-
1
-
-
84923195900
-
Spatiotemporal regulation of the anaphase-promoting complex in mitosis
-
1 Sivakumar, S., Gorbsky, G.J., Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol, 2015, 1682–1694.
-
(2015)
Nat Rev Mol Cell Biol
, pp. 1682-1694
-
-
Sivakumar, S.1
Gorbsky, G.J.2
-
2
-
-
28844457984
-
Kinetochore capture and bi-orientation on the mitotic spindle
-
2 Tanaka, T.U., Stark, M.J., Tanaka, K., Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol, 2005, 6929–6942.
-
(2005)
Nat Rev Mol Cell Biol
, pp. 6929-6942
-
-
Tanaka, T.U.1
Stark, M.J.2
Tanaka, K.3
-
3
-
-
75149116095
-
Mechanisms of chromosome behaviour during mitosis
-
3 Walczak, C.E., Cai, S., Khodjakov, A., Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol, 2010, 1191–2102.
-
(2010)
Nat Rev Mol Cell Biol
, pp. 1191-2102
-
-
Walczak, C.E.1
Cai, S.2
Khodjakov, A.3
-
4
-
-
84861460658
-
Geometry and force behind kinetochore orientation: lessons from meiosis
-
4 Watanabe, Y., Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol, 2012, 13370–13382.
-
(2012)
Nat Rev Mol Cell Biol
, pp. 13370-13382
-
-
Watanabe, Y.1
-
5
-
-
84865072109
-
Evolution and function of the mitotic checkpoint
-
5 Vleugel, M., Hoogendoorn, E., Snel, B., Kops, G.J., Evolution and function of the mitotic checkpoint. Dev Cell, 2012, 23239–23250.
-
(2012)
Dev Cell
, pp. 23239-23250
-
-
Vleugel, M.1
Hoogendoorn, E.2
Snel, B.3
Kops, G.J.4
-
6
-
-
0026009964
-
Feedback control of mitosis in budding yeast
-
6 Li, R., Murray, A.W., Feedback control of mitosis in budding yeast. Cell, 1991, 66519–66531.
-
(1991)
Cell
, pp. 66519-66531
-
-
Li, R.1
Murray, A.W.2
-
7
-
-
0025941405
-
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function
-
7 Hoyt, M.A., Totis, L., Roberts, B.T., S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 1991, 66507–66517.
-
(1991)
Cell
, pp. 66507-66517
-
-
Hoyt, M.A.1
Totis, L.2
Roberts, B.T.3
-
8
-
-
25844475838
-
On the road to cancer: aneuploidy and the mitotic checkpoint
-
8 Kops, G.J., Weaver, B.A., Cleveland, D.W., On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 2005, 5773–5785.
-
(2005)
Nat Rev Cancer
, pp. 5773-5785
-
-
Kops, G.J.1
Weaver, B.A.2
Cleveland, D.W.3
-
9
-
-
34247863924
-
Flies without a spindle checkpoint
-
9 Buffin, E., Emre, D., Karess, R.E., Flies without a spindle checkpoint. Nat Cell Biol, 2007, 9565–9572.
-
(2007)
Nat Cell Biol
, pp. 9565-9572
-
-
Buffin, E.1
Emre, D.2
Karess, R.E.3
-
10
-
-
84908151071
-
Signalling dynamics in the spindle checkpoint response
-
10 London, N., Biggins, S., Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol, 2014, 15736–15747.
-
(2014)
Nat Rev Mol Cell Biol
, pp. 15736-15747
-
-
London, N.1
Biggins, S.2
-
11
-
-
84871530214
-
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
-
11 Foley, E.A., Kapoor, T.M., Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol, 2013, 1425–1437.
-
(2013)
