-
1
-
-
84989236765
-
-
Accessed August 19
-
World Health Organization. Genes and human disease. http://www.who.int/genomics/public/geneticdiseases/en/index2.html. Accessed August 19, 2016.
-
(2016)
Genes and Human Disease
-
-
-
2
-
-
84962744763
-
The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome)
-
Kaplan JC, Hamroun D. The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2015;25 (12):991-1020.
-
(2015)
Neuromuscul Disord.
, vol.25
, Issue.12
, pp. 991-1020
-
-
Kaplan, J.C.1
Hamroun, D.2
-
3
-
-
0345504146
-
Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome
-
Pósfai G, Kolisnychenko V, Bereczki Z, Blattner FR. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 1999;27(22): 4409-4415.
-
(1999)
Nucleic Acids Res.
, vol.27
, Issue.22
, pp. 4409-4415
-
-
Pósfai, G.1
Kolisnychenko, V.2
Bereczki, Z.3
Blattner, F.R.4
-
4
-
-
0030032063
-
Hybrid restriction enzymes: Zinc finger fusions to Fok i cleavage domain
-
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93 (3):1156-1160.
-
(1996)
Proc Natl Acad Sci U S A.
, vol.93
, Issue.3
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
5
-
-
77449139581
-
Genome editing with modularly assembled zinc-finger nucleases
-
Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7(2):91-92.
-
(2010)
Nat Methods.
, vol.7
, Issue.2
, pp. 91-92
-
-
Kim, J.S.1
Lee, H.J.2
Carroll, D.3
-
6
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757-761.
-
(2010)
Genetics.
, vol.186
, Issue.2
, pp. 757-761
-
-
Christian, M.1
Cermak, T.2
Doyle, E.L.3
-
7
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823.
-
(2013)
Science.
, vol.339
, Issue.6121
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
8
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-826.
-
(2013)
Science.
, vol.339
, Issue.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
-
9
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247-271.
-
(2011)
Annu Rev Genet.
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
10
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096): 816-821.
-
(2012)
Science.
, vol.337
, Issue.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
11
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-771.
-
(2015)
Cell.
, vol.163
, Issue.3
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
-
12
-
-
84890033064
-
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
-
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658.
-
(2013)
Cell Stem Cell.
, vol.13
, Issue.6
, pp. 653-658
-
-
Schwank, G.1
Koo, B.K.2
Sasselli, V.3
-
13
-
-
84926061715
-
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
-
Swiech L, Heidenreich M, Banerjee A, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015;33(1):102-106.
-
(2015)
Nat Biotechnol.
, vol.33
, Issue.1
, pp. 102-106
-
-
Swiech, L.1
Heidenreich, M.2
Banerjee, A.3
-
14
-
-
84960882884
-
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
-
Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328-333.
-
(2016)
Nat Biotechnol.
, vol.34
, Issue.3
, pp. 328-333
-
-
Yin, H.1
Song, C.Q.2
Dorkin, J.R.3
-
15
-
-
84960863986
-
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
-
Yang Y,Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334-338.
-
(2016)
Nat Biotechnol.
, vol.34
, Issue.3
, pp. 334-338
-
-
Yang, Y.1
Wang, L.2
Bell, P.3
-
16
-
-
84961291537
-
Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
-
Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400-403.
-
(2016)
Science.
, vol.351
, Issue.6271
, pp. 400-403
-
-
Long, C.1
Amoasii, L.2
Mireault, A.A.3
-
17
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-407.
-
(2016)
Science.
, vol.351
, Issue.6271
, pp. 403-407
-
-
Nelson, C.E.1
Hakim, C.H.2
Ousterout, D.G.3
-
18
-
-
84963985350
-
In vivo gene editing in dystrophic mouse muscle and muscle stem cells
-
Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407-411.
-
(2016)
Science.
, vol.351
, Issue.6271
, pp. 407-411
-
-
Tabebordbar, M.1
Zhu, K.2
Cheng, J.K.3
-
19
-
-
84859181514
-
Evidence-based path to newborn screening for Duchenne muscular dystrophy
-
Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71 (3):304-313.
-
(2012)
Ann Neurol.
, vol.71
, Issue.3
, pp. 304-313
-
-
Mendell, J.R.1
Shilling, C.2
Leslie, N.D.3
-
20
-
-
84878016335
-
Therapy for Duchenne muscular dystrophy: Renewed optimism from genetic approaches
-
Fairclough RJ,Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14(6):373-378.
-
(2013)
Nat Rev Genet.
, vol.14
, Issue.6
, pp. 373-378
-
-
Fairclough, R.J.1
Wood, M.J.2
Davies, K.E.3
-
21
-
-
84907200149
-
Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
-
Long C,McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201): 1184-1188.
-
(2014)
Science.
