-
1
-
-
84961838352
-
Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system
-
(343–3)
-
[1] Appice, A., Guccione, P., Malerba, D., Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system. Mach. Learn. J., 103(3), 2016 (343–3).
-
(2016)
Mach. Learn. J.
, vol.103
, Issue.3
-
-
Appice, A.1
Guccione, P.2
Malerba, D.3
-
2
-
-
0142009648
-
Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
-
[2] Benediktsson, J., Pesaresi, M., Amason, K., Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41:9 (2003), 1940–1949.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, Issue.9
, pp. 1940-1949
-
-
Benediktsson, J.1
Pesaresi, M.2
Amason, K.3
-
3
-
-
80052137947
-
Pixel, object and hybrid classification comparisons
-
[3] Bernardini, A., Frontoni, E., Malinverni, E., Mancini, A., Tassetti, A., Zingaretti, P., Pixel, object and hybrid classification comparisons. J. Spat. Sci. 55:1 (2010), 43–54.
-
(2010)
J. Spat. Sci.
, vol.55
, Issue.1
, pp. 43-54
-
-
Bernardini, A.1
Frontoni, E.2
Malinverni, E.3
Mancini, A.4
Tassetti, A.5
Zingaretti, P.6
-
4
-
-
84998972024
-
-
Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Workshop on Computational Learning Theory, COLT 1998, 1998.
-
[4] A. Blum, T. in: Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Workshop on Computational Learning Theory, COLT 1998, 1998.
-
-
-
Blum, A.1
in, T.2
-
5
-
-
34948836126
-
A novel context-sensitive SVM for classification of remote sensing images
-
[5] F. Bovolo, L. Bruzzone, M. Marconcini, A novel context-sensitive SVM for classification of remote sensing images, in: Proceedings of the 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2006, 2006, pp. 2498–2501.
-
(2006)
Proceedings of the 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS
, vol.2006
, pp. 2498-2501
-
-
Bovolo, F.1
Bruzzone, L.2
Marconcini, M.3
-
6
-
-
33750819329
-
A novel transductive SVM for semisupervised classification of remote-sensing images
-
[6] Bruzzone, L., Chi, M., Marconcini, M., A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44:11 (2006), 3363–3373.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.11
, pp. 3363-3373
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
7
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification
-
[7] Camps-Valls, G., Bandos Marsheva, T., Zhou, D., Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45:10 (2007), 3044–3054.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.10
, pp. 3044-3054
-
-
Camps-Valls, G.1
Bandos Marsheva, T.2
Zhou, D.3
-
8
-
-
70349338920
-
Ensemble strategies for classifying hyperspectral remote sensing data
-
[8] X. Ceamanos, B. Waske, J. Benediktsson, J. Chanussot, J. Sveinsson, Ensemble strategies for classifying hyperspectral remote sensing data, in: J. Benediktsson, J. Kittler, F. Roli, (eds.), Multiple Classifier Systems, vol. 5519 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp. 62–71.
-
(2009)
J. Benediktsson, J. Kittler, F. Roli, (eds.), Multiple Classifier Systems, vol. 5519 of Lecture Notes in Computer Science, Springer Berlin Heidelberg
, pp. 62-71
-
-
Ceamanos, X.1
Waske, B.2
Benediktsson, J.3
Chanussot, J.4
Sveinsson, J.5
-
9
-
-
84864933780
-
Transductive relational classification in the co-training paradigm
-
[9] M. Ceci, A. Appice, H.L. Viktor, D. Malerba, E. Paquet, H. Guo, Transductive relational classification in the co-training paradigm, in: P. Perner, (ed.), Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition, MLDM 2012, vol. 7376 of Lecture Notes in Computer Science, Springer, 2012, pp. 11–25.
-
(2012)
P. Perner, (ed.), Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition, MLDM 2012, vol. 7376 of Lecture Notes in Computer Science, Springer
, pp. 11-25
-
-
Ceci, M.1
Appice, A.2
Viktor, H.L.3
Malerba, D.4
Paquet, E.5
Guo, H.6
-
10
-
-
84889831717
-
Hyperspectral Data Exploitation: theory and Applications
-
Wiley
-
[10] Chang, C.-I., Hyperspectral Data Exploitation: theory and Applications. 2007, Wiley.
