메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 84-91

The spindle checkpoint in plants — a green variation over a conserved theme?

Author keywords

[No Author keywords available]

Indexed keywords

GENETICS; M PHASE CELL CYCLE CHECKPOINT; MEIOSIS; METABOLISM; MICROTUBULE; MITOSIS; PHYSIOLOGY; PLANT CHROMOSOME; POLYPLOIDY;

EID: 85003874471     PISSN: 13695266     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pbi.2016.10.008     Document Type: Review
Times cited : (25)

References (74)
  • 1
    • 84923195900 scopus 로고    scopus 로고
    • Spatiotemporal regulation of the anaphase-promoting complex in mitosis
    • 1 Sivakumar, S., Gorbsky, G.J., Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol, 2015, 1682–1694.
    • (2015) Nat Rev Mol Cell Biol , pp. 1682-1694
    • Sivakumar, S.1    Gorbsky, G.J.2
  • 2
    • 28844457984 scopus 로고    scopus 로고
    • Kinetochore capture and bi-orientation on the mitotic spindle
    • 2 Tanaka, T.U., Stark, M.J., Tanaka, K., Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol, 2005, 6929–6942.
    • (2005) Nat Rev Mol Cell Biol , pp. 6929-6942
    • Tanaka, T.U.1    Stark, M.J.2    Tanaka, K.3
  • 3
    • 75149116095 scopus 로고    scopus 로고
    • Mechanisms of chromosome behaviour during mitosis
    • 3 Walczak, C.E., Cai, S., Khodjakov, A., Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol, 2010, 1191–2102.
    • (2010) Nat Rev Mol Cell Biol , pp. 1191-2102
    • Walczak, C.E.1    Cai, S.2    Khodjakov, A.3
  • 4
    • 84861460658 scopus 로고    scopus 로고
    • Geometry and force behind kinetochore orientation: lessons from meiosis
    • 4 Watanabe, Y., Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol, 2012, 13370–13382.
    • (2012) Nat Rev Mol Cell Biol , pp. 13370-13382
    • Watanabe, Y.1
  • 5
    • 84865072109 scopus 로고    scopus 로고
    • Evolution and function of the mitotic checkpoint
    • 5 Vleugel, M., Hoogendoorn, E., Snel, B., Kops, G.J., Evolution and function of the mitotic checkpoint. Dev Cell, 2012, 23239–23250.
    • (2012) Dev Cell , pp. 23239-23250
    • Vleugel, M.1    Hoogendoorn, E.2    Snel, B.3    Kops, G.J.4
  • 6
    • 0026009964 scopus 로고
    • Feedback control of mitosis in budding yeast
    • 6 Li, R., Murray, A.W., Feedback control of mitosis in budding yeast. Cell, 1991, 66519–66531.
    • (1991) Cell , pp. 66519-66531
    • Li, R.1    Murray, A.W.2
  • 7
    • 0025941405 scopus 로고
    • S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function
    • 7 Hoyt, M.A., Totis, L., Roberts, B.T., S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 1991, 66507–66517.
    • (1991) Cell , pp. 66507-66517
    • Hoyt, M.A.1    Totis, L.2    Roberts, B.T.3
  • 8
    • 25844475838 scopus 로고    scopus 로고
    • On the road to cancer: aneuploidy and the mitotic checkpoint
    • 8 Kops, G.J., Weaver, B.A., Cleveland, D.W., On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 2005, 5773–5785.
    • (2005) Nat Rev Cancer , pp. 5773-5785
    • Kops, G.J.1    Weaver, B.A.2    Cleveland, D.W.3
  • 9
    • 34247863924 scopus 로고    scopus 로고
    • Flies without a spindle checkpoint
    • 9 Buffin, E., Emre, D., Karess, R.E., Flies without a spindle checkpoint. Nat Cell Biol, 2007, 9565–9572.
    • (2007) Nat Cell Biol , pp. 9565-9572
    • Buffin, E.1    Emre, D.2    Karess, R.E.3
  • 10
    • 84908151071 scopus 로고    scopus 로고
    • Signalling dynamics in the spindle checkpoint response
    • 10 London, N., Biggins, S., Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol, 2014, 15736–15747.
    • (2014) Nat Rev Mol Cell Biol , pp. 15736-15747
    • London, N.1    Biggins, S.2
  • 11
    • 84871530214 scopus 로고    scopus 로고
    • Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
    • 11 Foley, E.A., Kapoor, T.M., Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol, 2013, 1425–1437.
