-
1
-
-
84979738231
-
A survey of hyperspectral image classification in remote sensing
-
Ablin, R., & Sulochana, C. (2013). A survey of hyperspectral image classification in remote sensing. International Journal of Advanced Research in Computer and Communication Engineering, 2(8), 2986–3000.
-
(2013)
International Journal of Advanced Research in Computer and Communication Engineering
, vol.2
, Issue.8
, pp. 2986-3000
-
-
Ablin, R.1
Sulochana, C.2
-
2
-
-
84885866109
-
There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding
-
Antanas, L., van Otterlo, M., Mogrovejo, J. O., Tuytelaars, T., & Raedt, L. D. (2014). There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding. Neurocomputing, 123, 75–85.
-
(2014)
Neurocomputing
, vol.123
, pp. 75-85
-
-
Antanas, L.1
van Otterlo, M.2
Mogrovejo, J.O.3
Tuytelaars, T.4
Raedt, L.D.5
-
3
-
-
84906779919
-
Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering
-
Appice, A., & Malerba, D. (2014). Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Mining and Knowledge Discovery, 28(5–6), 1266–1313.
-
(2014)
Data Mining and Knowledge Discovery
, vol.28
, Issue.5-6
, pp. 1266-1313
-
-
Appice, A.1
Malerba, D.2
-
4
-
-
84926203895
-
Dealing with temporal and spatial correlations to classify outliers in geophysical data streams
-
Appice, A., Guccione, P., Malerba, D., & Ciampi, A. (2014). Dealing with temporal and spatial correlations to classify outliers in geophysical data streams. Information Sciences, 285, 162–180.
-
(2014)
Information Sciences
, vol.285
, pp. 162-180
-
-
Appice, A.1
Guccione, P.2
Malerba, D.3
Ciampi, A.4
-
5
-
-
84991861555
-
-
AVIRIS. 2007. http://aviris.jpl.nasa.gov/
-
(2007)
-
-
-
6
-
-
0142009648
-
Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
-
Benediktsson, J., Pesaresi, M., & Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.
-
(2003)
IEEE Transactions on Geoscience and Remote Sensing
, vol.41
, Issue.9
, pp. 1940-1949
-
-
Benediktsson, J.1
Pesaresi, M.2
Amason, K.3
-
7
-
-
49549123786
-
-
Bilgic, M., Namata, G. M., & Getoor, L.. Combining collective classification and link prediction. In , ICDMW 2007 (pp. 381–386). IEEE Computer Society.
-
Bilgic, M., Namata, G. M., & Getoor, L. (2007). Combining collective classification and link prediction. In Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW 2007 (pp. 381–386). IEEE Computer Society.
-
(2007)
Proceedings of the Seventh IEEE International Conference on Data Mining Workshops
-
-
-
8
-
-
84991894200
-
-
Blum, A., & Chawla, S. Learning from labeled and unlabeled data using graph mincuts. In (pp. 19–26). Morgan Kaufmann Publishers Inc.
-
Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using graph mincuts. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001 (pp. 19–26). Morgan Kaufmann Publishers Inc.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001
-
-
-
9
-
-
34948836126
-
A novel context-sensitive SVM for classification of remote sensing images. In
-
Bovolo, F., Bruzzone, L., & Marconcini, M. (2006). A novel context-sensitive SVM for classification of remote sensing images. In IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006 (pp. 2498–2501).
-
(2006)
IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS
, vol.2006
, pp. 2498-2501
-
-
Bovolo, F.1
Bruzzone, L.2
Marconcini, M.3
-
10
-
-
33750819329
-
A novel transductive SVM for semisupervised classification of remote-sensing images
-
Bruzzone, L., Chi, M., & Marconcini, M. (2006). A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3363–3373.
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.11
, pp. 3363-3373
-
-
Bruzzone, L.1
Chi, M.2
Marconcini, M.3
-
11
-
-
39049145967
-
Semi-supervised graph-based hyperspectral image classification
-
Camps-Valls, G., Bandos Marsheva, T., & Zhou, D. (2007). Semi-supervised graph-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3044–3054.