-
(2007)
-
-
Chang, C.-I.1
-
11
-
-
33751002604
-
Measures of solution accuracy in case-based reasoning systems
-
[11] W. Cheetham, J. Price, Measures of solution accuracy in case-based reasoning systems, in: P. Funk, P. A. González-Calero (eds.), Proceedings of the 7th European Conference on Advances in Case-Based Reasoning, ECCBR 2004, vol. 3155 of Lecture Notes in Computer Science, Springer, 2004, pp. 106–118.
-
(2004)
P. Funk, P. A. González-Calero (eds.), Proceedings of the 7th European Conference on Advances in Case-Based Reasoning, ECCBR 2004, vol. 3155 of Lecture Notes in Computer Science, Springer
, pp. 106-118
-
-
Cheetham, W.1
Price, J.2
-
12
-
-
84959269276
-
Combining rotation forest and multiscale segmentation for the classification of hyperspectral data
-
[12] Chen, J., Xia, J., Du, P., Chanussot, J., Combining rotation forest and multiscale segmentation for the classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP 99 (2016), 1–14.
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.99
, pp. 1-14
-
-
Chen, J.1
Xia, J.2
Du, P.3
Chanussot, J.4
-
13
-
-
34249753618
-
Support-vector networks
-
[13] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20:3 (1995), 273–297.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
79952041537
-
Batch-mode active-learning methods for the interactive classification of remote sensing images
-
[14] Demir, B., Persello, C., Bruzzone, L., Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 49:3 (2011), 1014–1031.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.3
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
15
-
-
80052740627
-
A spatial-spectral kernel-based approach for the classification of remote-sensing images
-
[15] Fauvel, M., Chanussot, J., Benediktsson, J., A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 45:1 (2012), 381–392.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.1
, pp. 381-392
-
-
Fauvel, M.1
Chanussot, J.2
Benediktsson, J.3
-
16
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Proceedings of the IEEE 101 (3) (2013) 652–675.
-
[16] M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, J. Tilton, Advances in spectral-spatial classification of hyperspectral images, in: Proceedings of the IEEE 101 (3) (2013) 652–675.
-
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.3
Chanussot, J.4
Tilton, J.5
-
17
-
-
39549089484
-
Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
-
[17] Fujino, A., Ueda, N., Saito, K., Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle. IEEE Trans. Pattern Anal. Mach. Intell. 30:3 (2008), 424–437.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.3
, pp. 424-437
-
-
Fujino, A.1
Ueda, N.2
Saito, K.3
-
18
-
-
84998888337
-
-
ROSIS Pavia University 2003 data set, 2003.
-
[18] P. Gamba, ROSIS Pavia University 2003 data set, 2003.
-
-
-
Gamba, P.1
-
19
-
-
84998931958
-
-
Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning), The MIT Press, 2007.
-
[19] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning), The MIT Press, 2007.
-
-
-
Getoor, L.1
Taskar, B.2
-
20
-
-
85027958014
-
Iterative hyperspectral image classification using spectral-spatial relational features
-
[20] Guccione, P., Mascolo, L., Appice, A., Iterative hyperspectral image classification using spectral-spatial relational features. IEEE Trans. Geosci. Remote Sens. 53:7 (2015), 3615–3627.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.7
, pp. 3615-3627
-
-
Guccione, P.1
Mascolo, L.2
Appice, A.3
-
21
-
-
84942059280
-
Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion
-
[21] Hang, R., Liu, Q., Song, H., Sun, Y., Matrix-based discriminant subspace ensemble for hyperspectral image spatial-spectral feature fusion. IEEE Trans. Geosci. Remote Sens. 54:2 (2016), 783–794.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.2
, pp. 783-794
-
-
Hang, R.1
Liu, Q.2
Song, H.3
Sun, Y.4
-
22
-
-
84874438598
-
Using tri-training to exploit spectral and spatial information for hyperspectral data classification
-
[22] R. Huang, W. He, Using tri-training to exploit spectral and spatial information for hyperspectral data classification, in: Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing, CVRS 2012, 2012, pp. 30–33.
