-
1
-
-
72449171138
-
Functional crosstalk between GPCRs: with or without oligomerization
-
Prezeau L, Rives ML, Comps-Agrar L, Maurel D, Kniazeff J, Pin JP, Functional crosstalk between GPCRs: with or without oligomerization. Curr Op Pharm. 2010;10:6–13. doi: 10.1016/j.coph.2009.10.009
-
(2010)
Curr Op Pharm
, vol.10
, pp. 6-13
-
-
Prezeau, L.1
Rives, M.L.2
Comps-Agrar, L.3
Maurel, D.4
Kniazeff, J.5
Pin, J.P.6
-
2
-
-
69249158290
-
Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation
-
19648932,.;: –
-
Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA, Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5:688–695. doi: 10.1038/nchembio.19919648932
-
(2009)
Nat Chem Biol
, vol.5
, pp. 688-695
-
-
Han, Y.1
Moreira, I.S.2
Urizar, E.3
Weinstein, H.4
Javitch, J.A.5
-
3
-
-
80052027428
-
Asymmetry of GPCR oligomers supports their functional relevance
-
21715028,.;: –
-
Maurice P, Kamal M, Jockers R, Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci. 2011;32:514–520. doi: 10.1016/j.tips.2011.05.00621715028
-
(2011)
Trends Pharmacol Sci
, vol.32
, pp. 514-520
-
-
Maurice, P.1
Kamal, M.2
Jockers, R.3
-
4
-
-
79951854466
-
Dimers and beyond: The functional puzzles of class C GPCRs
-
Kniazeff J, Prezeau L, Rondard P, Pin JP, Goudet C, Dimers and beyond: The functional puzzles of class C GPCRs. Pharmcol Ther. 2011;130:9–25. doi: 10.1016/j.pharmthera.2011.01.006
-
(2011)
Pharmcol Ther
, vol.130
, pp. 9-25
-
-
Kniazeff, J.1
Prezeau, L.2
Rondard, P.3
Pin, J.P.4
Goudet, C.5
-
5
-
-
0033209897
-
The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway
-
10506573,.;: –
-
Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez-A C, Mellado M, The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999;13:1699–1710. 10506573
-
(1999)
FASEB J
, vol.13
, pp. 1699-1710
-
-
Vila-Coro, A.J.1
Rodriguez-Frade, J.M.2
Martin De Ana, A.3
Moreno-Ortiz, M.C.4
Martinez, -A.C.5
Mellado, M.6
-
6
-
-
0030806322
-
Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived factor 1α activation of Gi2 are differentially expressed in vivo
-
9295051,.;: –
-
Moepps B, Frodl R, Rodewald HR, Baggiolini M, Gierschik P, Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived factor 1α activation of Gi2 are differentially expressed in vivo. Europ J Immun. 1997;27:2102–2112. doi: 10.1002/eji.18302708399295051
-
(1997)
Europ J Immun
, vol.27
, pp. 2102-2112
-
-
Moepps, B.1
Frodl, R.2
Rodewald, H.R.3
Baggiolini, M.4
Gierschik, P.5
-
7
-
-
0342894666
-
Embryonic expression of the mRNA for the rat homologue of the fusin/CXCR-4 HIV-1 co-receptor
-
9394787,.;: –
-
Jazin EE, Söderström S, Ebendal T, Larhammar D, Embryonic expression of the mRNA for the rat homologue of the fusin/CXCR-4 HIV-1 co-receptor. J Neuroimmunol. 1997;79:148–154. doi: 10.1016/S0165-5728(97)00117-39394787
-
(1997)
J Neuroimmunol
, vol.79
, pp. 148-154
-
-
Jazin, E.E.1
Söderström, S.2
Ebendal, T.3
Larhammar, D.4
-
8
-
-
0035282432
-
Involvement of chemokine receptors in breast cancer metastasis
-
11242036,..;: –
-
Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–56. doi: 10.1038/3506501611242036
-
(2001)
Nature
, vol.410
, pp. 50-56
-
-
Muller, A.1
Homey, B.2
Soto, H.3
Ge, N.4
Catron, D.5
Buchanan, M.E.6
-
9
-
-
27144457455
-
The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer
-
16216737,.;: –
-
Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG, The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast. 2005;14:360–367. doi: 10.1016/j.breast.2004.12.00716216737
