메뉴 건너뛰기




Volumn 97, Issue , 2014, Pages 36-45

An efficient semi-supervised classification approach for hyperspectral imagery

Author keywords

Classification; Hyperspectral; Segmentation; Semi supervised learning; Spectral spatial feature; SVM

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE SEGMENTATION; INDEPENDENT COMPONENT ANALYSIS; SPECTROSCOPY; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 84907184537     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2014.08.003     Document Type: Article
Times cited : (66)

References (41)
  • 1
    • 84872950801 scopus 로고    scopus 로고
    • A graph-based classification method for hyperspectral images
    • Bai J., Xiang S.M., Pan C.H. A graph-based classification method for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51(2):803-817.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 803-817
    • Bai, J.1    Xiang, S.M.2    Pan, C.H.3
  • 4
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Bruzzone L., Chi M.M., Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44(11):3363-3373.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.M.2    Marconcini, M.3
  • 8
    • 41549144249 scopus 로고    scopus 로고
    • Optimization techniques for semi-supervised support vector machines
    • Chapelle O., Sindhwani V., Keerthi S.S. Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 2008, 9:203-233.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 203-233
    • Chapelle, O.1    Sindhwani, V.2    Keerthi, S.S.3
  • 9
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: a robust approach toward feature space analysis
    • Comaniciu D., Meer P. Mean shift: a robust approach toward feature space analysis. Pattern Anal. Mach. Intell., IEEE Trans. 2002, 24(5):603-619.
    • (2002) Pattern Anal. Mach. Intell., IEEE Trans. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 10
    • 80051607075 scopus 로고    scopus 로고
    • On multi-view learning with additive models
    • Culp M., Michailidis G., Johnson K. On multi-view learning with additive models. Ann. Appl. Stat. 2009, 3(1):292-318.
    • (2009) Ann. Appl. Stat. , vol.3 , Issue.1 , pp. 292-318
    • Culp, M.1    Michailidis, G.2    Johnson, K.3
  • 12
    • 84885022681 scopus 로고    scopus 로고
    • Target detection based on a dynamic subspace
    • Du B., Zhang L.P. Target detection based on a dynamic subspace. Pattern Recognit. 2014, 47(1):344-358.
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 344-358
    • Du, B.1    Zhang, L.P.2
  • 13
    • 78049274785 scopus 로고    scopus 로고
    • Wavelet SVM in reproducing kernel hilbert space for hyperspectral remote sensing image classification
    • Du P.J., Tan K., Xing X.S. Wavelet SVM in reproducing kernel hilbert space for hyperspectral remote sensing image classification. Opt. Commun. 2010, 283(24):4978-4984.
    • (2010) Opt. Commun. , vol.283 , Issue.24 , pp. 4978-4984
    • Du, P.J.1    Tan, K.2    Xing, X.S.3
  • 14
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • Du P.J., Xia J.S., Zhang W., Tan K., Liu Y., Liu S.C. Multiple classifier system for remote sensing image classification: a review. Sensors 2012, 12(4):4764-4792.
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.J.1    Xia, J.S.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.C.6
  • 15
    • 60749110419 scopus 로고    scopus 로고
    • End-member extraction for hyperspectral image analysis
    • Du Q., Raksuntorn N., Younan N.H., King R.L. End-member extraction for hyperspectral image analysis. Appl. Opt. 2008, 47(28):F77-F84.
    • (2008) Appl. Opt. , vol.47 , Issue.28 , pp. F77-F84
    • Du, Q.1    Raksuntorn, N.2    Younan, N.H.3    King, R.L.4
  • 16
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Du Q., Yang H. Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5(4):564-568.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 17
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel M., Benediktsson J.A., Chanussot J., Sveinsson J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46(11):3804-3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 18
    • 0345414073 scopus 로고    scopus 로고
    • Mean shift based clustering in high dimensions: a texture classification example, Computer Vision
    • In: Proceedings, Ninth IEEE International Conference on. IEEE
    • Georgescu, B., Shimshoni, I., Meer, P., 2003. Mean shift based clustering in high dimensions: a texture classification example, Computer Vision, 2003. In: Proceedings, Ninth IEEE International Conference on. IEEE, pp. 456-463.
    • (2003) , pp. 456-463
    • Georgescu, B.1    Shimshoni, I.2    Meer, P.3
  • 19
    • 84880301480 scopus 로고    scopus 로고
