메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 229-245

A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data

Author keywords

Co training; Collective inference; Hyperspectral imagery classification; Spectral spatial data; Transductive learning

Indexed keywords

IMAGE CLASSIFICATION; ITERATIVE METHODS; PIXELS; REMOTE SENSING; SPECTROSCOPY;

EID: 84999035133     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.10.010     Document Type: Article
Times cited : (41)

References (61)
  • 1
    • 84961838352 scopus 로고    scopus 로고
    • Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system
    • (343–3)
    • [1] Appice, A., Guccione, P., Malerba, D., Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system. Mach. Learn. J., 103(3), 2016 (343–3).
    • (2016) Mach. Learn. J. , vol.103 , Issue.3
    • Appice, A.1    Guccione, P.2    Malerba, D.3
  • 2
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • [2] Benediktsson, J., Pesaresi, M., Amason, K., Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41:9 (2003), 1940–1949.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.1    Pesaresi, M.2    Amason, K.3
  • 4
    • 84998972024 scopus 로고    scopus 로고
    • Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Workshop on Computational Learning Theory, COLT 1998, 1998.
    • [4] A. Blum, T. in: Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Workshop on Computational Learning Theory, COLT 1998, 1998.
    • Blum, A.1    in, T.2
  • 6
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • [6] Bruzzone, L., Chi, M., Marconcini, M., A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44:11 (2006), 3363–3373.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 10
    • 84889831717 scopus 로고    scopus 로고
    • Hyperspectral Data Exploitation: theory and Applications
    • Wiley
    • [10] Chang, C.-I., Hyperspectral Data Exploitation: theory and Applications. 2007, Wiley.
    • (2007)
    • Chang, C.-I.1
  • 12
    • 84959269276 scopus 로고    scopus 로고
    • Combining rotation forest and multiscale segmentation for the classification of hyperspectral data
    • [12] Chen, J., Xia, J., Du, P., Chanussot, J., Combining rotation forest and multiscale segmentation for the classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP 99 (2016), 1–14.
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.99 , pp. 1-14
    • Chen, J.1    Xia, J.2    Du, P.3    Chanussot, J.4
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • [13] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20:3 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • [14] Demir, B., Persello, C., Bruzzone, L., Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 49:3 (2011), 1014–1031.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 15
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • [15] Fauvel, M., Chanussot, J., Benediktsson, J., A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 45:1 (2012), 381–392.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.3
  • 16
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Proceedings of the IEEE 101 (3) (2013) 652–675.
    • [16] M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, J. Tilton, Advances in spectral-spatial classification of hyperspectral images, in: Proceedings of the IEEE 101 (3) (2013) 652–675.
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.3    Chanussot, J.4    Tilton, J.5
  • 17
    • 39549089484 scopus 로고    scopus 로고
    • Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
    • [17] Fujino, A., Ueda, N., Saito, K., Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 30:3 (2008), 424–437.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.3 , pp. 424-437
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 18
    • 84998888337 scopus 로고    scopus 로고
    • ROSIS Pavia University 2003 data set, 2003.
    • [18] P. Gamba, ROSIS Pavia University 2003 data set, 2003.
    • Gamba, P.1
  • 19
    • 84998931958 scopus 로고    scopus 로고
    • Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning), The MIT Press, 2007.
    • [19] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning), The MIT Press, 2007.
    • Getoor, L.1    Taskar, B.2
  • 20
    • 85027958014 scopus 로고    scopus 로고
    • Iterative hyperspectral image classification using spectral-spatial relational features
    • [20] Guccione, P., Mascolo, L., Appice, A., Iterative hyperspectral image classification using spectral-spatial relational features. IEEE Trans. Geosci. Remote Sens. 53:7 (2015), 3615–3627.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3615-3627
    • Guccione, P.1    Mascolo, L.2    Appice, A.3
  • 21
    • 84942059280 scopus 로고    scopus 로고
    • Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion
    • [21] Hang, R., Liu, Q., Song, H., Sun, Y., Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion. IEEE Trans. Geosci. Remote Sens. 54:2 (2016), 783–794.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.2 , pp. 783-794
    • Hang, R.1    Liu, Q.2    Song, H.3    Sun, Y.4