-
(2005)
Breast
, vol.14
, pp. 360-367
-
-
Kang, H.1
Watkins, G.2
Douglas-Jones, A.3
Mansel, R.E.4
Jiang, W.G.5
-
10
-
-
0030002637
-
HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor
-
8629022,.;: –
-
Feng Y, Broder CC, Kennedy PE, Berger EA, HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor. Science. 1996;272:872–877. doi: 10.1126/science.272.5263.8728629022
-
(1996)
Science
, vol.272
, pp. 872-877
-
-
Feng, Y.1
Broder, C.C.2
Kennedy, P.E.3
Berger, E.A.4
-
11
-
-
0037474238
-
Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor
-
12433920,.;: –
-
Babcock GJ, Farzan M, Sodroski J, Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem. 2003;278:3378–3385. doi: 10.1074/jbc.M21014020012433920
-
(2003)
J Biol Chem
, vol.278
, pp. 3378-3385
-
-
Babcock, G.J.1
Farzan, M.2
Sodroski, J.3
-
12
-
-
3042690324
-
Regulation of CXCR4 receptor dimerization by the chemokine SDF-1α and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study
-
15014135,.;: –
-
Toth PT, Ren D, Miller RJ, Regulation of CXCR4 receptor dimerization by the chemokine SDF-1α and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther. 2004;310:8–17. doi: 10.1124/jpet.103.06495615014135
-
(2004)
J Pharmacol Exp Ther
, vol.310
, pp. 8-17
-
-
Toth, P.T.1
Ren, D.2
Miller, R.J.3
-
13
-
-
54849434087
-
Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12
-
18799424,..;:
-
Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC, Basnet H, et al. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal. 2008;1:ra4. doi: 10.1126/scisignal.116075518799424
-
(2008)
Sci Signal
, vol.1
, pp. ra4
-
-
Veldkamp, C.T.1
Seibert, C.2
Peterson, F.C.3
De la Cruz, N.B.4
Haugner, J.C.5
Basnet, H.6
-
14
-
-
0037090162
-
CXCR4 function requires membrane cholesterol: implications for HIV infection
-
11937572,.;: –
-
Nguyen DH, Taub D, CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol. 2002;168:4121–4126. doi: 10.4049/jimmunol.168.8.412111937572
-
(2002)
J Immunol
, vol.168
, pp. 4121-4126
-
-
Nguyen, D.H.1
Taub, D.2
-
15
-
-
33750447940
-
Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions
-
17041091,.;: –
-
Wang J, He L, Combs CA, Roderiquez G, Norcross MA, Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther. 2006;5:2474–2483. doi: 10.1158/1535-7163.MCT-05-026117041091
-
(2006)
Mol Cancer Ther
, vol.5
, pp. 2474-2483
-
-
Wang, J.1
He, L.2
Combs, C.A.3
Roderiquez, G.4
Norcross, M.A.5
-
16
-
-
15444377047
-
Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers
-
15632118,..; (): –
-
Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, et al. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem. 2005;280(11):9895–9903. doi: 10.1074/jbc.M41115120015632118
-
(2005)
J Biol Chem
, vol.280
, Issue.11
, pp. 9895-9903
-
-
Percherancier, Y.1
Berchiche, Y.A.2
Slight, I.3
Volkmer-Engert, R.4
Tamamura, H.5
Fujii, N.6
-
17
-
-
85027927015
-
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists
-
20929726,..;: –
-
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330:1066–1071. doi: 10.1126/science.119439620929726
-
(2010)
Science
, vol.330
, pp. 1066-1071
-
-
Wu, B.1
Chien, E.Y.2
Mol, C.D.3
Fenalti, G.4
Liu, W.5
Katritch, V.6
-
18
-
-
66249144426
-
The structure and function of G-protein-coupled receptors
-
19458711,.;: –
-