Nat Rev Mol Cell Biol
, pp. 1425-1437
-
-
Foley, E.A.1
Kapoor, T.M.2
-
12
-
-
84869417129
-
The spindle assembly checkpoint
-
12 Lara-Gonzalez, P., Westhorpe, F.G., Taylor, S.S., The spindle assembly checkpoint. Curr Biol, 2012, 22R966–80R.
-
(2012)
Curr Biol
, pp. 22R966-80R
-
-
Lara-Gonzalez, P.1
Westhorpe, F.G.2
Taylor, S.S.3
-
13
-
-
84938850567
-
How oocytes try to get it right: spindle checkpoint control in meiosis
-
13 Touati, S.A., Wassmann, K., How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma, 2016, 125321–125335.
-
(2016)
Chromosoma
, pp. 125321-125335
-
-
Touati, S.A.1
Wassmann, K.2
-
14
-
-
84994019223
-
Regulation of mitotic progression by the spindle assembly checkpoint
-
14 Lischetti, T., Nilsson, J., Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol, 2015, 2e970484.
-
(2015)
Mol Cell Oncol
, pp. 2e970484
-
-
Lischetti, T.1
Nilsson, J.2
-
15
-
-
84861532305
-
Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
-
15 London, N., Ceto, S., Ranish, J.A., Biggins, S., Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol, 2012, 22900–22906.
-
(2012)
Curr Biol
, pp. 22900-22906
-
-
London, N.1
Ceto, S.2
Ranish, J.A.3
Biggins, S.4
-
16
-
-
84861526045
-
Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint
-
16 Shepperd, L.A., Meadows, J.C., Sochaj, A.M., Lancaster, T.C., Zou, J., Buttrick, G.J., Rappsilber, J., Hardwick, K.G., Millar, J.B., Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol, 2012, 22891–22899.
-
(2012)
Curr Biol
, pp. 22891-22899
-
-
Shepperd, L.A.1
Meadows, J.C.2
Sochaj, A.M.3
Lancaster, T.C.4
Zou, J.5
Buttrick, G.J.6
Rappsilber, J.7
Hardwick, K.G.8
Millar, J.B.9
-
17
-
-
84863226706
-
MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
-
17 Yamagishi, Y., Yang, C.H., Tanno, Y., Watanabe, Y., MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol, 2012, 14746–14752.
-
(2012)
Nat Cell Biol
, pp. 14746-14752
-
-
Yamagishi, Y.1
Yang, C.H.2
Tanno, Y.3
Watanabe, Y.4
-
18
-
-
84892740735
-
Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint
-
18 London, N., Biggins, S., Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev, 2014, 28140–28152.
-
(2014)
Genes Dev
, pp. 28140-28152
-
-
London, N.1
Biggins, S.2
-
19
-
-
0037093326
-
Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint
-
19 Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K.T., Musacchio, A., Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 2002, 212496–212506.
-
(2002)
EMBO J
, pp. 212496-212506
-
-
Sironi, L.1
Mapelli, M.2
Knapp, S.3
De Antoni, A.4
Jeang, K.T.5
Musacchio, A.6
-
20
-
-
13444288299
-
The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint
-
20 De Antoni, A., Pearson, C.G., Cimini, D., Canman, J.C., Sala, V., Nezi, L., Mapelli, M., Sironi, L., Faretta, M., Salmon, E.D., Musacchio, A., The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol, 2005, 15214–15225.
-
(2005)
Curr Biol
, pp. 15214-15225
-
-
De Antoni, A.1
Pearson, C.G.2
Cimini, D.3
Canman, J.C.4
Sala, V.5
Nezi, L.6
Mapelli, M.7
Sironi, L.8
Faretta, M.9
Salmon, E.D.10
Musacchio, A.11
-
21
-
-
36049044125
-
The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint
-
21 Mapelli, M., Massimiliano, L., Santaguida, S., Musacchio, A., The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell, 2007, 131730–131743.
-
(2007)
Cell
, pp. 131730-131743
-
-
Mapelli, M.1
Massimiliano, L.2
Santaguida, S.3
Musacchio, A.4
-
22
-
-
33947310066
-
Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint
-
22 Burton, J.L., Solomon, M.J., Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev, 2007, 21655–21667.
-
(2007)
Genes Dev
, pp. 21655-21667
-
-
Burton, J.L.1
Solomon, M.J.2
-
23
-
-
56149107126
-
Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint
-
23 King, E.M., van der Sar, S.J., Hardwick, K.G., Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS One, 2007, 2e342.
