-
0034192466
-
Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions
-
18 Kang, S.J., et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149 (2000), 613–622.
-
(2000)
J. Cell Biol.
, vol.149
, pp. 613-622
-
-
Kang, S.J.1
-
19
-
-
80455176839
-
Non-canonical inflammasome activation targets caspase-11
-
19 Kayagaki, N., et al. Non-canonical inflammasome activation targets caspase-11. Nature 479 (2011), 117–121.
-
(2011)
Nature
, vol.479
, pp. 117-121
-
-
Kayagaki, N.1
-
20
-
-
84880400647
-
Revisiting caspase-11 function in host defense
-
20 Ng, T.M., Monack, D.M., Revisiting caspase-11 function in host defense. Cell Host Microbe 14 (2013), 9–14.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 9-14
-
-
Ng, T.M.1
Monack, D.M.2
-
21
-
-
84921461716
-
Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity
-
21 Yang, J., et al. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr. Opin. Immunol. 32 (2015), 78–83.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 78-83
-
-
Yang, J.1
-
22
-
-
84883775365
-
Noncanonical inflammasome activation by intracellular LPS independent of TLR4
-
22 Kayagaki, N., et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (2013), 1246–1249.
-
(2013)
Science
, vol.341
, pp. 1246-1249
-
-
Kayagaki, N.1
-
23
-
-
84883790050
-
Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock
-
23 Hagar, J.A., et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (2013), 1250–1253.
-
(2013)
Science
, vol.341
, pp. 1250-1253
-
-
Hagar, J.A.1
-
24
-
-
84874189388
-
Caspase-11 protects against bacteria that escape the vacuole
-
24 Aachoui, Y., et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339 (2013), 975–978.
-
(2013)
Science
, vol.339
, pp. 975-978
-
-
Aachoui, Y.1
-
25
-
-
84906571225
-
Inflammatory caspases are innate immune receptors for intracellular LPS
-
25 Shi, J., et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514 (2014), 187–192.
-
(2014)
Nature
, vol.514
, pp. 187-192
-
-
Shi, J.1
-
26
-
-
84911992879
-
Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens
-
26 Knodler, L.A., et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16 (2014), 249–256.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 249-256
-
-
Knodler, L.A.1
-
27
-
-
84908024529
-
Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa
-
27 Sellin, M.E., et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16 (2014), 237–248.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 237-248
-
-
Sellin, M.E.1
-
28
-
-
84942856523
-
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling
-
28 Kayagaki, N., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526 (2015), 666–671.
-
(2015)
Nature
, vol.526
, pp. 666-671
-
-
Kayagaki, N.1
-
29
-
-
84942892037
-
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
-
29 Shi, J., et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (2015), 660–665.
-
(2015)
Nature
, vol.526
, pp. 660-665
-
-
Shi, J.1
-
30
-
-
0033851634
-
Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells
-
30 Saeki, N., et al. Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome 11 (2000), 718–724.
-
(2000)
Mamm. Genome
, vol.11
, pp. 718-724
-
-
Saeki, N.1
-
31
-
-
84892030409
-
Gasdermin superfamily: a novel gene family functioning in epithelial cells
-
J. Carrasco M. Matheus Nova Science Publishers
-
31 Saeki, N., Sasaki, H., Gasdermin superfamily: a novel gene family functioning in epithelial cells. Carrasco, J., Matheus, M., (eds.) Endothelium and Epithelium: Composition, Functions, and Pathology, 2011, Nova Science Publishers, 193–211.
-
(2011)
Endothelium and Epithelium: Composition, Functions, and Pathology
, pp. 193-211
-
-
Saeki, N.1
Sasaki, H.2
-
32
-
-
52049086465
-
Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development
-
32 Fujii, T., et al. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development. Genesis 46 (2008), 418–423.
-
(2008)
Genesis
, vol.46
, pp. 418-423
-
-
Fujii, T.1
-
33
-
-
66349093381
-
Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection
-
33 Akhter, A., et al. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog., 5, 2009, e1000361.
-
(2009)
PLoS Pathog.