Rosenbaum DM, Rasmussen SGF, Kobilka BK, The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–363. doi: 10.1038/nature0814419458711
-
(2009)
Nature
, vol.459
, pp. 356-363
-
-
Rosenbaum, D.M.1
Rasmussen, S.G.F.2
Kobilka, B.K.3
-
19
-
-
84855799592
-
Diversity and modularity of G protein-coupled receptor structures
-
Katritsch V, Cherezov V, Stevens RC, Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 2012;33:17–27. doi: 10.1016/j.tips.2011.09.003
-
(2012)
Trends Pharmacol Sci
, vol.33
, pp. 17-27
-
-
Katritsch, V.1
Cherezov, V.2
Stevens, R.C.3
-
20
-
-
47049130668
-
Crystal structure of the ligand-free G-protein-coupled receptor opsin
-
18563085,.;: –
-
Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP, Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454:183–187. doi: 10.1038/nature0706318563085
-
(2008)
Nature
, vol.454
, pp. 183-187
-
-
Park, J.H.1
Scheerer, P.2
Hofmann, K.P.3
Choe, H.W.4
Ernst, O.P.5
-
21
-
-
36448995359
-
2-Adrenergic G Protein-Coupled Receptor
-
17962520,..;: –
-
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein-Coupled Receptor. Science. 2007;318:1258–1265. doi: 10.1126/science.115057717962520
-
(2007)
Science
, vol.318
, pp. 1258-1265
-
-
Cherezov, V.1
Rosenbaum, D.M.2
Hanson, M.A.3
Rasmussen, S.G.F.4
Thian, F.S.5
Kobilka, T.S.6
-
22
-
-
84862777742
-
Structure of the human κ-opioid receptor in complex with JDTic
-
22437504,..;: –
-
Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 2012;485:327–332. doi: 10.1038/nature1093922437504
-
(2012)
Nature
, vol.485
, pp. 327-332
-
-
Wu, H.1
Wacker, D.2
Mileni, M.3
Katritch, V.4
Han, G.W.5
Vardy, E.6
-
23
-
-
0034604451
-
Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor
-
10926528,..;: –
-
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science. 2000;289:739–745. doi: 10.1126/science.289.5480.73910926528
-
(2000)
Science
, vol.289
, pp. 739-745
-
-
Palczewski, K.1
Kumasaka, T.2
Hori, T.3
Behnke, C.A.4
Motoshima, H.5
Fox, B.A.6
-
24
-
-
1942468189
-
The G protein-coupled receptor rhodopsin in the native membrane
-
15111110,.;: –
-
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K, The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters. 2004;564:281–288. doi: 10.1016/S0014-5793(04)00194-215111110
-
(2004)
FEBS Letters
, vol.564
, pp. 281-288
-
-
Fotiadis, D.1
Liang, Y.2
Filipek, S.3
Saperstein, D.A.4
Engel, A.5
Palczewski, K.6
-
25
-
-
84884673669
-
Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex
-
24030490,..;: –
-
Tan Q, Zhu Y, Li J, Chen Z, Won Han G, Kufareva I, et al. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex. Science. 2013;341:1387–1390. doi: 10.1126/science.124147524030490
-
(2013)
Science
, vol.341
, pp. 1387-1390
-
-
Tan, Q.1
Zhu, Y.2
Li, J.3
Chen, Z.4
Won Han, G.5
Kufareva, I.6
-
26
-
-
84876197291
-
1-Adrenergic G Protein-Coupled Receptors in Ligand-Free Basal State
-
23435379,.;: –
-
Huang J, Chen S, Zhang JJ, Huang XY, Crystal Structure of Oligomeric β1-Adrenergic G Protein-Coupled Receptors in Ligand-Free Basal State. Nat Struct Mol Biol. 2013;20:419–425. doi: 10.1038/nsmb.250423435379
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 419-425
-
-
Huang, J.1
Chen, S.2
Zhang, J.J.3
Huang, X.Y.4
-
27
-
-
84924565531
-
Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine
-
25612609,..; (): –
-
Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, et al. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science. 2015;347(6226):1117–1122. doi: 10.1126/science.126106425612609