  • 23
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • [23] Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14:1 (1968), 55–63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 24
    • 0003980257 scopus 로고
    • An Introduction to Applied Geostatistics
    • Oxford University Press USA
    • [24] Isaaks, E.H., Srivastava, M.R., An Introduction to Applied Geostatistics. 1990, Oxford University Press, USA.
    • (1990)
    • Isaaks, E.H.1    Srivastava, M.R.2
  • 25
    • 12244297396 scopus 로고    scopus 로고
    • Gallagher, Why collective inference improves relational classification, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, ACM
    • [25] D. Jensen, J. Neville, B. in: Gallagher, Why collective inference improves relational classification, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, ACM, 2004, pp. 593–598.
    • (2004) , pp. 593-598
    • Jensen, D.1    Neville, J.2    in, B.3
  • 28
    • 84998931874 scopus 로고    scopus 로고
    • AVIRIS Hyperpsectral Radiance Data from: f981009t01r07, 1998.
    • [28] L. Johnson, AVIRIS Hyperpsectral Radiance Data from: f981009t01r07, 1998.
    • Johnson, L.1
  • 29
    • 84998901641 scopus 로고    scopus 로고
    • AVIRIS NW Indiana's Indian Pines 1992 data set, 1992.
    • [29] D. Landgrebe, AVIRIS NW Indiana's Indian Pines 1992 data set, 1992.
    • Landgrebe, D.1
  • 30
    • 0027881344 scopus 로고
    • Spatial autocorrelation: trouble or new paradigm?
    • [30] Legendre, P., Spatial autocorrelation: trouble or new paradigm?. Ecology 74:6 (1993), 1659–1673.
    • (1993) Ecology , vol.74 , Issue.6 , pp. 1659-1673
    • Legendre, P.1
  • 31
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new bayesian approach with active learning
    • [31] Li, J., Bioucas-Dias, J., Plaza, A., Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49:10 (2011), 3947–3960.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 32
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • [32] Li, J., Bioucas-Dias, J., Plaza, A., Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 809–823.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 33
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • [33] Li, J., Bioucas-Dias, J., Plaza, A., Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51:2 (2013), 844–856.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 34
    • 84969338344 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine
    • [34] Lv, Q., Niu, X., Dou, Y., Xu, J., Lei, Y., Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13:3 (2016), 434–438.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.3 , pp. 434-438
    • Lv, Q.1    Niu, X.2    Dou, Y.3    Xu, J.4    Lei, Y.5
  • 35
    • 58249083324 scopus 로고    scopus 로고
    • A relational approach to probabilistic classification in a transductive setting
    • [35] Malerba, D., Ceci, M., Appice, A., A relational approach to probabilistic classification in a transductive setting. Eng. Appl. Artif. Intell. 22:1 (2009), 109–116.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.1 , pp. 109-116
    • Malerba, D.1    Ceci, M.2    Appice, A.3
  • 36
    • 84873130855 scopus 로고    scopus 로고
    • Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery
    • [36] Maulik, U., Chakraborty, D., Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 77:0 (2013), 66–78.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.77 , pp. 66-78
    • Maulik, U.1    Chakraborty, D.2
  • 37
    • 84867118277 scopus 로고    scopus 로고
    • Aha, Semi-supervised collective classification via hybrid label regularization, in: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Omnipress, 2012.
    • [37] L. McDowell, D.W. in: Aha, Semi-supervised collective classification via hybrid label regularization, in: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Omnipress, 2012.
    • McDowell, L.1    in, D.W.2
  • 38
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • [38] Melgani, F., Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42:8 (2004), 1778–1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 39
    • 84903531897 scopus 로고    scopus 로고
    • A review of remote sensing image classification techniques: the role of spatio-contextual information
    • [39] Miao, L., Shuying, Z., Zhang, B., Shanshan, L., Changshan, W., A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur. J. Remote Sens. 47 (2014), 389–411.
    • (2014) Eur. J. Remote Sens. , vol.47 , pp. 389-411
    • Miao, L.1    Shuying, Z.2    Zhang, B.3    Shanshan, L.4    Changshan, W.5
  • 40
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • [40] Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J., SVM active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 52:4 (2014), 2217–2233.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.J.5
  • 41
    • 84946780584 scopus 로고    scopus 로고
    • Active-metric learning for classification of remotely sensed hyperspectral images
