메뉴 건너뛰기




Volumn 103, Issue 3, 2016, Pages 343-375

Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system

Author keywords

Collective inference; Ensemble learning; Iterative learning; Relational classification; Transduction

Indexed keywords

IMAGE CLASSIFICATION; INDEPENDENT COMPONENT ANALYSIS; ITERATIVE METHODS; PIXELS; SPECTROSCOPY;

EID: 84961838352     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-016-5559-7     Document Type: Article
Times cited : (18)

References (92)
  • 2
    • 84885866109 scopus 로고    scopus 로고
    • There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding
    • Antanas, L., van Otterlo, M., Mogrovejo, J. O., Tuytelaars, T., & Raedt, L. D. (2014). There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding. Neurocomputing, 123, 75–85.
    • (2014) Neurocomputing , vol.123 , pp. 75-85
    • Antanas, L.1    van Otterlo, M.2    Mogrovejo, J.O.3    Tuytelaars, T.4    Raedt, L.D.5
  • 3
    • 84906779919 scopus 로고    scopus 로고
    • Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering
    • Appice, A., & Malerba, D. (2014). Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Mining and Knowledge Discovery, 28(5–6), 1266–1313.
    • (2014) Data Mining and Knowledge Discovery , vol.28 , Issue.5-6 , pp. 1266-1313
    • Appice, A.1    Malerba, D.2
  • 4
    • 84926203895 scopus 로고    scopus 로고
    • Dealing with temporal and spatial correlations to classify outliers in geophysical data streams
    • Appice, A., Guccione, P., Malerba, D., & Ciampi, A. (2014). Dealing with temporal and spatial correlations to classify outliers in geophysical data streams. Information Sciences, 285, 162–180.
    • (2014) Information Sciences , vol.285 , pp. 162-180
    • Appice, A.1    Guccione, P.2    Malerba, D.3    Ciampi, A.4
  • 5
    • 84991861555 scopus 로고    scopus 로고
    • AVIRIS. 2007. http://aviris.jpl.nasa.gov/
    • (2007)
  • 6
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Benediktsson, J., Pesaresi, M., & Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.1    Pesaresi, M.2    Amason, K.3
  • 7
    • 49549123786 scopus 로고    scopus 로고
    • Bilgic, M., Namata, G. M., & Getoor, L.. Combining collective classification and link prediction. In , ICDMW 2007 (pp. 381–386). IEEE Computer Society.
    • Bilgic, M., Namata, G. M., & Getoor, L. (2007). Combining collective classification and link prediction. In Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW 2007 (pp. 381–386). IEEE Computer Society.
    • (2007) Proceedings of the Seventh IEEE International Conference on Data Mining Workshops
  • 8
    • 84991894200 scopus 로고    scopus 로고
    • Blum, A., & Chawla, S. Learning from labeled and unlabeled data using graph mincuts. In (pp. 19–26). Morgan Kaufmann Publishers Inc.
    • Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001 (pp. 19–26). Morgan Kaufmann Publishers Inc.
    • (2001) Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001
  • 10
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Bruzzone, L., Chi, M., & Marconcini, M. (2006). A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3363–3373.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 13
    • 34248555405 scopus 로고    scopus 로고
    • Spatial associative classification: Propositional vs structural approach
    • Ceci, M., & Appice, A. (2006). Spatial associative classification: Propositional vs structural approach. Journal of Intelligent Information Systems, 27(3), 191–213.
    • (2006) Journal of Intelligent Information Systems , vol.27 , Issue.3 , pp. 191-213
    • Ceci, M.1    Appice, A.2
  • 14
    • 34248582883 scopus 로고    scopus 로고
    • Relational data mining and ILP for document image understanding
    • Ceci, M., Berardi, M., & Malerba, D. (2007). Relational data mining and ILP for document image understanding. Applied Artificial Intelligence, 21(4&5), 317–342.
    • (2007) Applied Artificial Intelligence , vol.21 , Issue.4-5 , pp. 317-342
    • Ceci, M.1    Berardi, M.2    Malerba, D.3
  • 15
    • 84864933780 scopus 로고    scopus 로고
    • Lecture Notes in Computer Science (Vol. 7376, pp. 11–25)
    • Ceci, M., Appice, A., Viktor, H. L., Malerba, D., Paquet, E., & Guo, H. (2012). Transductive relational classification in the co-training paradigm. In P. Perner (Ed.), Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition, MLDM 2012, Lecture Notes in Computer Science (Vol. 7376, pp. 11–25). Springer.
    • (2012) Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition
  • 16
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112(6), 2999–3011.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 18
    • 79959728911 scopus 로고    scopus 로고
    • Chechetka, A., Dash, D., & Philipose, M. (2010). Relational learning for collective classification of entities in images. In , Papers from the 2010 AAAI Workshop, AAAI, AAAI Workshops (Vol. WS-10-06).