-
(2015)
Science
, vol.347
, Issue.6226
, pp. 1117-1122
-
-
Qin, L.1
Kufareva, I.2
Holden, L.G.3
Wang, C.4
Zheng, Y.5
Zhao, C.6
-
28
-
-
34548146523
-
G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers
-
17658882,.;: –
-
Periole X, Huber T, Marrink SJ, Sakmar TP, G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers. J Am Chem Soc. 2007;129:10126–10132. doi: 10.1021/ja070624617658882
-
(2007)
J Am Chem Soc
, vol.129
, pp. 10126-10132
-
-
Periole, X.1
Huber, T.2
Marrink, S.J.3
Sakmar, T.P.4
-
29
-
-
84926360598
-
Preferred Supramolecular Organization and Dimer Interfaces of Opioid Receptors from Simulated Self-Association
-
25822938,.;:
-
Provasi D, Boz MB, Johnston JM, Filizola M, Preferred Supramolecular Organization and Dimer Interfaces of Opioid Receptors from Simulated Self-Association. PLoS Comput Biol. 2015;11:e1004148. doi: 10.1371/journal.pcbi.100414825822938
-
(2015)
PLoS Comput Biol
, vol.11
, pp. e1004148
-
-
Provasi, D.1
Boz, M.B.2
Johnston, J.M.3
Filizola, M.4
-
30
-
-
84929203814
-
High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach
-
26574426,..;: –
-
Wassenaar TA, Pluhackova K, Moussatova A, Sengupta D, Marrink SJ, Tieleman DP, et al. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. J Chem Theory Comput. 2015;11:2278–2291. doi: 10.1021/ct501009226574426
-
(2015)
J Chem Theory Comput
, vol.11
, pp. 2278-2291
-
-
Wassenaar, T.A.1
Pluhackova, K.2
Moussatova, A.3
Sengupta, D.4
Marrink, S.J.5
Tieleman, D.P.6
-
31
-
-
84896539831
-
Cholesterol modulates the dimer interface of the β-adrenergic receptor via cholesterol occupancy sites
-
24655504,.;: –
-
Prasanna X, Chattopadhyay A, Sengupta D, Cholesterol modulates the dimer interface of the β-adrenergic receptor via cholesterol occupancy sites. Biophys J. 2014;106:1290–1300. doi: 10.1016/j.bpj.2014.02.00224655504
-
(2014)
Biophys J
, vol.106
, pp. 1290-1300
-
-
Prasanna, X.1
Chattopadhyay, A.2
Sengupta, D.3
-
32
-
-
84866056455
-
Assessing the relative stability of dimer interfaces in G protein-coupled receptors
-
22916005,.;:
-
Johnston JM, Wang H, Provasi D, Filizola M, Assessing the relative stability of dimer interfaces in G protein-coupled receptors. PLoS Comput Biol. 2012;8:e1002649. doi: 10.1371/journal.pcbi.100264922916005
-
(2012)
PLoS Comput Biol
, vol.8
, pp. e1002649
-
-
Johnston, J.M.1
Wang, H.2
Provasi, D.3
Filizola, M.4
-
33
-
-
84863535732
-
Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers
-
22679925,.;: –
-
Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T, Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc. 2012;134:10959–10965. doi: 10.1021/ja303286e22679925
-
(2012)
J Am Chem Soc
, vol.134
, pp. 10959-10965
-
-
Periole, X.1
Knepp, A.M.2
Sakmar, T.P.3
Marrink, S.J.4
Huber, T.5
-
34
-
-
28444493656
-
Crosstalk in G protein-coupled receptors: Changes at the transmembrane homodimer interface determine activation
-
16301531,.;: –
-
Guo W, Shi L, Filizola M, Weinstein H, Javitch JA, Crosstalk in G protein-coupled receptors: Changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA. 2005;102:17495–17500. doi: 10.1073/pnas.050895010216301531
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17495-17500
-
-
Guo, W.1
Shi, L.2
Filizola, M.3
Weinstein, H.4
Javitch, J.A.5
-
35
-
-
84919704267
-
Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer
-
25503927,..;: –
-