    • (2013) Nat Rev Mol Cell Biol , pp. 1425-1437
    • Foley, E.A.1    Kapoor, T.M.2
  • 13
    • 84938850567 scopus 로고    scopus 로고
    • How oocytes try to get it right: spindle checkpoint control in meiosis
    • 13 Touati, S.A., Wassmann, K., How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma, 2016, 125321–125335.
    • (2016) Chromosoma , pp. 125321-125335
    • Touati, S.A.1    Wassmann, K.2
  • 14
    • 84994019223 scopus 로고    scopus 로고
    • Regulation of mitotic progression by the spindle assembly checkpoint
    • 14 Lischetti, T., Nilsson, J., Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol, 2015, 2e970484.
    • (2015) Mol Cell Oncol , pp. 2e970484
    • Lischetti, T.1    Nilsson, J.2
  • 15
    • 84861532305 scopus 로고    scopus 로고
    • Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
    • 15 London, N., Ceto, S., Ranish, J.A., Biggins, S., Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol, 2012, 22900–22906.
    • (2012) Curr Biol , pp. 22900-22906
    • London, N.1    Ceto, S.2    Ranish, J.A.3    Biggins, S.4
  • 17
    • 84863226706 scopus 로고    scopus 로고
    • MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
    • 17 Yamagishi, Y., Yang, C.H., Tanno, Y., Watanabe, Y., MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol, 2012, 14746–14752.
    • (2012) Nat Cell Biol , pp. 14746-14752
    • Yamagishi, Y.1    Yang, C.H.2    Tanno, Y.3    Watanabe, Y.4
  • 18
    • 84892740735 scopus 로고    scopus 로고
    • Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint
    • 18 London, N., Biggins, S., Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev, 2014, 28140–28152.
    • (2014) Genes Dev , pp. 28140-28152
    • London, N.1    Biggins, S.2
  • 19
    • 0037093326 scopus 로고    scopus 로고
    • Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint
    • 19 Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K.T., Musacchio, A., Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 2002, 212496–212506.
    • (2002) EMBO J , pp. 212496-212506
    • Sironi, L.1    Mapelli, M.2    Knapp, S.3    De Antoni, A.4    Jeang, K.T.5    Musacchio, A.6
  • 21
    • 36049044125 scopus 로고    scopus 로고
    • The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint
    • 21 Mapelli, M., Massimiliano, L., Santaguida, S., Musacchio, A., The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell, 2007, 131730–131743.
    • (2007) Cell , pp. 131730-131743
    • Mapelli, M.1    Massimiliano, L.2    Santaguida, S.3    Musacchio, A.4
  • 22
    • 33947310066 scopus 로고    scopus 로고
    • Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint
    • 22 Burton, J.L., Solomon, M.J., Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev, 2007, 21655–21667.
    • (2007) Genes Dev , pp. 21655-21667
    • Burton, J.L.1    Solomon, M.J.2
  • 23
    • 56149107126 scopus 로고    scopus 로고
    • Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint
    • 23 King, E.M., van der Sar, S.J., Hardwick, K.G., Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS One, 2007, 2e342.
    • (2007) PLoS One , pp. 2e342
    • King, E.M.1    van der Sar, S.J.2    Hardwick, K.G.3
  • 24
    • 33751232957 scopus 로고    scopus 로고
    • The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    • 24 Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M., Desai, A., The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell, 2006, 127983–127997.
    • (2006) Cell , pp. 127983-127997
    • Cheeseman, I.M.1    Chappie, J.S.2    Wilson-Kubalek, E.M.3    Desai, A.4
  • 25
    • 33751227843 scopus 로고    scopus 로고
    • Kinetochore microtubule dynamics and attachment stability are regulated by Hec1
    • 25 DeLuca, J.G., Gall, W.E., Ciferri, C., Cimini, D., Musacchio, A., Salmon, E.D., Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell, 2006, 127969–127982.
    • (2006) Cell , pp. 127969-127982
    • DeLuca, J.G.1    Gall, W.E.2    Ciferri, C.3    Cimini, D.4    Musacchio, A.5    Salmon, E.D.6
  • 26
    • 77951952612 scopus 로고    scopus 로고
    • Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface
    • 26 Welburn, J.P., Vleugel, M., Liu, D., Yates, J.R., Lampson, M.A., Fukagawa, T., Cheeseman, I.M., Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface. Mol Cell, 2010, 38383–38392.