-
(2007)
PLoS One
, pp. 2e342
-
-
King, E.M.1
van der Sar, S.J.2
Hardwick, K.G.3
-
24
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
24 Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M., Desai, A., The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell, 2006, 127983–127997.
-
(2006)
Cell
, pp. 127983-127997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
25
-
-
33751227843
-
Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
-
25 DeLuca, J.G., Gall, W.E., Ciferri, C., Cimini, D., Musacchio, A., Salmon, E.D., Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell, 2006, 127969–127982.
-
(2006)
Cell
, pp. 127969-127982
-
-
DeLuca, J.G.1
Gall, W.E.2
Ciferri, C.3
Cimini, D.4
Musacchio, A.5
Salmon, E.D.6
-
26
-
-
77951952612
-
Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface
-
26 Welburn, J.P., Vleugel, M., Liu, D., Yates, J.R., Lampson, M.A., Fukagawa, T., Cheeseman, I.M., Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface. Mol Cell, 2010, 38383–38392.
-
(2010)
Mol Cell
, pp. 38383-38392
-
-
Welburn, J.P.1
Vleugel, M.2
Liu, D.3
Yates, J.R.4
Lampson, M.A.5
Fukagawa, T.6
Cheeseman, I.M.7
-
27
-
-
77954740977
-
Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E
-
27 Kim, Y., Holland, A.J., Lan, W., Cleveland, D.W., Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell, 2010, 142444–142455.
-
(2010)
Cell
, pp. 142444-142455
-
-
Kim, Y.1
Holland, A.J.2
Lan, W.3
Cleveland, D.W.4
-
28
-
-
84931098021
-
CELL DIVISION CYCLE, Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
-
••] shows that the SAC initiator MPS1 directly binds to the Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
-
••] shows that the SAC initiator MPS1 directly binds to the Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
-
(2015)
Science
, pp. 3481260-3481264
-
-
Ji, Z.1
Gao, H.2
Yu, H.3
-
29
-
-
84931034097
-
CELL DIVISION CYCLE, Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
-
••] show that the SAC initiator MPS1 directly binds to Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
-
••] show that the SAC initiator MPS1 directly binds to Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
-
(2015)
Science
, pp. 3481264-3481267
-
-
Hiruma, Y.1
Sacristan, C.2
Pachis, S.T.3
Adamopoulos, A.4
Kuijt, T.5
Ubbink, M.6
von Castelmur, E.7
Perrakis, A.8
Kops, G.J.9
-
30
-
-
0035945356
-
Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
-
30 Howell, B.J., McEwen, B.F., Canman, J.C., Hoffman, D.B., Farrar, E.M., Rieder, C.L., Salmon, E.D., Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol, 2001, 1551159–1551172.
-
(2001)
J Cell Biol
, pp. 1551159-1551172
-
-
Howell, B.J.1
McEwen, B.F.2
Canman, J.C.3
Hoffman, D.B.4
Farrar, E.M.5
Rieder, C.L.6
Salmon, E.D.7
-
31
-
-
77951875761
-
Removal of spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells
-
31 Gassmann, R., Holland, A.J., Varma, D., Wan, X., Civril, F., Cleveland, D.W., Oegema, K., Salmon, E.D., Desai, A., Removal of spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev, 2010, 24957–24971.
-
(2010)
Genes Dev
, pp. 24957-24971
-
-
Gassmann, R.1
Holland, A.J.2
Varma, D.3
Wan, X.4
Civril, F.5
Cleveland, D.W.6
Oegema, K.7
Salmon, E.D.8
Desai, A.9
-
32
-
-
79952772088
-
p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process
-
32 Teichner, A., Eytan, E., Sitry-Shevah, D., Miniowitz-Shemtov, S., Dumin, E., Gromis, J., Hershko, A., p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc Natl Acad Sci U S A, 2011, 1083187–1083192.