Xue L, Rovira X, Scholler P, Zhao H, Liu J, Pin JP, et al. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol. 2015;11:134–140. doi: 10.1038/nchembio.171125503927
-
(2015)
Nat Chem Biol
, vol.11
, pp. 134-140
-
-
Xue, L.1
Rovira, X.2
Scholler, P.3
Zhao, H.4
Liu, J.5
Pin, J.P.6
-
36
-
-
48749126827
-
Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor
-
18344975,.;: –
-
Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA, Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Reports. 2008;9:363–369. doi: 10.1038/embor.2008.2718344975
-
(2008)
EMBO Reports
, vol.9
, pp. 363-369
-
-
Mancia, F.1
Assur, Z.2
Herman, A.G.3
Siegel, R.4
Hendrickson, W.A.5
-
37
-
-
84861961427
-
Structural basis for allosteric regulation of GPCRs by sodium ions
-
22798613,..; (): –
-
Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337(6091):232–236. doi: 10.1126/science.121921822798613
-
(2012)
Science
, vol.337
, Issue.6091
, pp. 232-236
-
-
Liu, W.1
Chun, E.2
Thompson, A.A.3
Chubukov, P.4
Xu, F.5
Katritch, V.6
-
38
-
-
84899755031
-
Structure of the human P2Y12 receptor in complex with an antithrombotic drug
-
24670650,..; (): –
-
Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509(7498):115–118. doi: 10.1038/nature1308324670650
-
(2014)
Nature
, vol.509
, Issue.7498
, pp. 115-118
-
-
Zhang, K.1
Zhang, J.2
Gao, Z.G.3
Zhang, D.4
Zhu, L.5
Han, G.W.6
-
39
-
-
84861096654
-
Crystal structure of the μ-opioid receptor bound to a morphinan antagonist
-
22437502,..;: –
-
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–326. doi: 10.1038/nature1095422437502
-
(2012)
Nature
, vol.485
, pp. 321-326
-
-
Manglik, A.1
Kruse, A.C.2
Kobilka, T.S.3
Thian, F.S.4
Mathiesen, J.M.5
Sunahara, R.K.6
-
40
-
-
84939795137
-
Structural insights into μ-opioid receptor activation
-
26245379,..; (): –
-
Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, et al. Structural insights into μ-opioid receptor activation. Nature. 2015;524(7565):315–321. doi: 10.1038/nature1488626245379
-
(2015)
Nature
, vol.524
, Issue.7565
, pp. 315-321
-
-
Huang, W.1
Manglik, A.2
Venkatakrishnan, A.J.3
Laeremans, T.4
Feinberg, E.N.5
Sanborn, A.L.6
-
41
-
-
84862776738
-
19F-NMR
-
22267580,.;: –
-
Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K, Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR. Science. 2012;335:1106–1110. doi: 10.1126/science.121580222267580
-
(2012)
Science
, vol.335
, pp. 1106-1110
-
-
Liu, J.J.1
Horst, R.2
Katritch, V.3
Stevens, R.C.4
Wüthrich, K.5
-
42
-
-
33845505655
-
Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes
-
17012328,.; (): –
-
Botelho AV, Huber T, Sakmar TP, Brown MF, Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J. 2006;91(12):4464–4477. doi: 10.1529/biophysj.106.08277617012328
-
(2006)
Biophys J
, vol.91
, Issue.12
, pp. 4464-4477
-
-
Botelho, A.V.1
Huber, T.2
Sakmar, T.P.3
Brown, M.F.4
-
43
-
-
44649172481
-
A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor
-
18547522,..; (): –
-
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16(6):897–905. doi: 10.1016/j.str.2008.05.00118547522
-
(2008)
Structure
, vol.16
, Issue.6
, pp. 897-905
-
-
Hanson, M.A.1
Cherezov, V.2
Griffith, M.T.3
Roth, C.B.4
Jaakola, V.P.5
Chien, E.Y.6
-
44
-
-
84868234553
-
Identification of Cholesterol Binding Sites in the Serotonin1A Receptor
-
23067252,.; (): –
-
Sengupta D, Chattopadhyay A, Identification of Cholesterol Binding Sites in the Serotonin1A Receptor. J Phys Chem B. 2012;116(43):12991–12996. doi: 10.1021/jp309888u23067252