    • Chechetka, A., Dash, D., & Philipose, M. (2010). Relational learning for collective classification of entities in images. In Statistical Relational Artificial Intelligence, Papers from the 2010 AAAI Workshop, AAAI, AAAI Workshops (Vol. WS-10-06).
    • (2010) Statistical Relational Artificial Intelligence
  • 19
    • 84912029121 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
    • Chen, C., Li, W., Su, H., & Liu, K. (2014). Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sensing, 6(6), 5795–5814.
    • (2014) Remote Sensing , vol.6 , Issue.6 , pp. 5795-5814
    • Chen, C.1    Li, W.2    Su, H.3    Liu, K.4
  • 20
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 21
    • 84880864091 scopus 로고    scopus 로고
    • Learning classifiers when the training data is not IID. In M. M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence
    • Dundar, M., Krishnapuram, B., Bi, J., & Rao, R. B. (2007). Learning classifiers when the training data is not IID. In M. M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007 (pp. 756–761).
    • (2007) IJCAI 2007 (pp 756–761)
    • Dundar, M.1    Krishnapuram, B.2    Bi, J.3    Rao, R.B.4
  • 22
    • 84894647292 scopus 로고    scopus 로고
    • Fang, M., Yin, J., & Zhu, X.. Transfer learning across networks for collective classification. In (pp. 161–170). IEEE Computer Society.
    • Fang, M., Yin, J., & Zhu, X. (2013). Transfer learning across networks for collective classification. In Proceedings of the 13th International Conference on on Data Mining, ICDM 2013 (pp. 161–170). IEEE Computer Society.
    • (2013) Proceedings of the 13th International Conference on on Data Mining, ICDM 2013
  • 23
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • Fauvel, M., Chanussot, J., & Benediktsson, J. (2012). A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognition, 45(1), 381–392.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.3
  • 25
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–6(6), 721–741.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI–6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 28
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • Goetz, A., Vane, G., Solomon, J., & Rock, B. (1985). Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.1    Vane, G.2    Solomon, J.3    Rock, B.4
  • 30
    • 85027958014 scopus 로고    scopus 로고
    • Iterative hyperspectral image classification using spectral-spatial relational features
    • Guccione, P., Mascolo, L., & Appice, A. (2015). Iterative hyperspectral image classification using spectral-spatial relational features. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3615–3627.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.7 , pp. 3615-3627
    • Guccione, P.1    Mascolo, L.2    Appice, A.3
  • 32
    • 84874438598 scopus 로고    scopus 로고
    • Using tri-training to exploit spectral and spatial information for hyperspectral data classification. In 2012 International Conference on Computer Vision in Remote Sensing
    • Huang, R., & He, W. (2012). Using tri-training to exploit spectral and spatial information for hyperspectral data classification. In 2012 International Conference on Computer Vision in Remote Sensing, CVRS 20012 (pp. 30–33).
    • (2012) CVRS , vol.20012 , pp. 30-33
    • Huang, R.1    He, W.2
  • 33
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 36
    • 84991913703 scopus 로고    scopus 로고
    • Transductive inference for text classification using Support Vector Machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999) (pp. 200–209)
    • Joachims, T. (1999). Transductive inference for text classification using Support Vector Machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999) (pp. 200–209). Morgan Kaufmann.
    • (1999) Morgan Kaufmann
    • Joachims, T.1
  • 37
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (pp. 290–297)
    • Joachims, T. (2003). Transductive learning via spectral graph partitioning. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (pp. 290–297). AAAI Press.
    • (2003) AAAI Press
    • Joachims, T.1
  • 42
    • 0027881344 scopus 로고
    • Spatial autocorrelation: Trouble or new paradigm?
    • Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74(6), 1659–1673.
    • (1993) Ecology , vol.74 , Issue.6 , pp. 1659-1673
    • Legendre, P.1
  • 43
    • 0009959012 scopus 로고    scopus 로고
    • Spatial dependence in data mining
    • Grossman R, Kamath C, Kegelmeyer P, Kumar V, Namburu R, (eds), Kluwer Academic, Dordrecht
    • LeSage, J. H., & Pace, K. (2001). Spatial dependence in data mining. In R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, & R. Namburu (Eds.), Data mining for scientific and engineering applications (pp. 439–460). Dordrecht: Kluwer Academic.
    • (2001) Data mining for scientific and engineering applications , pp. 439-460
    • LeSage, J.H.1    Pace, K.2
  • 44
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new bayesian approach with active learning