-
(2011)
Proc Natl Acad Sci U S A
, pp. 1083187-1083192
-
-
Teichner, A.1
Eytan, E.2
Sitry-Shevah, D.3
Miniowitz-Shemtov, S.4
Dumin, E.5
Gromis, J.6
Hershko, A.7
-
33
-
-
84856770507
-
p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit
-
33 Westhorpe, F.G., Tighe, A., Lara-Gonzalez, P., Taylor, S.S., p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci, 2011, 1243905–1243916.
-
(2011)
J Cell Sci
, pp. 1243905-1243916
-
-
Westhorpe, F.G.1
Tighe, A.2
Lara-Gonzalez, P.3
Taylor, S.S.4
-
34
-
-
80053561641
-
APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment
-
34 Mansfeld, J., Collin, P., Collins, M.O., Choudhary, J.S., Pines, J., APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol, 2011, 131234–131243.
-
(2011)
Nat Cell Biol
, pp. 131234-131243
-
-
Mansfeld, J.1
Collin, P.2
Collins, M.O.3
Choudhary, J.S.4
Pines, J.5
-
35
-
-
84866850568
-
The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation
-
35 Foster, S.A., Morgan:, D.O., The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell, 2012, 47921–47932.
-
(2012)
Mol Cell
, pp. 47921-47932
-
-
Foster, S.A.1
Morgan:, D.O.2
-
36
-
-
84905091101
-
Centromeres and kinetochores of Brassicaceae
-
36 Lermontova, I., Sandmann, M., Demidov:, D., Centromeres and kinetochores of Brassicaceae. Chromosome Res, 2014, 22135–22152.
-
(2014)
Chromosome Res
, pp. 22135-22152
-
-
Lermontova, I.1
Sandmann, M.2
Demidov:, D.3
-
37
-
-
42649122334
-
The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development
-
37 Lermontova, I., Fuchs, J., Schubert, I., The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Front Biosci, 2008, 135202–135211.
-
(2008)
Front Biosci
, pp. 135202-135211
-
-
Lermontova, I.1
Fuchs, J.2
Schubert, I.3
-
38
-
-
84911945829
-
Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis
-
The authors demonstrate that SAC proteins are required for Arabidopsis growth under microtubule-destabilizing conditions. They also confirm the interaction between BUB3.1 and MAP65-3, which is likely to be important for the regulation of microtubule dynamics during cytokinesis.
-
38• Paganelli, L., Caillaud, M.C., Quentin, M., Damiani, I., Govetto, B., Lecomte, P., Karpov, P.A., Abad, P., Chabouté, M.E., Favery, B., Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis. New Phytol, 2015, 205202–205215 The authors demonstrate that SAC proteins are required for Arabidopsis growth under microtubule-destabilizing conditions. They also confirm the interaction between BUB3.1 and MAP65-3, which is likely to be important for the regulation of microtubule dynamics during cytokinesis.
-
(2015)
New Phytol
, pp. 205202-205215
-
-
Paganelli, L.1
Caillaud, M.C.2
Quentin, M.3
Damiani, I.4
Govetto, B.5
Lecomte, P.6
Karpov, P.A.7
Abad, P.8
Chabouté, M.E.9
Favery, B.10
-
39
-
-
84873051496
-
BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis
-
39 Wang, M., Tang, D., Luo, Q., Jin, Y., Shen, Y., Wang, K., Cheng, Z., BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell, 2012, 244961–244973.
-
(2012)
Plant Cell
, pp. 244961-244973
-
-
Wang, M.1
Tang, D.2
Luo, Q.3
Jin, Y.4
Shen, Y.5
Wang, K.6
Cheng, Z.7
-
40
-
-
84862131533
-
The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase
-
40 Suijkerbuijk, S.J., van Dam, T.J., Karagöz, G.E., von Castelmur, E., Hubner, N.C., Duarte, A.M., Vleugel, M., Perrakis, A., Rüdiger, S.G., Snel, B., Kops, G.J., The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell, 2012, 221321–221329.