, vol.5
, pp. e1000361
-
-
Akhter, A.1
-
34
-
-
58149287750
-
Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes
-
34 Lamkanfi, M., et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell. Proteomics 7 (2008), 2350–2363.
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 2350-2363
-
-
Lamkanfi, M.1
-
35
-
-
84978419608
-
Pore-forming activity and structural autoinhibition of the gasdermin family
-
35 Ding, J., et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 (2016), 111–116.
-
(2016)
Nature
, vol.535
, pp. 111-116
-
-
Ding, J.1
-
36
-
-
84978374487
-
Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
-
36 Liu, X., et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535 (2016), 153–158.
-
(2016)
Nature
, vol.535
, pp. 153-158
-
-
Liu, X.1
-
37
-
-
84978128481
-
GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
-
37 Aglietti, R.A., et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 7858–7863.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 7858-7863
-
-
Aglietti, R.A.1
-
38
-
-
84982102736
-
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
-
38 Sborgi, L., et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35 (2016), 1766–1778.
-
(2016)
EMBO J.
, vol.35
, pp. 1766-1778
-
-
Sborgi, L.1
-
39
-
-
84984822442
-
Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
-
39 Chen, X., et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26 (2016), 1007–1020.
-
(2016)
Cell Res.
, vol.26
, pp. 1007-1020
-
-
Chen, X.1
-
40
-
-
34247217928
-
Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner
-
40 Tamura, M., et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89 (2007), 618–629.
-
(2007)
Genomics
, vol.89
, pp. 618-629
-
-
Tamura, M.1
-
41
-
-
62449133719
-
Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium
-
41 Saeki, N., et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer 48 (2009), 261–271.
-
(2009)
Genes Chromosomes Cancer
, vol.48
, pp. 261-271
-
-
Saeki, N.1
-
42
-
-
34948833165
-
GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling
-
42 Saeki, N., et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene 26 (2007), 6488–6498.
-
(2007)
Oncogene
, vol.26
, pp. 6488-6498
-
-
Saeki, N.1
-
43
-
-
0031894037
-
A new mutation Rim3 resembling Re(den) is mapped close to retinoic acid receptor alpha (Rara) gene on mouse chromosome 11
-
43 Sato, H., et al. A new mutation Rim3 resembling Re(den) is mapped close to retinoic acid receptor alpha (Rara) gene on mouse chromosome 11. Mamm. Genome 9 (1998), 20–25.
-
(1998)
Mamm. Genome
, vol.9
, pp. 20-25
-
-
Sato, H.1
-
44
-
-
18644384151
-
Defolliculated (dfl): a dominant mouse mutation leading to poor sebaceous gland differentiation and total elimination of pelage follicles
-
44 Porter, R.M., et al. Defolliculated (dfl): a dominant mouse mutation leading to poor sebaceous gland differentiation and total elimination of pelage follicles. J. Invest. Dermatol. 119 (2002), 32–37.
-
(2002)
J. Invest. Dermatol.
, vol.119
, pp. 32-37
-
-
Porter, R.M.1
-
45
-
-
4744369159
-
The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3
-
45 Runkel, F., et al. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics 84 (2004), 824–835.
-
(2004)
Genomics
, vol.84
, pp. 824-835
-
-
Runkel, F.1
-
46
-
-
84934938651
-
Loss of conserved Gsdma3 self-regulation causes autophagy and cell death
-
46 Shi, P., et al. Loss of conserved Gsdma3 self-regulation causes autophagy and cell death. Biochem. J. 468 (2015), 325–336.
-
(2015)
Biochem. J.
, vol.468
, pp. 325-336
-
-
Shi, P.1
-
47
-
-
84885813096
-
Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome
-
47 Tanaka, S., et al. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome. G3 (Bethesda) 3 (2013), 1843–1850.
-
(2013)
G3 (Bethesda)
, vol.3
, pp. 1843-1850
-
-
Tanaka, S.1
-
48
-
-
79951509310
-
Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated
-
48 Ruge, F., et al. Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated. J. Invest. Dermatol. 131 (2011), 572–579.
-
(2011)
J. Invest. Dermatol.
, vol.131
, pp. 572-579
-
-
Ruge, F.1
-
49
-
-
84862916670
-
Gsdma3 mutation causes bulge stem cell depletion and alopecia mediated by skin inflammation
-
49 Zhou, Y., et al. Gsdma3 mutation causes bulge stem cell depletion and alopecia mediated by skin inflammation. Am. J. Pathol. 180 (2012), 763–774.