    • Li, J., Bioucas-Dias, J., & Plaza, A. (2011). Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3947–3960.
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 45
    • 80052087931 scopus 로고    scopus 로고
    • Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Li, J., Bioucas-Dias, J., & Plaza, A. (2012). Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 50(3), 809–823.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 46
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Li, J., Bioucas-Dias, J., & Plaza, A. (2013a). Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 844–856.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 48
    • 43249086679 scopus 로고    scopus 로고
    • A self-training semi-supervised SVM algorithm and its application in an eeg-based brain computer interface speller system
    • Li, Y., Guan, C., Li, H., & Chin, Z. (2008). A self-training semi-supervised SVM algorithm and its application in an eeg-based brain computer interface speller system. Pattern Recognition Letters, 29(9), 1285–1294.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1285-1294
    • Li, Y.1    Guan, C.2    Li, H.3    Chin, Z.4
  • 50
    • 58249083324 scopus 로고    scopus 로고
    • A relational approach to probabilistic classification in a transductive setting
    • Malerba, D., Ceci, M., & Appice, A. (2009). A relational approach to probabilistic classification in a transductive setting. Engineering Applications of Artificial Intelligence, 22(1), 109–116.
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.1 , pp. 109-116
    • Malerba, D.1    Ceci, M.2    Appice, A.3
  • 51
    • 84867118277 scopus 로고    scopus 로고
    • McDowell, L., & Aha, D. W. (2012). Semi-supervised collective classification via hybrid label regularization. In . Omnipress.
    • McDowell, L., & Aha, D. W. (2012). Semi-supervised collective classification via hybrid label regularization. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012. Omnipress.
    • (2012) Proceedings of the 29th International Conference on Machine Learning, ICML 2012
  • 52
    • 37349099076 scopus 로고    scopus 로고
    • Case-based collective classification. In D. Wilson & G. Sutcliffe (Eds.), Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference (pp. 399–404)
    • McDowell, L., Gupta, K. M., & Aha, D. W. (2007). Case-based collective classification. In D. Wilson & G. Sutcliffe (Eds.), Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference (pp. 399–404). AAAI Press.
    • (2007) AAAI Press
    • McDowell, L.1    Gupta, K.M.2    Aha, D.W.3
  • 54
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 55
    • 84903531897 scopus 로고    scopus 로고
    • A review of remote sensing image classification techniques: The role of spatio-contextual information
    • Miao, L., Shuying, Z., Zhang, B., Shanshan, L., & Changshan, W. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47, 389–411.
    • (2014) European Journal of Remote Sensing , vol.47 , pp. 389-411
    • Miao, L.1    Shuying, Z.2    Zhang, B.3    Shanshan, L.4    Changshan, W.5
  • 60
    • 84991838584 scopus 로고    scopus 로고
    • Neville, J., Simsek, O., & Jensen, D. (2004). Autocorrelation and relational learning: Challenges and opportunities. In (pp. 290–299). AAAI Press.
    • Neville, J., Simsek, O., & Jensen, D. (2004). Autocorrelation and relational learning: Challenges and opportunities. In Proceedings of Workshop on Statistical Relational Learning (pp. 290–299). AAAI Press.
    • (2004) Proceedings of Workshop on Statistical Relational Learning
  • 62
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Pesaresi, M., & Benediktsson, J. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 309–320.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.2
  • 63
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61–74)
    • Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61–74). MIT Press.
    • (1999) MIT Press
    • Platt, J.C.1
  • 65
  • 67
    • 84991865261 scopus 로고
    • ROSIS &
    • ROSIS & HySpex. (1995). http://messtec.dlr.de/en/technology/dlr-remote-sensing-technology-institute/hyperspectral-systems-airborne-rosis-hyspex/index.php
    • (1995) HySpex
  • 68
    • 84873579579 scopus 로고    scopus 로고
    • (2012). Multi-label collective classification using adaptive neighborhoods. In Proceedings of the 11th International Conference on Machine Learning and Applications
    • Saha, T., Rangwala, H., & Domeniconi, C. (2012). Multi-label collective classification using adaptive neighborhoods. In Proceedings of the 11th International Conference on Machine Learning and Applications, ICMLA 2012 (Vol. 1, pp. 427–432).
    • (2012) ICMLA , vol.1 , pp. 427-432
    • Saha, T.1    Rangwala, H.2    Domeniconi, C.3
  • 70
    • 0005977840 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data
    • Seeger, M. (2001). Learning with labeled and unlabeled data. Technical report.
    • (2001) Technical report
    • Seeger, M.1
  • 72