-
(2012)
Dev Cell
, pp. 221321-221329
-
-
Suijkerbuijk, S.J.1
van Dam, T.J.2
Karagöz, G.E.3
von Castelmur, E.4
Hubner, N.C.5
Duarte, A.M.6
Vleugel, M.7
Perrakis, A.8
Rüdiger, S.G.9
Snel, B.10
Kops, G.J.11
-
41
-
-
69849086705
-
Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division
-
41 Caillaud, M.C., Paganelli, L., Lecomte, P., Deslandes, L., Quentin, M., Pecrix, Y., Le Bris, M., Marfaing, N., Abad, P., Favery, B., Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS One, 2009, 4e6757.
-
(2009)
PLoS One
, pp. 4e6757
-
-
Caillaud, M.C.1
Paganelli, L.2
Lecomte, P.3
Deslandes, L.4
Quentin, M.5
Pecrix, Y.6
Le Bris, M.7
Marfaing, N.8
Abad, P.9
Favery, B.10
-
42
-
-
0035803404
-
Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores
-
42 Fraschini, R., Beretta, A., Sironi, L., Musacchio, A., Lucchini, G., Piatti, S., Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J, 2001, 206648–206659.
-
(2001)
EMBO J
, pp. 206648-206659
-
-
Fraschini, R.1
Beretta, A.2
Sironi, L.3
Musacchio, A.4
Lucchini, G.5
Piatti, S.6
-
43
-
-
0033519357
-
The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns
-
43 Yu, H.G., Muszynski, M.G., Kelly Dawe, R., The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol, 1999, 145425–145435.
-
(1999)
J Cell Biol
, pp. 145425-145435
-
-
Yu, H.G.1
Muszynski, M.G.2
Kelly Dawe, R.3
-
44
-
-
21644440531
-
Characterization of the genes encoding for MAD2 homologues in wheat
-
44 Kimbara, J., Endo, T.R., Nasuda, S., Characterization of the genes encoding for MAD2 homologues in wheat. Chromosome Res, 2004, 12703–12714.
-
(2004)
Chromosome Res
, pp. 12703-12714
-
-
Kimbara, J.1
Endo, T.R.2
Nasuda, S.3
-
45
-
-
84922609805
-
Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1
-
The authors reveal that MAD1 regulates the flowering time and endoreplication in Arabidopsis. The MAD1 function is antagonized by MOS1 together with SUF4. This finding suggests that MAD1 links cell cycle activity with the onset of the reproductive phase in Arabidopsis.
-
45•• Bao, Z., Zhang, N., Hua, J., Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun, 2014, 55628 The authors reveal that MAD1 regulates the flowering time and endoreplication in Arabidopsis. The MAD1 function is antagonized by MOS1 together with SUF4. This finding suggests that MAD1 links cell cycle activity with the onset of the reproductive phase in Arabidopsis.
-
(2014)
Nat Commun
, pp. 55628
-
-
Bao, Z.1
Zhang, N.2
Hua, J.3
-
46
-
-
84866882685
-
Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana
-
46 de Oliveira, E.A., Romeiro, N.C., Ribeiro, E.S., Santa-Catarina, C., Oliveira, A.E., Silveira, V., de Souza Filho, G.A., Venancio, T.M., Cruz, M.A., Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana. PLoS One, 2012, 7e45707.
-
(2012)
PLoS One
, pp. 7e45707
-
-
de Oliveira, E.A.1
Romeiro, N.C.2
Ribeiro, E.S.3
Santa-Catarina, C.4
Oliveira, A.E.5
Silveira, V.6
de Souza Filho, G.A.7
Venancio, T.M.8
Cruz, M.A.9
-
47
-
-
74249093169
-
Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin
-
47 Kawashima, S.A., Yamagishi, Y., Honda, T., Ishiguro, K., Watanabe, Y., Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science, 2010, 327172–327177.