-
(2012)
Am. J. Pathol.
, vol.180
, pp. 763-774
-
-
Zhou, Y.1
-
50
-
-
77957113600
-
A large-scale, consortium-based genomewide association study of asthma
-
50 Moffatt, M.F., et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363 (2010), 1211–1221.
-
(2010)
N. Engl. J. Med.
, vol.363
, pp. 1211-1221
-
-
Moffatt, M.F.1
-
51
-
-
84929305761
-
The association of GSDMB and ORMDL3 gene polymorphisms with asthma: a meta-analysis
-
51 Zhao, C.N., et al. The association of GSDMB and ORMDL3 gene polymorphisms with asthma: a meta-analysis. Allergy Asthma Immunol. Res. 7 (2015), 175–185.
-
(2015)
Allergy Asthma Immunol. Res.
, vol.7
, pp. 175-185
-
-
Zhao, C.N.1
-
52
-
-
84865361745
-
GSDMB/ORMDL3 variants contribute to asthma susceptibility and eosinophil-mediated bronchial hyperresponsiveness
-
52 Kang, M.J., et al. GSDMB/ORMDL3 variants contribute to asthma susceptibility and eosinophil-mediated bronchial hyperresponsiveness. Hum. Immunol. 73 (2012), 954–959.
-
(2012)
Hum. Immunol.
, vol.73
, pp. 954-959
-
-
Kang, M.J.1
-
53
-
-
84899877856
-
Gasdermin-B promotes invasion and metastasis in breast cancer cells
-
53 Hergueta-Redondo, M., et al. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One, 9, 2014, e90099.
-
(2014)
PLoS One
, vol.9
, pp. e90099
-
-
Hergueta-Redondo, M.1
-
54
-
-
17344371515
-
Nonsyndromic hearing impairment is associated with a mutation in DFNA5
-
54 Van Laer, L., et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20 (1998), 194–197.
-
(1998)
Nat. Genet.
, vol.20
, pp. 194-197
-
-
Van Laer, L.1
-
55
-
-
33745577619
-
Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy
-
55 Delmaghani, S., et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38 (2006), 770–778.
-
(2006)
Nat. Genet.
, vol.38
, pp. 770-778
-
-
Delmaghani, S.1
-
56
-
-
0037630746
-
A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment
-
56 Gregan, J., et al. A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim. Biophys. Acta 1638 (2003), 179–186.
-
(2003)
Biochim. Biophys. Acta
, vol.1638
, pp. 179-186
-
-
Gregan, J.1
-
57
-
-
22044436394
-
Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells
-
57 Van Laer, L., et al. Mice lacking Dfna5 show a diverging number of cochlear fourth row outer hair cells. Neurobiol. Dis. 19 (2005), 386–399.
-
(2005)
Neurobiol. Dis.
, vol.19
, pp. 386-399
-
-
Van Laer, L.1
-
58
-
-
77952881777
-
The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage
-
58 Masuda, Y., et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J. Hum. Genet. 51 (2006), 652–664.
-
(2006)
J. Hum. Genet.
, vol.51
, pp. 652-664
-
-
Masuda, Y.1
-
59
-
-
44849133161
-
Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma
-
59 Kim, M.S., et al. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27 (2008), 3624–3634.
-
(2008)
Oncogene
, vol.27
, pp. 3624-3634
-
-
Kim, M.S.1
-
60
-
-
33751351899
-
Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer
-
60 Akino, K., et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98 (2007), 88–95.
-
(2007)
Cancer Sci.
, vol.98
, pp. 88-95
-
-
Akino, K.1
-
61
-
-
34447260468
-
Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment
-
61 Collin, R.W., et al. Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum. Mutat. 28 (2007), 718–723.
-
(2007)
Hum. Mutat.