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • Shahshahani, B., & Landgrebe, D. (1994). The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087–1095.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 74
    • 33750373672 scopus 로고    scopus 로고
    • Large scale semi-supervised linear SVMs. In E. N. Efthimiadis, S. T. Dumais, D. Hawking, & K. Järvelin (Eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006 (pp. 477–484)
    • Sindhwani, V., & Keerthi, S. S. (2006). Large scale semi-supervised linear SVMs. In E. N. Efthimiadis, S. T. Dumais, D. Hawking, & K. Järvelin (Eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006 (pp. 477–484).: ACM.
    • (2006) ACM
    • Sindhwani, V.1    Keerthi, S.S.2
  • 75
    • 84991891796 scopus 로고    scopus 로고
    • Morphological image analysis: Principles and applications (2nd ed.)
    • Soille, P. (2003). Morphological image analysis: Principles and applications (2nd ed.). Springer Berlin Heidelberg.
    • (2003) Springer Berl
    • Soille, P.1
  • 76
    • 22644452635 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • Srinivasan, A., & King, R. D. (1999). Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery, 3(1), 37–57.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.1 , pp. 37-57
    • Srinivasan, A.1    King, R.D.2
  • 77
    • 84870551039 scopus 로고    scopus 로고
    • Dealing with spatial autocorrelation when learning predictive clustering trees
    • Stojanova, D., Ceci, M., Appice, A., Malerba, D., & Dzeroski, S. (2013). Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 13, 22–39.
    • (2013) Ecological Informatics , vol.13 , pp. 22-39
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Malerba, D.4    Dzeroski, S.5
  • 78
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun, S. (2013). A survey of multi-view machine learning. Neural Computing and Applications, 23(7–8), 2031–2038. doi:10.1007/s00521-013-1362-6.
    • (2013) Neural Computing and Applications , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 80
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Tarabalka, Y., Chanussot, J., & Benediktsson, J. (2010a). Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7), 2367–2379.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 82
    • 84880884400 scopus 로고    scopus 로고
    • Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in relational data. In , IJCAI 2001 (Vol. 2, pp. 870–876). Morgan Kaufmann Publishers Inc.
    • Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in relational data. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001 (Vol. 2, pp. 870–876). Morgan Kaufmann Publishers Inc.
    • (2001) Proceedings of the 17th International Joint Conference on Artificial Intelligence
  • 83
    • 84991906539 scopus 로고    scopus 로고
    • Taskar, B., Abbeel, P., & Koller, D. Discriminative probabilistic models for relational data. In (pp. 485–492). Morgan Kaufmann Publishers Inc.
    • Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI 2002 (pp. 485–492). Morgan Kaufmann Publishers Inc.
    • (2002) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI 2002
  • 87
    • 84907507036 scopus 로고    scopus 로고
    • Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
    • Wang, L., Hao, S., Wang, Q., & Wang, Y. (2014). Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 123–137.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.97 , pp. 123-137
    • Wang, L.1    Hao, S.2    Wang, Q.3    Wang, Y.4
  • 88
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Waske, B., & Benediktsson, J. (2007). Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3858–3866.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.2
  • 89
    • 33749241036 scopus 로고    scopus 로고
    • Comparing the mean field method and belief propagation for approximate inference in MRFs. In M. Opper & D. Saad (Eds.), Advanced Mean Field Methods (pp. 229–243). Cambridge
    • London: MIT Press
    • Weiss, Y. (2001). Comparing the mean field method and belief propagation for approximate inference in MRFs. In M. Opper & D. Saad (Eds.), Advanced Mean Field Methods (pp. 229–243). Cambridge, MA, London: MIT Press.
    • (2001) MA
    • Weiss, Y.1
  • 91
    • 84991897590 scopus 로고    scopus 로고
    • Approximate inference and protein folding. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (pp. 84–86)
    • Yanover, C., & Weiss, Y. (2002). Approximate inference and protein folding. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (pp. 84–86). MIT Press.
    • (2002) MIT Press
    • Yanover, C.1    Weiss, Y.2
  • 92
    • 32144454875 scopus 로고    scopus 로고
    • Propositionalization-based relational subgroup discovery with RSD
    • Zelezný, F., & Lavrac, N. (2006). Propositionalization-based relational subgroup discovery with RSD. Machine Learning, 62(1–2), 33–63.
    • (2006) Machine Learning , vol.62 , Issue.1-2 , pp. 33-63
    • Zelezný, F.1    Lavrac, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.