-
(2012)
Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing, CVRS
, vol.2012
, pp. 30-33
-
-
Huang, R.1
He, W.2
-
23
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
[23] Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14:1 (1968), 55–63.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.1
-
24
-
-
0003980257
-
An Introduction to Applied Geostatistics
-
Oxford University Press USA
-
[24] Isaaks, E.H., Srivastava, M.R., An Introduction to Applied Geostatistics. 1990, Oxford University Press, USA.
-
(1990)
-
-
Isaaks, E.H.1
Srivastava, M.R.2
-
25
-
-
12244297396
-
-
Gallagher, Why collective inference improves relational classification, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, ACM
-
[25] D. Jensen, J. Neville, B. in: Gallagher, Why collective inference improves relational classification, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, ACM, 2004, pp. 593–598.
-
(2004)
, pp. 593-598
-
-
Jensen, D.1
Neville, J.2
in, B.3
-
26
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
[26] T. Joachims, Transductive inference for text classification using support vector machines, in: I. Bratko, S. Dzeroski (eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999), Morgan Kaufmann, 1999, pp. 200–209.
-
(1999)
I. Bratko, S. Dzeroski (eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999), Morgan Kaufmann
, pp. 200-209
-
-
Joachims, T.1
-
27
-
-
1942484960
-
Transductive learning via spectral graph partitioning
-
[27] T. Joachims, Transductive learning via spectral graph partitioning, in: T. Fawcett, N. Mishra (eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003, AAAI Press, 2003, pp. 290–297.
-
(2003)
T. Fawcett, N. Mishra (eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003, AAAI Press
, pp. 290-297
-
-
Joachims, T.1
-
28
-
-
84998931874
-
-
AVIRIS Hyperpsectral Radiance Data from: f981009t01r07, 1998.
-
[28] L. Johnson, AVIRIS Hyperpsectral Radiance Data from: f981009t01r07, 1998.
-
-
-
Johnson, L.1
-
29
-
-
84998901641
-
-
AVIRIS NW Indiana's Indian Pines 1992 data set, 1992.
-
[29] D. Landgrebe, AVIRIS NW Indiana's Indian Pines 1992 data set, 1992.
-
-
-
Landgrebe, D.1
-
30
-
-
0027881344
-
Spatial autocorrelation: trouble or new paradigm?
-
[30] Legendre, P., Spatial autocorrelation: trouble or new paradigm?. Ecology 74:6 (1993), 1659–1673.
-
(1993)
Ecology
, vol.74
, Issue.6
, pp. 1659-1673
-
-
Legendre, P.1
-
31
-
-
80053562930
-
Hyperspectral image segmentation using a new bayesian approach with active learning
-
[31] Li, J., Bioucas-Dias, J., Plaza, A., Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49:10 (2011), 3947–3960.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.10
, pp. 3947-3960
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
32
-
-
80052087931
-
Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
-
[32] Li, J., Bioucas-Dias, J., Plaza, A., Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 809–823.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 809-823
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
33
-
-
84872922940
-
Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
-
[33] Li, J., Bioucas-Dias, J., Plaza, A., Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51:2 (2013), 844–856.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.2
, pp. 844-856
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
34
-
-
84969338344
-
Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine
-
[34] Lv, Q., Niu, X., Dou, Y., Xu, J., Lei, Y., Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13:3 (2016), 434–438.
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.3
, pp. 434-438
-
-
Lv, Q.1
Niu, X.2
Dou, Y.3
Xu, J.4
Lei, Y.5
-
35
-
-
58249083324
-
A relational approach to probabilistic classification in a transductive setting
-
[35] Malerba, D., Ceci, M., Appice, A., A relational approach to probabilistic classification in a transductive setting. Eng. Appl. Artif. Intell. 22:1 (2009), 109–116.
-
(2009)
Eng. Appl. Artif. Intell.
, vol.22
, Issue.1
, pp. 109-116
-
-
Malerba, D.1
Ceci, M.2
Appice, A.3
-
36
-
-
84873130855
-
Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery
-
[36] Maulik, U., Chakraborty, D., Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 77:0 (2013), 66–78.
-
(2013)
ISPRS J. Photogramm. Remote Sens.
, vol.77
, pp. 66-78
-
-
Maulik, U.1
Chakraborty, D.2
-
37
-
-
84867118277
-
-
Aha, Semi-supervised collective classification via hybrid label regularization, in: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Omnipress, 2012.