    • [41] Pasolli, E., Yang, H.L., Crawford, M.M., Active-metric learning for classification of remotely sensed hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54:4 (2016), 1925–1939.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 1925-1939
    • Pasolli, E.1    Yang, H.L.2    Crawford, M.M.3
  • 42
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • [42] J.C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, in: Advances in Large Margin Classifiers, MIT Press, 1999, pp. 61–74.
    • (1999) Advances in Large Margin Classifiers, MIT Press , pp. 61-74
    • Platt, J.C.1
  • 44
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • [44] Ratle, F., Camps-Valls, G., Weston, J., Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48:5 (2010), 2271–2282.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 45
    • 84892350125 scopus 로고
    • Remote Sensing Digital Image Analysis: an Introduction
    • 2nd ed. Springer-Verlag New York, Inc.
    • [45] Richards, J.A., Remote Sensing Digital Image Analysis: an Introduction. 2nd ed., 1993, Springer-Verlag, New York, Inc.
    • (1993)
    • Richards, J.A.1
  • 46
    • 84998981792 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data, Tech. rep., 2001.
    • [46] M. Seeger, Learning with labeled and unlabeled data, Tech. rep., 2001.
    • Seeger, M.1
  • 47
    • 0242292075 scopus 로고    scopus 로고
    • A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas
    • [47] Shackelford, A.K., Davis, C.H., A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 41:10 (2003), 2354–2363.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.10 , pp. 2354-2363
    • Shackelford, A.K.1    Davis, C.H.2
  • 48
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • [48] Shahshahani, B., Landgrebe, D., The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32:5 (1994), 1087–1095.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 49
    • 83055186952 scopus 로고    scopus 로고
    • Yu, Collective prediction with latent graphs, in:Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, ACM
    • [49] X. Shi, Y. Li, P. in: Yu, Collective prediction with latent graphs, in:Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, ACM, 2011, pp. 1127–1136.
    • (2011) , pp. 1127-1136
    • Shi, X.1    Li, Y.2    in, P.3
  • 51
  • 52
    • 84907184537 scopus 로고    scopus 로고
    • An efficient semi-supervised classification approach for hyperspectral imagery
    • [52] Tan, K., Li, E., Du, Q., Du, P., An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 97:0 (2014), 36–45.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.97 , pp. 36-45
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 53
    • 84891739734 scopus 로고    scopus 로고
    • Hyperspectral image classification using band selection and morphological profiles
    • [53] Tan, K., Li, E., Du, Q., Du, P., Hyperspectral image classification using band selection and morphological profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:1 (2014), 40–48.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , Issue.1 , pp. 40-48
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 54
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • [54] Tarabalka, Y., Chanussot, J., Benediktsson, J., Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 43:7 (2010), 2367–2379.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 55
  • 56
    • 84887920186 scopus 로고    scopus 로고
    • Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
    • [56] Triguero, I., García, S., Herrera, F., Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42:2 (2015), 245–284.
    • (2015) Knowl. Inf. Syst. , vol.42 , Issue.2 , pp. 245-284
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 57
    • 84998555950 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory, New York, NY, USA, 1995.
    • [57] V.N. Vapnik, The Nature of Statistical Learning Theory, New York, NY, USA, 1995.
    • Vapnik, V.N.1
  • 58
    • 84907507036 scopus 로고    scopus 로고
    • Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
    • [58] Wang, L., Hao, S., Wang, Q., Wang, Y., Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogramm. Remote Sens. 97:0 (2014), 123–137.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.97 , pp. 123-137
    • Wang, L.1    Hao, S.2    Wang, Q.3    Wang, Y.4
  • 59
    • 80855135228 scopus 로고    scopus 로고
    • Data Mining: practical Machine Learning Tools and Techniques
    • 2nd ed. Morgan Kaufmann
    • [59] Witten, I., Frank, E., Data Mining: practical Machine Learning Tools and Techniques. 2nd ed., 2005, Morgan Kaufmann.
    • (2005)
    • Witten, I.1    Frank, E.2
  • 61
    • 84905913722 scopus 로고    scopus 로고
    • Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification
    • [61] Zhang, X., Song, Q., Liu, R., Wang, W., Jiao, L., Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:6 (2014), 2044–2055.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , Issue.6 , pp. 2044-2055
    • Zhang, X.1    Song, Q.2    Liu, R.3    Wang, W.4    Jiao, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.