, vol.345
, Issue.6201
, pp. 1184-1188
-
-
Long, C.1
McAnally, J.R.2
Shelton, J.M.3
Mireault, A.A.4
Bassel-Duby, R.5
Olson, E.N.6
-
22
-
-
84960328499
-
CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice
-
Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. 2016;24(3):564-569.
-
(2016)
Mol Ther.
, vol.24
, Issue.3
, pp. 564-569
-
-
Xu, L.1
Park, K.H.2
Zhao, L.3
-
23
-
-
84920853711
-
Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9
-
Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4(1):143-154.
-
(2015)
Stem Cell Reports.
, vol.4
, Issue.1
, pp. 143-154
-
-
Li, H.L.1
Fujimoto, N.2
Sasakawa, N.3
-
24
-
-
84923652406
-
Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
-
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244.
-
(2015)
Nat Commun.
, vol.6
, pp. 6244
-
-
Ousterout, D.G.1
Kabadi, A.M.2
Thakore, P.I.3
Majoros, W.H.4
Reddy, T.E.5
Gersbach, C.A.6
-
25
-
-
84954388645
-
Spell checking nature: Versatility of CRISPR/Cas9 for developing treatments for inherited disorders
-
Wojtal D, Kemaladewi DU, Malam Z, et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet. 2016;98(1):90-101.
-
(2016)
Am J Hum Genet.
, vol.98
, Issue.1
, pp. 90-101
-
-
Wojtal, D.1
Kemaladewi, D.U.2
Malam, Z.3
-
26
-
-
84965050620
-
Selection-free gene repair after adenoviral vector transduction of designer nucleases: Rescue of dystrophin synthesis in DMD muscle cell populations
-
Maggio I, Stefanucci L, Janssen JM, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 2016;44(3): 1449-1470.
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.3
, pp. 1449-1470
-
-
Maggio, I.1
Stefanucci, L.2
Janssen, J.M.3
-
27
-
-
85015681287
-
Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method
-
Iyombe-Engembe JP, Ouellet DL, Barbeau X, et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids. 2016;5:e283.
-
(2016)
Mol Ther Nucleic Acids.
, vol.5
, pp. e283
-
-
Iyombe-Engembe, J.P.1
Ouellet, D.L.2
Barbeau, X.3
-
28
-
-
84962787321
-
A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells
-
Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18(4):533-540.
-
(2016)
Cell Stem Cell.
, vol.18
, Issue.4
, pp. 533-540
-
-
Young, C.S.1
Hicks, M.R.2
Ermolova, N.V.3
-
29
-
-
84859867996
-
Overview on DMD exon skipping
-
Aartsma-Rus A. Overview on DMD exon skipping. Methods Mol Biol. 2012;867:97-116.
-
(2012)
Methods Mol Biol.
, vol.867
, pp. 97-116
-
-
Aartsma-Rus, A.1
-
30
-
-
84966692476
-
High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing
-
Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell. 2016;165(7): 1803-1817.
-
(2016)
Cell.
, vol.165
, Issue.7
, pp. 1803-1817
-
-
Mikuni, T.1
Nishiyama, J.2
Sun, Y.3
Kamasawa, N.4
Yasuda, R.5
-
32
-
-
69749083429
-
Differences in SMN1 allele frequencies among ethnic groups within North America
-
Hendrickson BC, Donohoe C, Akmaev VR, et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet. 2009;46(9):641-644.
-
(2009)
J Med Genet.
, vol.46
, Issue.9
, pp. 641-644
-
-
Hendrickson, B.C.1
Donohoe, C.2
Akmaev, V.R.3
-
33
-
-
84859816485
-
Childhood spinal muscular atrophy: Controversies and challenges
-
Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 2012;11(5):443-452.
-
(2012)
Lancet Neurol.
, vol.11
, Issue.5
, pp. 443-452
-
-
Mercuri, E.1
Bertini, E.2
Iannaccone, S.T.3
-
34
-
-
0033033434
-
A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy
-
Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96(11): 6307-6311.
-
(1999)
Proc Natl Acad Sci U S A.
, vol.96
, Issue.11
, pp. 6307-6311
-
-
Lorson, C.L.1
Hahnen, E.2
Androphy, E.J.3
Wirth, B.4
-
35
-
-
84871529372
-
Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy
-
Corti S, Nizzardo M, Simone C, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 2012;4(165):165ra162.
-
(2012)
Sci Transl Med.
, vol.4
, Issue.165
, pp. 165ra162
-
-
Corti, S.1
Nizzardo, M.2
Simone, C.3
-
36
-
-
2942671060
-
Inverse correlation between SMN1 and SMN2 copy numbers: Evidence for gene conversion from SMN2 to SMN1
-
Ogino S, Gao S, Leonard DG, Paessler M, Wilson RB. Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. Eur J Hum Genet. 2003;11(9): 723.