-
[37] L. McDowell, D.W. in: Aha, Semi-supervised collective classification via hybrid label regularization, in: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Omnipress, 2012.
-
-
-
McDowell, L.1
in, D.W.2
-
38
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
[38] Melgani, F., Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42:8 (2004), 1778–1790.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
39
-
-
84903531897
-
A review of remote sensing image classification techniques: the role of spatio-contextual information
-
[39] Miao, L., Shuying, Z., Zhang, B., Shanshan, L., Changshan, W., A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur. J. Remote Sens. 47 (2014), 389–411.
-
(2014)
Eur. J. Remote Sens.
, vol.47
, pp. 389-411
-
-
Miao, L.1
Shuying, Z.2
Zhang, B.3
Shanshan, L.4
Changshan, W.5
-
40
-
-
84892437309
-
SVM active learning approach for image classification using spatial information
-
[40] Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J., SVM active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 52:4 (2014), 2217–2233.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.4
, pp. 2217-2233
-
-
Pasolli, E.1
Melgani, F.2
Tuia, D.3
Pacifici, F.4
Emery, W.J.5
-
41
-
-
84946780584
-
Active-metric learning for classification of remotely sensed hyperspectral images
-
[41] Pasolli, E., Yang, H.L., Crawford, M.M., Active-metric learning for classification of remotely sensed hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54:4 (2016), 1925–1939.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.4
, pp. 1925-1939
-
-
Pasolli, E.1
Yang, H.L.2
Crawford, M.M.3
-
42
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
[42] J.C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods, in: Advances in Large Margin Classifiers, MIT Press, 1999, pp. 61–74.
-
(1999)
Advances in Large Margin Classifiers, MIT Press
, pp. 61-74
-
-
Platt, J.C.1
-
43
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
[43] Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G., Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113:1 (2009), 110–122.
-
(2009)
Remote Sens. Environ.
, vol.113
, Issue.1
, pp. 110-122
-
-
Plaza, A.1
Benediktsson, J.A.2
Boardman, J.W.3
Brazile, J.4
Bruzzone, L.5
Camps-Valls, G.6
Chanussot, J.7
Fauvel, M.8
Gamba, P.9
Gualtieri, A.10
Marconcini, M.11
Tilton, J.C.12
Trianni, G.13
-
44
-
-
77951295198
-
Semisupervised neural networks for efficient hyperspectral image classification
-
[44] Ratle, F., Camps-Valls, G., Weston, J., Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48:5 (2010), 2271–2282.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.5
, pp. 2271-2282
-
-
Ratle, F.1
Camps-Valls, G.2
Weston, J.3
-
45
-
-
84892350125
-
Remote Sensing Digital Image Analysis: an Introduction
-
2nd ed. Springer-Verlag New York, Inc.
-
[45] Richards, J.A., Remote Sensing Digital Image Analysis: an Introduction. 2nd ed., 1993, Springer-Verlag, New York, Inc.
-
(1993)
-
-
Richards, J.A.1
-
46
-
-
84998981792
-
-
Learning with labeled and unlabeled data, Tech. rep., 2001.
-
[46] M. Seeger, Learning with labeled and unlabeled data, Tech. rep., 2001.
-
-
-
Seeger, M.1
-
47
-
-
0242292075
-
A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas
-
[47] Shackelford, A.K., Davis, C.H., A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 41:10 (2003), 2354–2363.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, Issue.10
, pp. 2354-2363
-
-
Shackelford, A.K.1
Davis, C.H.2
-
48
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
-
[48] Shahshahani, B., Landgrebe, D., The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32:5 (1994), 1087–1095.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
49
-
-
83055186952
-
-
Yu, Collective prediction with latent graphs, in:Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, ACM
-
[49] X. Shi, Y. Li, P. in: Yu, Collective prediction with latent graphs, in:Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, ACM, 2011, pp. 1127–1136.
-
(2011)
, pp. 1127-1136
-
-
Shi, X.1
Li, Y.2
in, P.3
-
50
-
-
33750373672
-
Large scale semi-supervised linear SVMs
-
[50] V. Sindhwani, S.S. Keerthi, Large scale semi-supervised linear SVMs, in: E.N. Efthimiadis, S.T. Dumais, D. Hawking, K. Järvelin (eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006, ACM, 2006, pp. 477–484.