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.10
, pp. 3044-3054
-
-
Camps-Valls, G.1
Bandos Marsheva, T.2
Zhou, D.3
-
12
-
-
70349338920
-
-
Berlin: Springer
-
Ceamanos, X., Waske, B., Benediktsson, J., Chanussot, J., & Sveinsson, J. (2009). Ensemble strategies for classifying hyperspectral remote sensing data. In J. Benediktsson, J. Kittler, & F. Roli (Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science (Vol. 5519, pp. 62–71). Berlin: Springer.
-
(2009)
Ensemble strategies for classifying hyperspectral remote sensing data. In J. Benediktsson, J. Kittler, & F. Roli (Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science (Vol. 5519, pp. 62–71)
-
-
Ceamanos, X.1
Waske, B.2
Benediktsson, J.3
Chanussot, J.4
Sveinsson, J.5
-
13
-
-
34248555405
-
Spatial associative classification: Propositional vs structural approach
-
Ceci, M., & Appice, A. (2006). Spatial associative classification: Propositional vs structural approach. Journal of Intelligent Information Systems, 27(3), 191–213.
-
(2006)
Journal of Intelligent Information Systems
, vol.27
, Issue.3
, pp. 191-213
-
-
Ceci, M.1
Appice, A.2
-
14
-
-
34248582883
-
Relational data mining and ILP for document image understanding
-
Ceci, M., Berardi, M., & Malerba, D. (2007). Relational data mining and ILP for document image understanding. Applied Artificial Intelligence, 21(4&5), 317–342.
-
(2007)
Applied Artificial Intelligence
, vol.21
, Issue.4-5
, pp. 317-342
-
-
Ceci, M.1
Berardi, M.2
Malerba, D.3
-
15
-
-
84864933780
-
Lecture Notes in Computer Science (Vol. 7376, pp. 11–25)
-
Ceci, M., Appice, A., Viktor, H. L., Malerba, D., Paquet, E., & Guo, H. (2012). Transductive relational classification in the co-training paradigm. In P. Perner (Ed.), Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition, MLDM 2012, Lecture Notes in Computer Science (Vol. 7376, pp. 11–25). Springer.
-
(2012)
Proceedings of the 8th International Conference Machine Learning and Data Mining in Pattern Recognition
-
-
-
16
-
-
43949125818
-
Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
-
Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112(6), 2999–3011.
-
(2008)
Remote Sensing of Environment
, vol.112
, Issue.6
, pp. 2999-3011
-
-
Chan, J.C.W.1
Paelinckx, D.2
-
18
-
-
79959728911
-
-
Chechetka, A., Dash, D., & Philipose, M. (2010). Relational learning for collective classification of entities in images. In , Papers from the 2010 AAAI Workshop, AAAI, AAAI Workshops (Vol. WS-10-06).
-
Chechetka, A., Dash, D., & Philipose, M. (2010). Relational learning for collective classification of entities in images. In Statistical Relational Artificial Intelligence, Papers from the 2010 AAAI Workshop, AAAI, AAAI Workshops (Vol. WS-10-06).
-
(2010)
Statistical Relational Artificial Intelligence
-
-
-
19
-
-
84912029121
-
Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
-
Chen, C., Li, W., Su, H., & Liu, K. (2014). Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sensing, 6(6), 5795–5814.
-
(2014)
Remote Sensing
, vol.6
, Issue.6
, pp. 5795-5814
-
-
Chen, C.1
Li, W.2
Su, H.3
Liu, K.4
-
20
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
21
-
-
84880864091
-
Learning classifiers when the training data is not IID. In M. M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence
-
Dundar, M., Krishnapuram, B., Bi, J., & Rao, R. B. (2007). Learning classifiers when the training data is not IID. In M. M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007 (pp. 756–761).