    • (2010) Mol Cell , pp. 38383-38392
    • Welburn, J.P.1    Vleugel, M.2    Liu, D.3    Yates, J.R.4    Lampson, M.A.5    Fukagawa, T.6    Cheeseman, I.M.7
  • 27
    • 77954740977 scopus 로고    scopus 로고
    • Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E
    • 27 Kim, Y., Holland, A.J., Lan, W., Cleveland, D.W., Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell, 2010, 142444–142455.
    • (2010) Cell , pp. 142444-142455
    • Kim, Y.1    Holland, A.J.2    Lan, W.3    Cleveland, D.W.4
  • 28
    • 84931098021 scopus 로고    scopus 로고
    • CELL DIVISION CYCLE, Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
    • ••] shows that the SAC initiator MPS1 directly binds to the Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
    • ••] shows that the SAC initiator MPS1 directly binds to the Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
    • (2015) Science , pp. 3481260-3481264
    • Ji, Z.1    Gao, H.2    Yu, H.3
  • 29
    • 84931034097 scopus 로고    scopus 로고
    • CELL DIVISION CYCLE, Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
    • ••] show that the SAC initiator MPS1 directly binds to Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
    • ••] show that the SAC initiator MPS1 directly binds to Ndc80 complex. This interaction is impeded when microtubules stably attach to the kinetochore. The resulting competition for kinetochore occupancy provides an elegant mechanism for the recognition of unattached kinetochores and silencing of the SAC.
    • (2015) Science , pp. 3481264-3481267
    • Hiruma, Y.1    Sacristan, C.2    Pachis, S.T.3    Adamopoulos, A.4    Kuijt, T.5    Ubbink, M.6    von Castelmur, E.7    Perrakis, A.8    Kops, G.J.9
  • 30
    • 0035945356 scopus 로고    scopus 로고
    • Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
    • 30 Howell, B.J., McEwen, B.F., Canman, J.C., Hoffman, D.B., Farrar, E.M., Rieder, C.L., Salmon, E.D., Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol, 2001, 1551159–1551172.
    • (2001) J Cell Biol , pp. 1551159-1551172
    • Howell, B.J.1    McEwen, B.F.2    Canman, J.C.3    Hoffman, D.B.4    Farrar, E.M.5    Rieder, C.L.6    Salmon, E.D.7
  • 31
  • 33
    • 84856770507 scopus 로고    scopus 로고
    • p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit
    • 33 Westhorpe, F.G., Tighe, A., Lara-Gonzalez, P., Taylor, S.S., p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci, 2011, 1243905–1243916.
    • (2011) J Cell Sci , pp. 1243905-1243916
    • Westhorpe, F.G.1    Tighe, A.2    Lara-Gonzalez, P.3    Taylor, S.S.4
  • 34
    • 80053561641 scopus 로고    scopus 로고
    • APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment
    • 34 Mansfeld, J., Collin, P., Collins, M.O., Choudhary, J.S., Pines, J., APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat Cell Biol, 2011, 131234–131243.
    • (2011) Nat Cell Biol , pp. 131234-131243
    • Mansfeld, J.1    Collin, P.2    Collins, M.O.3    Choudhary, J.S.4    Pines, J.5
  • 35
    • 84866850568 scopus 로고    scopus 로고
    • The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation
    • 35 Foster, S.A., Morgan:, D.O., The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell, 2012, 47921–47932.
    • (2012) Mol Cell , pp. 47921-47932
    • Foster, S.A.1    Morgan:, D.O.2
  • 36
    • 84905091101 scopus 로고    scopus 로고
    • Centromeres and kinetochores of Brassicaceae
    • 36 Lermontova, I., Sandmann, M., Demidov:, D., Centromeres and kinetochores of Brassicaceae. Chromosome Res, 2014, 22135–22152.
    • (2014) Chromosome Res , pp. 22135-22152
    • Lermontova, I.1    Sandmann, M.2    Demidov:, D.3
  • 37
    • 42649122334 scopus 로고    scopus 로고
    • The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development
    • 37 Lermontova, I., Fuchs, J., Schubert, I., The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Front Biosci, 2008, 135202–135211.