-
(2012)
J Phys Chem B
, vol.116
, Issue.43
, pp. 12991-12996
-
-
Sengupta, D.1
Chattopadhyay, A.2
-
45
-
-
84874790049
-
Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5
-
23161741,.;: –
-
Zhukovsky MA, Lee PH, Ott A, Helms V, Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5. Proteins. 2013;81:555–567. doi: 10.1002/prot.2421123161741
-
(2013)
Proteins
, vol.81
, pp. 555-567
-
-
Zhukovsky, M.A.1
Lee, P.H.2
Ott, A.3
Helms, V.4
-
46
-
-
84875592758
-
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
-
23407358,..;: –
-
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt05523407358
-
(2013)
Bioinformatics
, vol.29
, pp. 845-854
-
-
Pronk, S.1
Páll, S.2
Schulz, R.3
Larsson, P.4
Bjelkmar, P.5
Apostolov, R.6
-
47
-
-
84872142909
-
Improved Parameters for the Martini Coarse-Grained Protorce Field
-
26589065,..;: –
-
De Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, et al. Improved Parameters for the Martini Coarse-Grained Protorce Field. J Chem Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g26589065
-
(2013)
J Chem Theory Comput
, vol.9
, pp. 687-697
-
-
De Jong, D.H.1
Singh, G.2
Bennett, W.F.D.3
Arnarez, C.4
Wassenaar, T.A.5
Schäfer, L.V.6
-
48
-
-
84894191338
-
Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models
-
26580045,.;: –
-
Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP, Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. J Chem Theory Comput. 2014;10:676–690. doi: 10.1021/ct400617g26580045
-
(2014)
J Chem Theory Comput
, vol.10
, pp. 676-690
-
-
Wassenaar, T.A.1
Pluhackova, K.2
Böckmann, R.A.3
Marrink, S.J.4
Tieleman, D.P.5
-
49
-
-
0028871814
-
Evaluation of comparative protein modeling by MODELLER
-
8710825,.;: –
-
Sali A, Potterton L, Yuan F, van Vlijmen H, M K, Evaluation of comparative protein modeling by MODELLER. Proteins. 1995;23:318–326. doi: 10.1002/prot.3402303068710825
-
(1995)
Proteins
, vol.23
, pp. 318-326
-
-
Sali, A.1
Potterton, L.2
Yuan, F.3
van Vlijmen, H.4
-
50
-
-
79959713919
-
Definition and testing of the GROMOS force-field versions 54A7 and 54B7
-
Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Europ Biophys J. 2011;40(7):843–856. doi: 10.1007/s00249-011-0700-9
-
(2011)
Europ Biophys J
, vol.40
, Issue.7
, pp. 843-856
-
-
Schmid, N.1
Eichenberger, A.P.2
Choutko, A.3
Riniker, S.4
Winger, M.5
Mark, A.E.6
-
51
-
-
1642485164
-
Coarse Grained Model for Semiquantitative Lipid Simulations
-
Marrink SJ, de Vries AH, Mark AE, Coarse Grained Model for Semiquantitative Lipid Simulations. J Phys Chem B. 2004;108:750–760. doi: 10.1021/jp036508g
-
(2004)
J Phys Chem B
, vol.108
, pp. 750-760
-
-
Marrink, S.J.1
de Vries, A.H.2
Mark, A.E.3
-
52
-
-
34547474332
-
The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations
-
17569554,.;: –
-
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH, The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J Phys Chem B. 2007;111:7812–7824. doi: 10.1021/jp071097f17569554
-
(2007)
J Phys Chem B
, vol.111
, pp. 7812-7824
-
-
Marrink, S.J.1
Risselada, H.J.2
Yefimov, S.3
Tieleman, D.P.4
de Vries, A.H.5
-
53
-
-
84884181332
-
-
. In:.;. p. –
-
Pluhackova K, Wassenaar TA, Böckmann RA, Rapaport D, Herrmann JM, Molecular Dynamics Simulations of Membrane Proteins. In: Membrane Biogenesis. vol. 1033 of Methods in Molecular Biology. Humana Press; 2013. p. 85–101.