-
(2007)
IJCAI 2007 (pp 756–761)
-
-
Dundar, M.1
Krishnapuram, B.2
Bi, J.3
Rao, R.B.4
-
22
-
-
84894647292
-
-
Fang, M., Yin, J., & Zhu, X.. Transfer learning across networks for collective classification. In (pp. 161–170). IEEE Computer Society.
-
Fang, M., Yin, J., & Zhu, X. (2013). Transfer learning across networks for collective classification. In Proceedings of the 13th International Conference on on Data Mining, ICDM 2013 (pp. 161–170). IEEE Computer Society.
-
(2013)
Proceedings of the 13th International Conference on on Data Mining, ICDM 2013
-
-
-
23
-
-
80052740627
-
A spatial-spectral kernel-based approach for the classification of remote-sensing images
-
Fauvel, M., Chanussot, J., & Benediktsson, J. (2012). A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognition, 45(1), 381–392.
-
(2012)
Pattern Recognition
, vol.45
, Issue.1
, pp. 381-392
-
-
Fauvel, M.1
Chanussot, J.2
Benediktsson, J.3
-
24
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., & Tilton, J. (2013). Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3), 652–675.
-
(2013)
Proceedings of the IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
Tarabalka, Y.2
Benediktsson, J.3
Chanussot, J.4
Tilton, J.5
-
25
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–6(6), 721–741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI–6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
27
-
-
34547980383
-
-
The MIT Press, Cambridge, MA, London
-
Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning (adaptive computation and machine learning). Cambridge, MA, London: The MIT Press.
-
(2007)
Introduction to statistical relational learning (adaptive computation and machine learning)
-
-
Getoor, L.1
Taskar, B.2
-
28
-
-
0021892045
-
Imaging spectrometry for earth remote sensing
-
Goetz, A., Vane, G., Solomon, J., & Rock, B. (1985). Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153.
-
(1985)
Science
, vol.228
, Issue.4704
, pp. 1147-1153
-
-
Goetz, A.1
Vane, G.2
Solomon, J.3
Rock, B.4
-
29
-
-
0032157956
-
Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
-
Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., et al. (1998). Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65(3), 227–248.
-
(1998)
Remote Sensing of Environment
, vol.65
, Issue.3
, pp. 227-248
-
-
Green, R.O.1
Eastwood, M.L.2
Sarture, C.M.3
Chrien, T.G.4
Aronsson, M.5
Chippendale, B.J.6
Faust, J.A.7
Pavri, B.E.8
Chovit, C.J.9
Solis, M.10
Olah, M.R.11
Williams, O.12
-
30
-
-
85027958014
-
Iterative hyperspectral image classification using spectral-spatial relational features
-
Guccione, P., Mascolo, L., & Appice, A. (2015). Iterative hyperspectral image classification using spectral-spatial relational features. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3615–3627.
-
(2015)
IEEE Transactions on Geoscience and Remote Sensing
, vol.53
, Issue.7
, pp. 3615-3627
-
-
Guccione, P.1
Mascolo, L.2
Appice, A.3
-
31
-
-
0037138473
-
An assessment of support vector machines for land cover classification
-
Huang, C., Davis, L., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749.
-
(2002)
International Journal of Remote Sensing
, vol.23
, pp. 725-749
-
-
Huang, C.1
Davis, L.2
Townshend, J.R.G.3
-
32
-
-
84874438598
-
Using tri-training to exploit spectral and spatial information for hyperspectral data classification. In 2012 International Conference on Computer Vision in Remote Sensing
-
Huang, R., & He, W. (2012). Using tri-training to exploit spectral and spatial information for hyperspectral data classification. In 2012 International Conference on Computer Vision in Remote Sensing, CVRS 20012 (pp. 30–33).
-
(2012)
CVRS
, vol.20012
, pp. 30-33
-
-
Huang, R.1
He, W.2
-
33
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.1
-
35
-
-
12244297396
-
-
Jensen, D., Neville, J., & Gallagher, B. (2004) Why collective inference improves relational classification. In (pp. 593–598). ACM.
-
Jensen, D., Neville, J., & Gallagher, B. (2004) Why collective inference improves relational classification. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 2004 (pp. 593–598). ACM.