    • (2008) Front Biosci , pp. 135202-135211
    • Lermontova, I.1    Fuchs, J.2    Schubert, I.3
  • 38
    • 84911945829 scopus 로고    scopus 로고
    • Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis
    • The authors demonstrate that SAC proteins are required for Arabidopsis growth under microtubule-destabilizing conditions. They also confirm the interaction between BUB3.1 and MAP65-3, which is likely to be important for the regulation of microtubule dynamics during cytokinesis.
    • 38• Paganelli, L., Caillaud, M.C., Quentin, M., Damiani, I., Govetto, B., Lecomte, P., Karpov, P.A., Abad, P., Chabouté, M.E., Favery, B., Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis. New Phytol, 2015, 205202–205215 The authors demonstrate that SAC proteins are required for Arabidopsis growth under microtubule-destabilizing conditions. They also confirm the interaction between BUB3.1 and MAP65-3, which is likely to be important for the regulation of microtubule dynamics during cytokinesis.
    • (2015) New Phytol , pp. 205202-205215
    • Paganelli, L.1    Caillaud, M.C.2    Quentin, M.3    Damiani, I.4    Govetto, B.5    Lecomte, P.6    Karpov, P.A.7    Abad, P.8    Chabouté, M.E.9    Favery, B.10
  • 39
    • 84873051496 scopus 로고    scopus 로고
    • BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis
    • 39 Wang, M., Tang, D., Luo, Q., Jin, Y., Shen, Y., Wang, K., Cheng, Z., BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell, 2012, 244961–244973.
    • (2012) Plant Cell , pp. 244961-244973
    • Wang, M.1    Tang, D.2    Luo, Q.3    Jin, Y.4    Shen, Y.5    Wang, K.6    Cheng, Z.7
  • 42
    • 0035803404 scopus 로고    scopus 로고
    • Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores
    • 42 Fraschini, R., Beretta, A., Sironi, L., Musacchio, A., Lucchini, G., Piatti, S., Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J, 2001, 206648–206659.
    • (2001) EMBO J , pp. 206648-206659
    • Fraschini, R.1    Beretta, A.2    Sironi, L.3    Musacchio, A.4    Lucchini, G.5    Piatti, S.6
  • 43
    • 0033519357 scopus 로고    scopus 로고
    • The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns
    • 43 Yu, H.G., Muszynski, M.G., Kelly Dawe, R., The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol, 1999, 145425–145435.
    • (1999) J Cell Biol , pp. 145425-145435
    • Yu, H.G.1    Muszynski, M.G.2    Kelly Dawe, R.3
  • 44
    • 21644440531 scopus 로고    scopus 로고
    • Characterization of the genes encoding for MAD2 homologues in wheat
    • 44 Kimbara, J., Endo, T.R., Nasuda, S., Characterization of the genes encoding for MAD2 homologues in wheat. Chromosome Res, 2004, 12703–12714.
    • (2004) Chromosome Res , pp. 12703-12714
    • Kimbara, J.1    Endo, T.R.2    Nasuda, S.3
  • 45
    • 84922609805 scopus 로고    scopus 로고
    • Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1
    • The authors reveal that MAD1 regulates the flowering time and endoreplication in Arabidopsis. The MAD1 function is antagonized by MOS1 together with SUF4. This finding suggests that MAD1 links cell cycle activity with the onset of the reproductive phase in Arabidopsis.
    • 45•• Bao, Z., Zhang, N., Hua, J., Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun, 2014, 55628 The authors reveal that MAD1 regulates the flowering time and endoreplication in Arabidopsis. The MAD1 function is antagonized by MOS1 together with SUF4. This finding suggests that MAD1 links cell cycle activity with the onset of the reproductive phase in Arabidopsis.
    • (2014) Nat Commun , pp. 55628
    • Bao, Z.1    Zhang, N.2    Hua, J.3
  • 47
    • 74249093169 scopus 로고    scopus 로고
    • Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin
    • 47 Kawashima, S.A., Yamagishi, Y., Honda, T., Ishiguro, K., Watanabe, Y., Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science, 2010, 327172–327177.
    • (2010) Science , pp. 327172-327177
    • Kawashima, S.A.1    Yamagishi, Y.2    Honda, T.3    Ishiguro, K.4    Watanabe, Y.5
  • 48
    • 27544497138 scopus 로고    scopus 로고
    • Shugoshin: guardian spirit at the centromere
    • 48 Watanabe, Y., Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol, 2005, 17590–17595.