, vol.28
, pp. 718-723
-
-
Collin, R.W.1
-
62
-
-
34248389211
-
Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction
-
62 Ebermann, I., et al. Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum. Mutat. 28 (2007), 571–577.
-
(2007)
Hum. Mutat.
, vol.28
, pp. 571-577
-
-
Ebermann, I.1
-
63
-
-
33847407503
-
A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function
-
63 Schwander, M., et al. A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J. Neurosci. 27 (2007), 2163–2175.
-
(2007)
J. Neurosci.
, vol.27
, pp. 2163-2175
-
-
Schwander, M.1
-
64
-
-
84862329236
-
A p.C343S missense mutation in PJVK causes progressive hearing loss
-
64 Mujtaba, G., et al. A p.C343S missense mutation in PJVK causes progressive hearing loss. Gene 504 (2012), 98–101.
-
(2012)
Gene
, vol.504
, pp. 98-101
-
-
Mujtaba, G.1
-
65
-
-
84946234112
-
Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes
-
65 Delmaghani, S., et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163 (2015), 894–906.
-
(2015)
Cell
, vol.163
, pp. 894-906
-
-
Delmaghani, S.1
-
66
-
-
0022891493
-
Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process
-
66 Friedlander, A.M., Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261 (1986), 7123–7126.
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 7123-7126
-
-
Friedlander, A.M.1
-
67
-
-
2442701424
-
Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1beta and IL-18
-
67 Cordoba-Rodriguez, R., et al. Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1beta and IL-18. J. Biol. Chem. 279 (2004), 20563–20566.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20563-20566
-
-
Cordoba-Rodriguez, R.1
-
68
-
-
31744441475
-
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin
-
68 Boyden, E.D., Dietrich, W.F., Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38 (2006), 240–244.
-
(2006)
Nat. Genet.
, vol.38
, pp. 240-244
-
-
Boyden, E.D.1
Dietrich, W.F.2
-
69
-
-
0026635783
-
Shigella flexneri induces apoptosis in infected macrophages
-
69 Zychlinsky, A., et al. Shigella flexneri induces apoptosis in infected macrophages. Nature 358 (1992), 167–169.
-
(1992)
Nature
, vol.358
, pp. 167-169
-
-
Zychlinsky, A.1
-
70
-
-
15644374367
-
Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB
-
70 Hilbi, H., et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273 (1998), 32895–32900.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 32895-32900
-
-
Hilbi, H.1
-
71
-
-
0028025024
-
Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri
-
71 Zychlinsky, A., et al. Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J. Clin. Invest. 94 (1994), 1328–1332.
-
(1994)
J. Clin. Invest.
, vol.94
, pp. 1328-1332
-
-
Zychlinsky, A.1
-
72
-
-
0030900750
-
Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis
-
72 Fernandez-Prada, C.M., et al. Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect. Immun. 65 (1997), 1486–1496.
-
(1997)
Infect. Immun.
, vol.65
, pp. 1486-1496
-
-
Fernandez-Prada, C.M.1
-
73
-
-
0033815330
-
Salmonella induces macrophage death by caspase-1-dependent necrosis
-
73 Brennan, M.A., Cookson, B.T., Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38 (2000), 31–40.
-
(2000)
Mol. Microbiol.
, vol.38
, pp. 31-40
-
-
Brennan, M.A.1
Cookson, B.T.2
-
74
-
-
0035283318
-
Pro-inflammatory programmed cell death
-
74 Cookson, B.T., Brennan, M.A., Pro-inflammatory programmed cell death. Trends Microbiol. 9 (2001), 113–114.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 113-114
-
-
Cookson, B.T.1
Brennan, M.A.2
-
75
-
-
33749576792
-
Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages
-
75 Fink, S.L., Cookson, B.T., Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8 (2006), 1812–1825.
-
(2006)
Cell. Microbiol.
, vol.8
, pp. 1812-1825
-
-
Fink, S.L.1
Cookson, B.T.2
-
76
-
-
41949127121
-
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms
-
76 Fink, S.L., et al. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 4312–4317.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 4312-4317
-
-
Fink, S.L.1
-
77
-
-
57649149333
-
Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009
-
77 Kroemer, G., et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16 (2009), 3–11.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 3-11
-
-
Kroemer, G.1
|