-
(2004)
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 2004
-
-
-
36
-
-
84991913703
-
Transductive inference for text classification using Support Vector Machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999) (pp. 200–209)
-
Joachims, T. (1999). Transductive inference for text classification using Support Vector Machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th International Conference on Machine Learning, (ICML 1999) (pp. 200–209). Morgan Kaufmann.
-
(1999)
Morgan Kaufmann
-
-
Joachims, T.1
-
37
-
-
1942484960
-
Transductive learning via spectral graph partitioning. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (pp. 290–297)
-
Joachims, T. (2003). Transductive learning via spectral graph partitioning. In T. Fawcett & N. Mishra (Eds.), Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (pp. 290–297). AAAI Press.
-
(2003)
AAAI Press
-
-
Joachims, T.1
-
38
-
-
84911441097
-
A new framework for hyperspectral image classification using multiple spectral and spatial features
-
Khodadadzadeh, M., Li, J., Plaza, A., Gamba, P., Atli Benediktsson, J., & Bioucas-Dias, J. (2014a). A new framework for hyperspectral image classification using multiple spectral and spatial features. In 2014 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4628–4631).
-
(2014)
In 2014 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 4628-4631
-
-
Khodadadzadeh, M.1
Li, J.2
Plaza, A.3
Gamba, P.4
Atli Benediktsson, J.5
Bioucas-Dias, J.6
-
39
-
-
84901857500
-
Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
-
Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J. M., & Li, X. (2014b). Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Transactions of Geoscience and Remote Sensing, 52(10), 6298–6314.
-
(2014)
IEEE Transactions of Geoscience and Remote Sensing
, vol.52
, Issue.10
, pp. 6298-6314
-
-
Khodadadzadeh, M.1
Li, J.2
Plaza, A.3
Ghassemian, H.4
Bioucas-Dias, J.M.5
Li, X.6
-
40
-
-
84873289445
-
Transductive multilabel learning via label set propagation
-
Kong, X., Ng, M., & Zhou, Z. H. (2013). Transductive multilabel learning via label set propagation. IEEE Transactions on Knowledge and Data Engineering, 25(3), 704–719.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.3
, pp. 704-719
-
-
Kong, X.1
Ng, M.2
Zhou, Z.H.3
-
41
-
-
9444220847
-
-
Berlin: Springer
-
Krogel, M. A., Rawles, S., Zelezny, F., Flach, P. A., Lavrac, N., & Wrobel, S. (2003). Comparative evaluation of approaches to propositionalization. In T. Horvarth & A. Yamamoto (Eds.), Inductive Logic Programming, Lecture Notes in Computer Science (Vol. 2835, pp. 197–214). Berlin: Springer.
-
(2003)
Comparative evaluation of approaches to propositionalization. In T. Horvarth & A. Yamamoto (Eds.), Inductive Logic Programming, Lecture Notes in Computer Science (Vol. 2835, pp. 197–214)
-
-
Krogel, M.A.1
Rawles, S.2
Zelezny, F.3
Flach, P.A.4
Lavrac, N.5
Wrobel, S.6
-
42
-
-
0027881344
-
Spatial autocorrelation: Trouble or new paradigm?
-
Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74(6), 1659–1673.
-
(1993)
Ecology
, vol.74
, Issue.6
, pp. 1659-1673
-
-
Legendre, P.1
-
43
-
-
0009959012
-
Spatial dependence in data mining
-
Grossman R, Kamath C, Kegelmeyer P, Kumar V, Namburu R, (eds), Kluwer Academic, Dordrecht
-
LeSage, J. H., & Pace, K. (2001). Spatial dependence in data mining. In R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, & R. Namburu (Eds.), Data mining for scientific and engineering applications (pp. 439–460). Dordrecht: Kluwer Academic.