    • (2005) Curr Opin Cell Biol , pp. 17590-17595
    • Watanabe, Y.1
  • 49
    • 84882900179 scopus 로고    scopus 로고
    • SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis
    • 49 Zamariola, L., De Storme, N., Tiang, C.L., Armstrong, S.J., Franklin, F.C., Geelen, D., SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. Plant Reprod, 2013, 26197–26208.
    • (2013) Plant Reprod , pp. 26197-26208
    • Zamariola, L.1    De Storme, N.2    Tiang, C.L.3    Armstrong, S.J.4    Franklin, F.C.5    Geelen, D.6
  • 52
    • 79956090587 scopus 로고    scopus 로고
    • A mitotic role for Mad1 beyond the spindle checkpoint
    • 52 Emre, D., Terracol, R., Poncet, A., Rahmani, Z., Karess, R.E., A mitotic role for Mad1 beyond the spindle checkpoint. J Cell Sci, 2011, 1241664–1241671.
    • (2011) J Cell Sci , pp. 1241664-1241671
    • Emre, D.1    Terracol, R.2    Poncet, A.3    Rahmani, Z.4    Karess, R.E.5
  • 53
    • 84940597006 scopus 로고    scopus 로고
    • Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore
    • 53 Akera, T., Goto, Y., Sato, M., Yamamoto, M., Watanabe, Y., Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore. Nat Cell Biol, 2015, 171124–171133.
    • (2015) Nat Cell Biol , pp. 171124-171133
    • Akera, T.1    Goto, Y.2    Sato, M.3    Yamamoto, M.4    Watanabe, Y.5
  • 54
    • 7644223907 scopus 로고    scopus 로고
    • Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p
    • 54 Vanoosthuyse, V., Valsdottir, R., Javerzat, J.P., Hardwick, K.G., Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol Cell Biol, 2004, 249786–249801.
    • (2004) Mol Cell Biol , pp. 249786-249801
    • Vanoosthuyse, V.1    Valsdottir, R.2    Javerzat, J.P.3    Hardwick, K.G.4
  • 55
    • 84971246110 scopus 로고    scopus 로고
    • Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans
    • This paper describes the function of the SAC components MAD1, MAD2 and BUB3 as negative regulators of synapsis in the meiotic prophase of C. elegans. Since the APC/C has not been implicated in synapsis control, these data highlight a function of MAD1, MAD2 and BUB3 outside of the spindle checkpoint.
    • 55• Bohr, T., Nelson, C.R., Klee, E., Bhalla, N., Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans. J Cell Biol, 2015, 211233–211242 This paper describes the function of the SAC components MAD1, MAD2 and BUB3 as negative regulators of synapsis in the meiotic prophase of C. elegans. Since the APC/C has not been implicated in synapsis control, these data highlight a function of MAD1, MAD2 and BUB3 outside of the spindle checkpoint.
    • (2015) J Cell Biol , pp. 211233-211242
    • Bohr, T.1    Nelson, C.R.2    Klee, E.3    Bhalla, N.4
  • 56
    • 84930325799 scopus 로고    scopus 로고
    • DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity
    • 56 Lawrence, K.S., Chau, T., Engebrecht, J., DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity. PLoS Genet, 2015, 11e1005150.
    • (2015) PLoS Genet , pp. 11e1005150
    • Lawrence, K.S.1    Chau, T.2    Engebrecht, J.3
  • 57
    • 84860833752 scopus 로고    scopus 로고
    • Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA
    • 57 Ding, D., Muthuswamy, S., Meier, I., Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol Biol, 2012, 79203–79216.
    • (2012) Plant Mol Biol , pp. 79203-79216
    • Ding, D.1    Muthuswamy, S.2    Meier, I.3
  • 58
    • 80455173888 scopus 로고    scopus 로고
    • Molecular control and function of endoreplication in development and physiology
    • 58 De Veylder, L., Larkin, J.C., Schnittger, A., Molecular control and function of endoreplication in development and physiology. Trends Plant Sci, 2011, 16624–16634.
    • (2011) Trends Plant Sci , pp. 16624-16634
    • De Veylder, L.1    Larkin, J.C.2    Schnittger, A.3
  • 60
    • 84888431938 scopus 로고    scopus 로고
    • The rise and fall of the phragmoplast microtubule array
    • 60 Lee, Y.R., Liu, B., The rise and fall of the phragmoplast microtubule array. Curr Opin Plant Biol, 2013, 16757–16763.