-
(2013)
Membrane Biogenesis. vol. 1033 of Methods in Molecular Biology
, pp. 85-101
-
-
Pluhackova, K.1
Wassenaar, T.A.2
Böckmann, R.A.3
Rapaport, D.4
Herrmann, J.M.5
-
54
-
-
84925062589
-
Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations
-
26574417,.; (): –
-
Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ, Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J Chem Theory Comput. 2015;11(5):2144–2155. doi: 10.1021/acs.jctc.5b0020926574417
-
(2015)
J Chem Theory Comput
, vol.11
, Issue.5
, pp. 2144-2155
-
-
Wassenaar, T.A.1
Ingólfsson, H.I.2
Böckmann, R.A.3
Tieleman, D.P.4
Marrink, S.J.5
-
55
-
-
84875777145
-
Mixing MARTINI: Electrostatic Coupling in Hybrid Atomistic–Coarse-Grained Biomolecular Simulations
-
23406326,.;: –
-
Wassenaar TA, Ingólfsson HI, Prieß M, Marrink SJ, Schäfer LV, Mixing MARTINI: Electrostatic Coupling in Hybrid Atomistic–Coarse-Grained Biomolecular Simulations. J Phys Chem B. 2013;117:3516–3530. doi: 10.1021/jp311533p23406326
-
(2013)
J Phys Chem B
, vol.117
, pp. 3516-3530
-
-
Wassenaar, T.A.1
Ingólfsson, H.I.2
Prieß, M.3
Marrink, S.J.4
Schäfer, L.V.5
-
56
-
-
33750587438
-
Molecular dynamics with coupling to an external bath
-
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR, Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690. doi: 10.1063/1.448118
-
(1984)
J Chem Phys
, vol.81
, pp. 3684-3690
-
-
Berendsen, H.J.C.1
Postma, J.P.M.2
van Gunsteren, W.F.3
DiNola, A.4
Haak, J.R.5
-
57
-
-
84946416234
-
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
-
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001
-
(2015)
SoftwareX
, vol.1-2
, pp. 19-25
-
-
Abraham, M.J.1
Murtola, T.2
Schulz, R.3
Páll, S.4
Smith, J.C.5
Hess, B.6
-
58
-
-
84865723813
-
Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
-
23341755,..; (): –
-
Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J Chem Theory Comput. 2012;8(9):3257–3273. doi: 10.1021/ct300400x23341755
-
(2012)
J Chem Theory Comput
, vol.8
, Issue.9
, pp. 3257-3273
-
-
Best, R.B.1
Zhu, X.2
Shim, J.3
Lopes, P.E.M.4
Mittal, J.5
Feig, M.6
-
59
-
-
77953377650
-
Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types
-
20496934,..; (): –
-
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J Phys Chem B. 2010;114(23):7830–7843. doi: 10.1021/jp101759q20496934
-
(2010)
J Phys Chem B
, vol.114
, Issue.23
, pp. 7830-7843
-
-
Klauda, J.B.1
Venable, R.M.2
Freites, J.A.3
O’Connor, J.W.4
Tobias, D.J.5
Mondragon-Ramirez, C.6
-
60
-
-
84938930908
-
ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB
-
26574453,.; (): –
-
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–3713. doi: 10.1021/acs.jctc.5b0025526574453
-
(2015)
J Chem Theory Comput
, vol.11
, Issue.8
, pp. 3696-3713
-
-
Maier, J.A.1