-
(2001)
Data mining for scientific and engineering applications
, pp. 439-460
-
-
LeSage, J.H.1
Pace, K.2
-
44
-
-
80053562930
-
Hyperspectral image segmentation using a new bayesian approach with active learning
-
Li, J., Bioucas-Dias, J., & Plaza, A. (2011). Hyperspectral image segmentation using a new bayesian approach with active learning. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3947–3960.
-
(2011)
IEEE Transactions on Geoscience and Remote Sensing
, vol.49
, Issue.10
, pp. 3947-3960
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
45
-
-
80052087931
-
Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
-
Li, J., Bioucas-Dias, J., & Plaza, A. (2012). Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 50(3), 809–823.
-
(2012)
IEEE Transactions on Geoscience and Remote Sensing
, vol.50
, Issue.3
, pp. 809-823
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
46
-
-
84872922940
-
Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
-
Li, J., Bioucas-Dias, J., & Plaza, A. (2013a). Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 844–856.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, Issue.2
, pp. 844-856
-
-
Li, J.1
Bioucas-Dias, J.2
Plaza, A.3
-
47
-
-
84883824357
-
Generalized composite kernel framework for hyperspectral image classification
-
Li, J., Reddy Marpu, P., Plaza, A., Bioucas-Dias, J., & Atli Benediktsson, J. (2013b). Generalized composite kernel framework for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(9), 4816–4829.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, Issue.9
, pp. 4816-4829
-
-
Li, J.1
Reddy Marpu, P.2
Plaza, A.3
Bioucas-Dias, J.4
Atli Benediktsson, J.5
-
48
-
-
43249086679
-
A self-training semi-supervised SVM algorithm and its application in an eeg-based brain computer interface speller system
-
Li, Y., Guan, C., Li, H., & Chin, Z. (2008). A self-training semi-supervised SVM algorithm and its application in an eeg-based brain computer interface speller system. Pattern Recognition Letters, 29(9), 1285–1294.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.9
, pp. 1285-1294
-
-
Li, Y.1
Guan, C.2
Li, H.3
Chin, Z.4
-
50
-
-
58249083324
-
A relational approach to probabilistic classification in a transductive setting
-
Malerba, D., Ceci, M., & Appice, A. (2009). A relational approach to probabilistic classification in a transductive setting. Engineering Applications of Artificial Intelligence, 22(1), 109–116.
-
(2009)
Engineering Applications of Artificial Intelligence
, vol.22
, Issue.1
, pp. 109-116
-
-
Malerba, D.1
Ceci, M.2
Appice, A.3
-
51
-
-
84867118277
-
-
McDowell, L., & Aha, D. W. (2012). Semi-supervised collective classification via hybrid label regularization. In . Omnipress.
-
McDowell, L., & Aha, D. W. (2012). Semi-supervised collective classification via hybrid label regularization. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012. Omnipress.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning, ICML 2012
-
-
-
52
-
-
37349099076
-
Case-based collective classification. In D. Wilson & G. Sutcliffe (Eds.), Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference (pp. 399–404)
-
McDowell, L., Gupta, K. M., & Aha, D. W. (2007). Case-based collective classification. In D. Wilson & G. Sutcliffe (Eds.), Proceedings of the 20th International Florida Artificial Intelligence Research Society Conference (pp. 399–404). AAAI Press.
-
(2007)
AAAI Press
-
-
McDowell, L.1
Gupta, K.M.2
Aha, D.W.3
-
53
-
-
75249087898
-
Cautious collective classification
-
McDowell, L., Gupta, K. M., & Aha, D. W. (2009). Cautious collective classification. Journal of Machine Learning Research, 10, 2777–2836.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2777-2836
-
-
McDowell, L.1
Gupta, K.M.2
Aha, D.W.3
-
54
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
-
(2004)
IEEE Transactions on Geoscience and Remote Sensing
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
55
-
-
84903531897
-
A review of remote sensing image classification techniques: The role of spatio-contextual information
-
Miao, L., Shuying, Z., Zhang, B., Shanshan, L., & Changshan, W. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47, 389–411.