-
(2006)
E.N. Efthimiadis, S.T. Dumais, D. Hawking, K. Järvelin (eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006, ACM
, pp. 477-484
-
-
Sindhwani, V.1
Keerthi, S.S.2
-
51
-
-
85076199127
-
Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery
-
[51] S. D. Stearns, B. E. Wilson, J. R. Peterson, Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery, in: Proceedings of SPIE Applications of Digital Image Processing, vol. 2028, 1993, pp. 118–127.
-
(1993)
Proceedings of SPIE Applications of Digital Image Processing
, vol.2028
, pp. 118-127
-
-
Stearns, S.D.1
Wilson, B.E.2
Peterson, J.R.3
-
52
-
-
84907184537
-
An efficient semi-supervised classification approach for hyperspectral imagery
-
[52] Tan, K., Li, E., Du, Q., Du, P., An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 97:0 (2014), 36–45.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.97
, pp. 36-45
-
-
Tan, K.1
Li, E.2
Du, Q.3
Du, P.4
-
53
-
-
84891739734
-
Hyperspectral image classification using band selection and morphological profiles
-
[53] Tan, K., Li, E., Du, Q., Du, P., Hyperspectral image classification using band selection and morphological profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:1 (2014), 40–48.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.1
, pp. 40-48
-
-
Tan, K.1
Li, E.2
Du, Q.3
Du, P.4
-
54
-
-
77953764526
-
Segmentation and classification of hyperspectral images using watershed transformation
-
[54] Tarabalka, Y., Chanussot, J., Benediktsson, J., Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 43:7 (2010), 2367–2379.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.7
, pp. 2367-2379
-
-
Tarabalka, Y.1
Chanussot, J.2
Benediktsson, J.3
-
55
-
-
77958017904
-
SVM- and MRF-based method for accurate classification of hyperspectral images
-
[55] Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J., SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7:4 (2010), 736–740.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
Fauvel, M.2
Chanussot, J.3
Benediktsson, J.4
-
56
-
-
84887920186
-
Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
-
[56] Triguero, I., García, S., Herrera, F., Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42:2 (2015), 245–284.
-
(2015)
Knowl. Inf. Syst.
, vol.42
, Issue.2
, pp. 245-284
-
-
Triguero, I.1
García, S.2
Herrera, F.3
-
57
-
-
84998555950
-
-
The Nature of Statistical Learning Theory, New York, NY, USA, 1995.
-
[57] V.N. Vapnik, The Nature of Statistical Learning Theory, New York, NY, USA, 1995.
-
-
-
Vapnik, V.N.1
-
58
-
-
84907507036
-
Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
-
[58] Wang, L., Hao, S., Wang, Q., Wang, Y., Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogramm. Remote Sens. 97:0 (2014), 123–137.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.97
, pp. 123-137
-
-
Wang, L.1
Hao, S.2
Wang, Q.3
Wang, Y.4
-
59
-
-
80855135228
-
Data Mining: practical Machine Learning Tools and Techniques
-
2nd ed. Morgan Kaufmann
-
[59] Witten, I., Frank, E., Data Mining: practical Machine Learning Tools and Techniques. 2nd ed., 2005, Morgan Kaufmann.
-
(2005)
-
-
Witten, I.1
Frank, E.2
-
60
-
-
67149088773
-
Pseudolikelihood em for within-network relational learning
-
[60] R. Xiang, J. Neville, Pseudolikelihood em for within-network relational learning, in: Proceedings of the 8th IEEE International Conference on Data Mining, ICDM 2008, IEEE, 2008, pp. 1103–1108.
-
(2008)
Proceedings of the 8th IEEE International Conference on Data Mining, ICDM 2008, IEEE
, pp. 1103-1108
-
-
Xiang, R.1
Neville, J.2
-
61
-
-
84905913722
-
Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification
-
[61] Zhang, X., Song, Q., Liu, R., Wang, W., Jiao, L., Modified co-training with spectral and spatial views for semisupervised hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:6 (2014), 2044–2055.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2044-2055
-
-
Zhang, X.1
Song, Q.2
Liu, R.3
Wang, W.4
Jiao, L.5
|