    • (2013) Curr Opin Plant Biol , pp. 16757-16763
    • Lee, Y.R.1    Liu, B.2
  • 62
    • 84982899807 scopus 로고    scopus 로고
    • Evolution of gene duplication in plants
    • 62 Panchy, N., Lehti-Shiu, M., Shiu, S.H., Evolution of gene duplication in plants. Plant Physiol, 2016, 1712294–1712316.
    • (2016) Plant Physiol , pp. 1712294-1712316
    • Panchy, N.1    Lehti-Shiu, M.2    Shiu, S.H.3
  • 63
    • 85004096436 scopus 로고    scopus 로고
    • The advantages and disadvantages of being polyploid
    • 63 Comai, L., The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6836–6846.
    • (2005) Nat Rev Genet , pp. 6836-6846
    • Comai, L.1
  • 64
    • 67651052323 scopus 로고    scopus 로고
    • The role of hybridization in plant speciation
    • 64 Soltis, P.S., Soltis, D.E., The role of hybridization in plant speciation. Annu Rev Plant Biol, 2009, 60561–60588.
    • (2009) Annu Rev Plant Biol , pp. 60561-60588
    • Soltis, P.S.1    Soltis, D.E.2
  • 65
    • 34347399464 scopus 로고    scopus 로고
    • Genome plasticity a key factor in the success of polyploid wheat under domestication
    • 65 Dubcovsky, J., Dvorak, J., Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007, 3161862–3161866.
    • (2007) Science , pp. 3161862-3161866
    • Dubcovsky, J.1    Dvorak, J.2
  • 66
    • 84881131997 scopus 로고    scopus 로고
    • Meiosis in polyploid plants
    • P. Soltis D.E. Soltis 1st edition Springer-Verlag Berlin Heidelberg
    • 66 Zielinski, M.L., Scheid, O.M., Meiosis in polyploid plants. Soltis, P., Soltis, D.E., (eds.) Polyploidy and Genome Evolution, 1st edition, 2012, Springer-Verlag, Berlin Heidelberg.
    • (2012) Polyploidy and Genome Evolution
    • Zielinski, M.L.1    Scheid, O.M.2
  • 67
    • 84954108021 scopus 로고    scopus 로고
    • The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role
    • 67 Bomblies, K., Jones, G., Franklin, C., Zickler, D., Kleckner, N., The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role. Chromosoma, 2016, 125287–125300.
    • (2016) Chromosoma , pp. 125287-125300
    • Bomblies, K.1    Jones, G.2    Franklin, C.3    Zickler, D.4    Kleckner, N.5
  • 68
    • 84881121035 scopus 로고    scopus 로고
    • Meiosis and its deviations in polyploid plants
    • 68 Grandont, L., Jenczewski, E., Lloyd, A., Meiosis and its deviations in polyploid plants. Cytogenet Genome Res, 2013, 140171–140184.
    • (2013) Cytogenet Genome Res , pp. 140171-140184
    • Grandont, L.1    Jenczewski, E.2    Lloyd, A.3
  • 69
    • 0036909354 scopus 로고    scopus 로고
    • Neopolyploidy in flowering plants
    • 69 Ramsey, J., Schemske, D.W., Neopolyploidy in flowering plants. Ann Rev Ecol Syst, 2002, 589–639.
    • (2002) Ann Rev Ecol Syst , pp. 589-639
    • Ramsey, J.1    Schemske, D.W.2
  • 70
    • 0033197695 scopus 로고    scopus 로고
    • Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis
    • 70 Couteau, F., Belzile, F., Horlow, C., Grandjean, O., Vezon, D., Doutriaux, M.P., Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell, 1999, 111623–111634.
    • (1999) Plant Cell , pp. 111623-111634
    • Couteau, F.1    Belzile, F.2    Horlow, C.3    Grandjean, O.4    Vezon, D.5    Doutriaux, M.P.6
  • 71
    • 84882864703 scopus 로고    scopus 로고
    • Control of the meiotic cell division program in plants
    • 71 Wijnker, E., Schnittger, A., Control of the meiotic cell division program in plants. Plant Reprod, 2013, 26143–26158.
    • (2013) Plant Reprod , pp. 26143-26158
    • Wijnker, E.1    Schnittger, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.