-
(2014)
European Journal of Remote Sensing
, vol.47
, pp. 389-411
-
-
Miao, L.1
Shuying, Z.2
Zhang, B.3
Shanshan, L.4
Changshan, W.5
-
56
-
-
0345500652
-
Using inductive logic programming to learn rules that identify glaucomatous eyes
-
Lavrac N, Keravnou E, Zupan B, (eds), 414, Springer, US
-
Mizoguchi, F., Ohwada, H., Daidoji, M., & Shirato, S. (1997). Using inductive logic programming to learn rules that identify glaucomatous eyes. In N. Lavrac, E. Keravnou, & B. Zupan (Eds.), Intelligent data analysis in medicine and pharmacology, the Springer international series in engineering and computer science (Vol. 414, pp. 227–242). US: Springer.
-
(1997)
Intelligent data analysis in medicine and pharmacology, the Springer international series in engineering and computer science
, pp. 227-242
-
-
Mizoguchi, F.1
Ohwada, H.2
Daidoji, M.3
Shirato, S.4
-
57
-
-
77954757586
-
Semisupervised one-class support vector machines for classification of remote sensing data
-
Munoz-Mari, J., Bovolo, F., Gomez-Chova, L., Bruzzone, L., & Camp-Valls, G. (2010). Semisupervised one-class support vector machines for classification of remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3188–3197.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, Issue.8
, pp. 3188-3197
-
-
Munoz-Mari, J.1
Bovolo, F.2
Gomez-Chova, L.3
Bruzzone, L.4
Camp-Valls, G.5
-
60
-
-
84991838584
-
-
Neville, J., Simsek, O., & Jensen, D. (2004). Autocorrelation and relational learning: Challenges and opportunities. In (pp. 290–299). AAAI Press.
-
Neville, J., Simsek, O., & Jensen, D. (2004). Autocorrelation and relational learning: Challenges and opportunities. In Proceedings of Workshop on Statistical Relational Learning (pp. 290–299). AAAI Press.
-
(2004)
Proceedings of Workshop on Statistical Relational Learning
-
-
-
62
-
-
0035248508
-
A new approach for the morphological segmentation of high-resolution satellite imagery
-
Pesaresi, M., & Benediktsson, J. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 309–320.
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.2
, pp. 309-320
-
-
Pesaresi, M.1
Benediktsson, J.2
-
63
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61–74)
-
Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 61–74). MIT Press.
-
(1999)
MIT Press
-
-
Platt, J.C.1
-
64
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(Supplement 1), S110–S122.
-
(2009)
Remote Sensing of Environment
, vol.113
, pp. S110-S122
-
-
Plaza, A.1
Benediktsson, J.A.2
Boardman, J.W.3
Brazile, J.4
Bruzzone, L.5
Camps-Valls, G.6
Chanussot, J.7
Fauvel, M.8
Gamba, P.9
Gualtieri, A.10
Marconcini, M.11
Tilton, J.C.12
Trianni, G.13
-
65
-
-
77951295198
-
Semisupervised neural networks for efficient hyperspectral image classification
-
Ratle, F., Camps-Valls, G., & Weston, J. (2010). Semisupervised neural networks for efficient hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2271–2282.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, Issue.5
, pp. 2271-2282
-
-
Ratle, F.1
Camps-Valls, G.2
Weston, J.3
-
67
-
-
84991865261
-
-
ROSIS &
-
ROSIS & HySpex. (1995). http://messtec.dlr.de/en/technology/dlr-remote-sensing-technology-institute/hyperspectral-systems-airborne-rosis-hyspex/index.php
-
(1995)
HySpex
-
-
-
68
-
-
84873579579
-
(2012). Multi-label collective classification using adaptive neighborhoods. In Proceedings of the 11th International Conference on Machine Learning and Applications
-
Saha, T., Rangwala, H., & Domeniconi, C. (2012). Multi-label collective classification using adaptive neighborhoods. In Proceedings of the 11th International Conference on Machine Learning and Applications, ICMLA 2012 (Vol. 1, pp. 427–432).