-
(2010)
Science
, pp. 327172-327177
-
-
Kawashima, S.A.1
Yamagishi, Y.2
Honda, T.3
Ishiguro, K.4
Watanabe, Y.5
-
48
-
-
27544497138
-
Shugoshin: guardian spirit at the centromere
-
48 Watanabe, Y., Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 2005, 17590–17595.
-
(2005)
Curr Opin Cell Biol
, pp. 17590-17595
-
-
Watanabe, Y.1
-
49
-
-
84882900179
-
SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis
-
49 Zamariola, L., De Storme, N., Tiang, C.L., Armstrong, S.J., Franklin, F.C., Geelen, D., SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. Plant Reprod, 2013, 26197–26208.
-
(2013)
Plant Reprod
, pp. 26197-26208
-
-
Zamariola, L.1
De Storme, N.2
Tiang, C.L.3
Armstrong, S.J.4
Franklin, F.C.5
Geelen, D.6
-
50
-
-
84887146454
-
Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis
-
50 Cromer, L., Jolivet, S., Horlow, C., Chelysheva, L., Heyman, J., De Jaeger, G., Koncz, C., De Veylder, L., Mercier, R., Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Curr Biol, 2013, 232090–232099.
-
(2013)
Curr Biol
, pp. 232090-232099
-
-
Cromer, L.1
Jolivet, S.2
Horlow, C.3
Chelysheva, L.4
Heyman, J.5
De Jaeger, G.6
Koncz, C.7
De Veylder, L.8
Mercier, R.9
-
51
-
-
84896706366
-
SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana
-
51 Zamariola, L., De Storme, N., Vannerum, K., Vandepoele, K., Armstrong, S.J., Franklin, F.C., Geelen, D., SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana. Plant J, 2014, 77782–77794.
-
(2014)
Plant J
, pp. 77782-77794
-
-
Zamariola, L.1
De Storme, N.2
Vannerum, K.3
Vandepoele, K.4
Armstrong, S.J.5
Franklin, F.C.6
Geelen, D.7
-
52
-
-
79956090587
-
A mitotic role for Mad1 beyond the spindle checkpoint
-
52 Emre, D., Terracol, R., Poncet, A., Rahmani, Z., Karess, R.E., A mitotic role for Mad1 beyond the spindle checkpoint. J Cell Sci, 2011, 1241664–1241671.
-
(2011)
J Cell Sci
, pp. 1241664-1241671
-
-
Emre, D.1
Terracol, R.2
Poncet, A.3
Rahmani, Z.4
Karess, R.E.5
-
53
-
-
84940597006
-
Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore
-
53 Akera, T., Goto, Y., Sato, M., Yamamoto, M., Watanabe, Y., Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore. Nat Cell Biol, 2015, 171124–171133.
-
(2015)
Nat Cell Biol
, pp. 171124-171133
-
-
Akera, T.1
Goto, Y.2
Sato, M.3
Yamamoto, M.4
Watanabe, Y.5
-
54
-
-
7644223907
-
Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p
-
54 Vanoosthuyse, V., Valsdottir, R., Javerzat, J.P., Hardwick, K.G., Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol Cell Biol, 2004, 249786–249801.
-
(2004)
Mol Cell Biol
, pp. 249786-249801
-
-
Vanoosthuyse, V.1
Valsdottir, R.2
Javerzat, J.P.3
Hardwick, K.G.4
-
55
-
-
84971246110
-
Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans
-
This paper describes the function of the SAC components MAD1, MAD2 and BUB3 as negative regulators of synapsis in the meiotic prophase of C. elegans. Since the APC/C has not been implicated in synapsis control, these data highlight a function of MAD1, MAD2 and BUB3 outside of the spindle checkpoint.
-
55• Bohr, T., Nelson, C.R., Klee, E., Bhalla, N., Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans. J Cell Biol, 2015, 211233–211242 This paper describes the function of the SAC components MAD1, MAD2 and BUB3 as negative regulators of synapsis in the meiotic prophase of C. elegans. Since the APC/C has not been implicated in synapsis control, these data highlight a function of MAD1, MAD2 and BUB3 outside of the spindle checkpoint.