    • Optimized Laplacian SVM with distance metric learning for hyperspectral image classification
    • Gu Y.F., Feng K. Optimized Laplacian SVM with distance metric learning for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 2013, 6(3):1109-1117.
    • (2013) IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. , vol.6 , Issue.3 , pp. 1109-1117
    • Gu, Y.F.1    Feng, K.2
  • 20
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14(1):55-63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 22
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Jia X.P., Kuo B.C., Crawford M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101(3):676-697.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.P.1    Kuo, B.C.2    Crawford, M.M.3
  • 24
    • 84869489944 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression
    • Li J., Bioucas-Dias J.M., Plaza A. Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 2013, 10(2):318-322.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.2 , pp. 318-322
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 26
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Manolakis D., Siracusa C., Shaw G. Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 2001, 39(7):1392-1409.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 27
    • 65049090023 scopus 로고    scopus 로고
    • A composite semisupervised SVM for classification of hyperspectral images
    • Marconcini M., Camps-Valls G., Bruzzone L. A composite semisupervised SVM for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6(2):234-238.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 234-238
    • Marconcini, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 28
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42(8):1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 32
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • Ratle F., Camps-Valls G., Weston J. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48(5):2271-2282.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 33
    • 84883748507 scopus 로고    scopus 로고
    • Semi-supervised discriminative locally enhanced alignment for hyperspectral image classification
    • Shi Q., Zhang L., Du B. Semi-supervised discriminative locally enhanced alignment for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51(9):4800-4815.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.9 , pp. 4800-4815
    • Shi, Q.1    Zhang, L.2    Du, B.3
  • 34
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • Sun S.L., Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions. J. Mach. Learn. Res. 2010, 11:2423-2455.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2423-2455
    • Sun, S.L.1    Shawe-Taylor, J.2
  • 35
    • 43849083251 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on support vector machine
    • Tan K., Du P.J. Hyperspectral remote sensing image classification based on support vector machine. J. Infrared Millimeter Waves 2008, 27(2):123-128.
    • (2008) J. Infrared Millimeter Waves , vol.27 , Issue.2 , pp. 123-128
    • Tan, K.1    Du, P.J.2
  • 36
    • 79952787703 scopus 로고    scopus 로고
    • Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification
    • Tan K., Du P.J. Combined multi-kernel support vector machine and wavelet analysis for hyperspectral remote sensing image classification. Chin. Opt. Lett. 2011, 9(1):11003-11006.
    • (2011) Chin. Opt. Lett. , vol.9 , Issue.1 , pp. 11003-11006
    • Tan, K.1    Du, P.J.2
  • 39
    • 84873134900 scopus 로고    scopus 로고
    • Unsupervised methods for the classification of hyperspectral images with low spatial resolution
    • Villa A., Chanussot J., Benediktsson J.A., Jutten C., Dambreville R. Unsupervised methods for the classification of hyperspectral images with low spatial resolution. Pattern Recognit. 2013, 46(6):1556-1568.
    • (2013) Pattern Recognit. , vol.46 , Issue.6 , pp. 1556-1568
    • Villa, A.1    Chanussot, J.2    Benediktsson, J.A.3    Jutten, C.4    Dambreville, R.5
  • 40
    • 77957977279 scopus 로고    scopus 로고
    • Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery
    • Yang H., Du Q.A., Ma B. Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2010, 7(4):875-879.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 875-879
    • Yang, H.1    Du, Q.A.2    Ma, B.3
  • 41
    • 84876468871 scopus 로고    scopus 로고
    • An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
    • Zhong Y.F., Zhang L.P. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50(3):894-909.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 894-909
    • Zhong, Y.F.1    Zhang, L.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.