-
(2012)
ICMLA
, vol.1
, pp. 427-432
-
-
Saha, T.1
Rangwala, H.2
Domeniconi, C.3
-
69
-
-
84957082419
-
Learning to classify x-ray images using relational learning
-
Berlin, Springer
-
Sammut, C., & Zrimec, T. (1998). Learning to classify x-ray images using relational learning. In C. Nedellec & C. Rouveirol (Eds.), Proceedings of the European Conference of Machine Learning, ECML 1998, Lecture Notes in Computer Science (Vol. 1398, pp. 55–60). Berlin: Springer.
-
(1998)
Proceedings of the European Conference of Machine Learning, ECML 1998, Lecture Notes in Computer Science (Vol. 1398
, pp. 55-60
-
-
Sammut, C.1
Zrimec, T.2
Nedellec, C.3
Rouveirol, C.4
-
70
-
-
0005977840
-
Learning with labeled and unlabeled data
-
Seeger, M. (2001). Learning with labeled and unlabeled data. Technical report.
-
(2001)
Technical report
-
-
Seeger, M.1
-
71
-
-
53749083869
-
Collective classification in network data
-
Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–106.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
72
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
-
Shahshahani, B., & Landgrebe, D. (1994). The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087–1095.
-
(1994)
IEEE Transactions on Geoscience and Remote Sensing
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
73
-
-
83055186952
-
-
Shi, X., Li, Y., & Yu, P. (2011). Collective prediction with latent graphs. In (pp. 1127–1136). ACM.
-
Shi, X., Li, Y., & Yu, P. (2011). Collective prediction with latent graphs. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011 (pp. 1127–1136). ACM.
-
(2011)
Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011
-
-
-
74
-
-
33750373672
-
Large scale semi-supervised linear SVMs. In E. N. Efthimiadis, S. T. Dumais, D. Hawking, & K. Järvelin (Eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006 (pp. 477–484)
-
Sindhwani, V., & Keerthi, S. S. (2006). Large scale semi-supervised linear SVMs. In E. N. Efthimiadis, S. T. Dumais, D. Hawking, & K. Järvelin (Eds.), Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval, SIGIR 2006 (pp. 477–484).: ACM.
-
(2006)
ACM
-
-
Sindhwani, V.1
Keerthi, S.S.2
-
75
-
-
84991891796
-
Morphological image analysis: Principles and applications (2nd ed.)
-
Soille, P. (2003). Morphological image analysis: Principles and applications (2nd ed.). Springer Berlin Heidelberg.
-
(2003)
Springer Berl
-
-
Soille, P.1
-
76
-
-
22644452635
-
Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
-
Srinivasan, A., & King, R. D. (1999). Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery, 3(1), 37–57.
-
(1999)
Data Mining and Knowledge Discovery
, vol.3
, Issue.1
, pp. 37-57
-
-
Srinivasan, A.1
King, R.D.2
-
77
-
-
84870551039
-
Dealing with spatial autocorrelation when learning predictive clustering trees
-
Stojanova, D., Ceci, M., Appice, A., Malerba, D., & Dzeroski, S. (2013). Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 13, 22–39.
-
(2013)
Ecological Informatics
, vol.13
, pp. 22-39
-
-
Stojanova, D.1
Ceci, M.2
Appice, A.3
Malerba, D.4
Dzeroski, S.5
-
78
-
-
84887452388
-
A survey of multi-view machine learning
-
Sun, S. (2013). A survey of multi-view machine learning. Neural Computing and Applications, 23(7–8), 2031–2038. doi:10.1007/s00521-013-1362-6.
-
(2013)
Neural Computing and Applications
, vol.23
, Issue.7-8
, pp. 2031-2038
-
-
Sun, S.1
-
79
-
-
84891739734
-
Hyperspectral image classification using band selection and morphological profiles
-
Tan, K., Li, E., Du, Q., & Du, P. (2014). Hyperspectral image classification using band selection and morphological profiles. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 40–48.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.1
, pp. 40-48
-
-
Tan, K.1
Li, E.2
Du, Q.3
Du, P.4
-
80
-
-
77953764526
-
Segmentation and classification of hyperspectral images using watershed transformation
-
Tarabalka, Y., Chanussot, J., & Benediktsson, J. (2010a). Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7), 2367–2379.