-
(2015)
J Cell Biol
, pp. 211233-211242
-
-
Bohr, T.1
Nelson, C.R.2
Klee, E.3
Bhalla, N.4
-
56
-
-
84930325799
-
DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity
-
56 Lawrence, K.S., Chau, T., Engebrecht, J., DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity. PLoS Genet, 2015, 11e1005150.
-
(2015)
PLoS Genet
, pp. 11e1005150
-
-
Lawrence, K.S.1
Chau, T.2
Engebrecht, J.3
-
57
-
-
84860833752
-
Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA
-
57 Ding, D., Muthuswamy, S., Meier, I., Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol Biol, 2012, 79203–79216.
-
(2012)
Plant Mol Biol
, pp. 79203-79216
-
-
Ding, D.1
Muthuswamy, S.2
Meier, I.3
-
58
-
-
80455173888
-
Molecular control and function of endoreplication in development and physiology
-
58 De Veylder, L., Larkin, J.C., Schnittger, A., Molecular control and function of endoreplication in development and physiology. Trends Plant Sci, 2011, 16624–16634.
-
(2011)
Trends Plant Sci
, pp. 16624-16634
-
-
De Veylder, L.1
Larkin, J.C.2
Schnittger, A.3
-
59
-
-
84988985472
-
P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice
-
comet function as a SAC regulator has not yet been confirmed in plants.
-
comet function as a SAC regulator has not yet been confirmed in plants.
-
(2016)
Proc Natl Acad Sci U S A
-
-
Ji, J.1
Tang, D.2
Shen, Y.3
Xue, Z.4
Wang, H.5
Shi, W.6
Zhang, C.7
Du, G.8
Li, Y.9
Cheng, Z.10
-
60
-
-
84888431938
-
The rise and fall of the phragmoplast microtubule array
-
60 Lee, Y.R., Liu, B., The rise and fall of the phragmoplast microtubule array. Curr Opin Plant Biol, 2013, 16757–16763.
-
(2013)
Curr Opin Plant Biol
, pp. 16757-16763
-
-
Lee, Y.R.1
Liu, B.2
-
61
-
-
77955608634
-
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana
-
61 Van Leene, J., Hollunder, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Stals, H., Van Isterdael, G., Verkest, A., Neirynck, S., Buffel, Y., et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol, 2010, 6397.
-
(2010)
Mol Syst Biol
, pp. 6397
-
-
Van Leene, J.1
Hollunder, J.2
Eeckhout, D.3
Persiau, G.4
Van De Slijke, E.5
Stals, H.6
Van Isterdael, G.7
Verkest, A.8
Neirynck, S.9
Buffel, Y.10
-
62
-
-
84982899807
-
Evolution of gene duplication in plants
-
62 Panchy, N., Lehti-Shiu, M., Shiu, S.H., Evolution of gene duplication in plants. Plant Physiol, 2016, 1712294–1712316.
-
(2016)
Plant Physiol
, pp. 1712294-1712316
-
-
Panchy, N.1
Lehti-Shiu, M.2
Shiu, S.H.3
-
63
-
-
85004096436
-
The advantages and disadvantages of being polyploid
-
63 Comai, L., The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6836–6846.
-
(2005)
Nat Rev Genet
, pp. 6836-6846
-
-
Comai, L.1
-
64
-
-
67651052323
-
The role of hybridization in plant speciation
-
64 Soltis, P.S., Soltis, D.E., The role of hybridization in plant speciation. Annu Rev Plant Biol, 2009, 60561–60588.
-
(2009)
Annu Rev Plant Biol
, pp. 60561-60588
-
-
Soltis, P.S.1
Soltis, D.E.2
-
65
-
-
34347399464
-
Genome plasticity a key factor in the success of polyploid wheat under domestication
-
65 Dubcovsky, J., Dvorak, J., Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007, 3161862–3161866.
-
(2007)
Science
, pp. 3161862-3161866
-
-
Dubcovsky, J.1
Dvorak, J.2
-
66
-
-
84881131997
-
Meiosis in polyploid plants
-
P. Soltis D.E. Soltis 1st edition Springer-Verlag Berlin Heidelberg
-
66 Zielinski, M.L., Scheid, O.M., Meiosis in polyploid plants. Soltis, P., Soltis, D.E., (eds.) Polyploidy and Genome Evolution, 1st edition, 2012, Springer-Verlag, Berlin Heidelberg.