Martinez, C.2
Kasavajhala, K.3
Wickstrom, L.4
Hauser, K.E.5
Simmerling, C.6
-
61
-
-
84894191473
-
Lipid14: The Amber Lipid Force Field
-
24803855,..; (): –
-
Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, et al. Lipid14: The Amber Lipid Force Field. J Chem Theory Comput. 2014;10(2):865–879. doi: 10.1021/ct401030724803855
-
(2014)
J Chem Theory Comput
, vol.10
, Issue.2
, pp. 865-879
-
-
Dickson, C.J.1
Madej, B.D.2
Skjevik, A.A.3
Betz, R.M.4
Teigen, K.5
Gould, I.R.6
-
62
-
-
0344796204
-
Ion-water interaction potentials derived from free energy perturbation simulations
-
Åqvist J, Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem. 1990;94(21):8021–8024. doi: 10.1021/j100384a009
-
(1990)
J Phys Chem
, vol.94
, Issue.21
, pp. 8021-8024
-
-
Åqvist, J.1
-
63
-
-
33846086933
-
Canonical sampling through velocity rescaling
-
17212484,.; ():
-
Bussi G, Donadio D, Parrinello M, Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. doi: 10.1063/1.240842017212484
-
(2007)
J Chem Phys
, vol.126
, Issue.1
, pp. 014101
-
-
Bussi, G.1
Donadio, D.2
Parrinello, M.3
-
64
-
-
33846823909
-
Particle mesh Ewald: An N ⋅ log(N) method for Ewald sums in large systems
-
Darden T, York D, Pedersen L, Particle mesh Ewald: An N ⋅ log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092. doi: 10.1063/1.464397
-
(1993)
J Chem Phys
, vol.98
, Issue.12
, pp. 10089-10092
-
-
Darden, T.1
York, D.2
Pedersen, L.3
-
65
-
-
84966270243
-
A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers
-
27035634,..; (): –
-
Pluhackova K, Kirsch SA, Han J, Sun L, Jiang Z, Unruh T, et al. A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers. J Phys Chem B. 2016;120(16):3888–3903. doi: 10.1021/acs.jpcb.6b0187027035634
-
(2016)
J Phys Chem B
, vol.120
, Issue.16
, pp. 3888-3903
-
-
Pluhackova, K.1
Kirsch, S.A.2
Han, J.3
Sun, L.4
Jiang, Z.5
Unruh, T.6
-
66
-
-
79955473820
-
Determining equilibrium constants for dimerization reactions from molecular dynamics simulations
-
21469160,.; (): –
-
De Jong DH, Schäfer LV, De Vries AH, Marrink SJ, Berendsen HJC, Grubmüller H, Determining equilibrium constants for dimerization reactions from molecular dynamics simulations. J Comput Chem. 2011;32(9):1919–1928. doi: 10.1002/jcc.2177621469160
-
(2011)
J Comput Chem
, vol.32
, Issue.9
, pp. 1919-1928
-
-
De Jong, D.H.1
Schäfer, L.V.2
De Vries, A.H.3
Marrink, S.J.4
Berendsen, H.J.C.5
Grubmüller, H.6
-
67
-
-
0026172104
-
Watersheds in digital spaces: an efficient algorithm based on immersion simulations
-
Vincent L, Soille P, Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell. 1991;13(6):583–598. doi: 10.1109/34.87344
-
(1991)
IEEE Trans Pattern Anal Mach Intell
, vol.13
, Issue.6
, pp. 583-598
-
-
Vincent, L.1
Soille, P.2
|