-
(2010)
Pattern Recognition
, vol.43
, Issue.7
, pp. 2367-2379
-
-
Tarabalka, Y.1
Chanussot, J.2
Benediktsson, J.3
-
81
-
-
77958017904
-
SVM- and MRF-based method for accurate classification of hyperspectral images
-
Tarabalka, Y., Fauvel, M., Chanussot, J., & Benediktsson, J. (2010b). SVM- and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 7(4), 736–740.
-
(2010)
IEEE Geoscience and Remote Sensing Letters
, vol.7
, Issue.4
, pp. 736-740
-
-
Tarabalka, Y.1
Fauvel, M.2
Chanussot, J.3
Benediktsson, J.4
-
82
-
-
84880884400
-
-
Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in relational data. In , IJCAI 2001 (Vol. 2, pp. 870–876). Morgan Kaufmann Publishers Inc.
-
Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in relational data. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001 (Vol. 2, pp. 870–876). Morgan Kaufmann Publishers Inc.
-
(2001)
Proceedings of the 17th International Joint Conference on Artificial Intelligence
-
-
-
83
-
-
84991906539
-
-
Taskar, B., Abbeel, P., & Koller, D. Discriminative probabilistic models for relational data. In (pp. 485–492). Morgan Kaufmann Publishers Inc.
-
Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI 2002 (pp. 485–492). Morgan Kaufmann Publishers Inc.
-
(2002)
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI 2002
-
-
-
86
-
-
82155191285
-
Hyperspectral image classification with independent component discriminant analysis
-
Villa, A., Benediktsson, J., Chanussot, J., & Jutten, C. (2011). Hyperspectral image classification with independent component discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4865–4876.
-
(2011)
IEEE Transactions on Geoscience and Remote Sensing
, vol.49
, Issue.12
, pp. 4865-4876
-
-
Villa, A.1
Benediktsson, J.2
Chanussot, J.3
Jutten, C.4
-
87
-
-
84907507036
-
Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
-
Wang, L., Hao, S., Wang, Q., & Wang, Y. (2014). Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 123–137.
-
(2014)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.97
, pp. 123-137
-
-
Wang, L.1
Hao, S.2
Wang, Q.3
Wang, Y.4
-
88
-
-
36349007145
-
Fusion of support vector machines for classification of multisensor data
-
Waske, B., & Benediktsson, J. (2007). Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3858–3866.
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.12
, pp. 3858-3866
-
-
Waske, B.1
Benediktsson, J.2
-
89
-
-
33749241036
-
Comparing the mean field method and belief propagation for approximate inference in MRFs. In M. Opper & D. Saad (Eds.), Advanced Mean Field Methods (pp. 229–243). Cambridge
-
London: MIT Press
-
Weiss, Y. (2001). Comparing the mean field method and belief propagation for approximate inference in MRFs. In M. Opper & D. Saad (Eds.), Advanced Mean Field Methods (pp. 229–243). Cambridge, MA, London: MIT Press.
-
(2001)
MA
-
-
Weiss, Y.1
-
91
-
-
84991897590
-
Approximate inference and protein folding. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (pp. 84–86)
-
Yanover, C., & Weiss, Y. (2002). Approximate inference and protein folding. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (pp. 84–86). MIT Press.
-
(2002)
MIT Press
-
-
Yanover, C.1
Weiss, Y.2
-
92
-
-
32144454875
-
Propositionalization-based relational subgroup discovery with RSD
-
Zelezný, F., & Lavrac, N. (2006). Propositionalization-based relational subgroup discovery with RSD. Machine Learning, 62(1–2), 33–63.
-
(2006)
Machine Learning
, vol.62
, Issue.1-2
, pp. 33-63
-
-
Zelezný, F.1
Lavrac, N.2
|