-
(2012)
Polyploidy and Genome Evolution
-
-
Zielinski, M.L.1
Scheid, O.M.2
-
67
-
-
84954108021
-
The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role
-
67 Bomblies, K., Jones, G., Franklin, C., Zickler, D., Kleckner, N., The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role. Chromosoma, 2016, 125287–125300.
-
(2016)
Chromosoma
, pp. 125287-125300
-
-
Bomblies, K.1
Jones, G.2
Franklin, C.3
Zickler, D.4
Kleckner, N.5
-
68
-
-
84881121035
-
Meiosis and its deviations in polyploid plants
-
68 Grandont, L., Jenczewski, E., Lloyd, A., Meiosis and its deviations in polyploid plants. Cytogenet Genome Res, 2013, 140171–140184.
-
(2013)
Cytogenet Genome Res
, pp. 140171-140184
-
-
Grandont, L.1
Jenczewski, E.2
Lloyd, A.3
-
70
-
-
0033197695
-
Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis
-
70 Couteau, F., Belzile, F., Horlow, C., Grandjean, O., Vezon, D., Doutriaux, M.P., Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell, 1999, 111623–111634.
-
(1999)
Plant Cell
, pp. 111623-111634
-
-
Couteau, F.1
Belzile, F.2
Horlow, C.3
Grandjean, O.4
Vezon, D.5
Doutriaux, M.P.6
-
71
-
-
84882864703
-
Control of the meiotic cell division program in plants
-
71 Wijnker, E., Schnittger, A., Control of the meiotic cell division program in plants. Plant Reprod, 2013, 26143–26158.
-
(2013)
Plant Reprod
, pp. 26143-26158
-
-
Wijnker, E.1
Schnittger, A.2
-
72
-
-
84859421171
-
Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant
-
72 Wijnker, E., van Dun, K., de Snoo, C.B., Lelivelt, C.L., Keurentjes, J.J., Naharudin, N.S., Ravi, M., Chan, S.W., de Jong, H., Dirks, R., Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet, 2012, 44467–44470.
-
(2012)
Nat Genet
, pp. 44467-44470
-
-
Wijnker, E.1
van Dun, K.2
de Snoo, C.B.3
Lelivelt, C.L.4
Keurentjes, J.J.5
Naharudin, N.S.6
Ravi, M.7
Chan, S.W.8
de Jong, H.9
Dirks, R.10
-
73
-
-
84979647413
-
Bub3–BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes
-
73 Derive, N., Landmann, C., Montembault, E., Claverie, M.C., Pierre-Elies, P., Goutte-Gattat, D., Founounou, N., McCusker, D., Royou, A., Bub3–BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes. J Cell Biol, 2015, 211517–211532.
-
(2015)
J Cell Biol
, pp. 211517-211532
-
-
Derive, N.1
Landmann, C.2
Montembault, E.3
Claverie, M.C.4
Pierre-Elies, P.5
Goutte-Gattat, D.6
Founounou, N.7
McCusker, D.8
Royou, A.9
-
74
-
-
38649133379
-
Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment
-
74 Jelluma, N., Brenkman, A.B., van den Broek, N.J., Cruijsen, C.W., van Osch, M.H., Lens, S.M., Medema, R.H., Kops, G.J., Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell, 2008, 132233–132246.
-
(2008)
Cell
, pp. 132233-132246
-
-
Jelluma, N.1
Brenkman, A.B.2
van den Broek, N.J.3
Cruijsen, C.W.4
van Osch, M.H.5
Lens, S.M.6
Medema, R.H.7
Kops, G.J.8
|