-
(2003)
Eur J Hum Genet.
, vol.11
, Issue.9
, pp. 723
-
-
Ogino, S.1
Gao, S.2
Leonard, D.G.3
Paessler, M.4
Wilson, R.B.5
-
37
-
-
38949190657
-
Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy
-
DiMatteo D, Callahan S, Kmiec EB. Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy. Exp Cell Res. 2008;314(4):878-886.
-
(2008)
Exp Cell Res.
, vol.314
, Issue.4
, pp. 878-886
-
-
Dimatteo, D.1
Callahan, S.2
Kmiec, E.B.3
-
38
-
-
80054832080
-
Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
-
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72(2):245-256.
-
(2011)
Neuron.
, vol.72
, Issue.2
, pp. 245-256
-
-
Dejesus-Hernandez, M.1
Mackenzie, I.R.2
Boeve, B.F.3
-
39
-
-
85020149387
-
Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes
-
Mutihac R, Ababneh N, Scaber J,Wade-Martins R, Cowley S, Talbot K. Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes. J Neurol Sci. 2015;357(suppl 1):e48.
-
(2015)
J Neurol Sci.
, vol.357
, pp. e48
-
-
Mutihac, R.1
Ababneh, N.2
Scaber, J.3
Wade-Martins, R.4
Cowley, S.5
Talbot, K.6
-
41
-
-
84922276167
-
Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms
-
Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015;1852(4):594-606.
-
(2015)
Biochim Biophys Acta.
, vol.1852
, Issue.4
, pp. 594-606
-
-
Meola, G.1
Cardani, R.2
-
42
-
-
70450203364
-
Pathogenic mechanisms of myotonic dystrophy
-
Lee JE, Cooper TA. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. 2009;37(pt 6):1281-1286.
-
(2009)
Biochem Soc Trans.
, vol.37
, pp. 1281-1286
-
-
Lee, J.E.1
Cooper, T.A.2
-
43
-
-
84976359265
-
Genome therapy ofmyotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy [published online June 28, 2016]
-
Gao Y, Guo X, Santostefano K, et al. Genome therapy ofmyotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy [published online June 28, 2016]. Mol Ther. doi:10 .1038/mt.2016.97
-
Mol Ther.
-
-
Gao, Y.1
Guo, X.2
Santostefano, K.3
-
44
-
-
0034640011
-
Fourteen and counting: Unraveling trinucleotide repeat diseases
-
Cummings CJ, Zoghbi HY. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet. 2000;9(6):909-916.
-
(2000)
Hum Mol Genet.
, vol.9
, Issue.6
, pp. 909-916
-
-
Cummings, C.J.1
Zoghbi, H.Y.2
-
45
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA,Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-832.
-
(2013)
Nat Biotechnol.
, vol.31
, Issue.9
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
-
46
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
Jiang F, Taylor DW, Chen JS, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. 2016;351(6275):867-871.
-
(2016)
Science.
, vol.351
, Issue.6275
, pp. 867-871
-
-
Jiang, F.1
Taylor, D.W.2
Chen, J.S.3
-
47
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935-949.
-
(2014)
Cell.
, vol.156
, Issue.5
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
-
48
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9): 833-838.
-
(2013)
Nat Biotechnol.
, vol.31
, Issue.9
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
-
49
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
-
Shen B, ZhangW, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4): 399-402.
-
(2014)
Nat Methods.
, vol.11
, Issue.4
, pp. 399-402
-
-
Shen, B.1
Zhang, W.2
Zhang, J.3
-
50
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380-1389.
-
(2013)
Cell.
, vol.154
, Issue.6
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
-
51
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3): 279-284.
-
(2014)
Nat Biotechnol.
, vol.32
, Issue.3
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
52
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA,Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-832.
-
(2013)
Nat Biotechnol.
, vol.31
, Issue.9
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
-
53
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-495.
-
(2016)
Nature.
, vol.529
, Issue.7587
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
-
54
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016; 351(6268):84-88.
-
(2016)
Science.
, vol.351
, Issue.6268
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
55
-
-
84969504485
-
The emerging role of viral vectors as vehicles for DMD gene editing
-
Maggio I, Chen X, Gonçalves MA. The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med. 2016;8(1):59.
-
(2016)
Genome Med.
, vol.8
, Issue.1
, pp. 59
-
-
Maggio, I.1
Chen, X.2
Gonçalves, M.A.3
-
56
-
-
0025803677
-
Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy
-
Burrow KL, Coovert DD, Klein CJ, et al; CIDD Study Group. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. Neurology. 1991;41(5):661-666.
-
(1991)
Neurology.
, vol.41
, Issue.5
, pp. 661-666
-
-
CIDD Study Group1
Burrow, K.L.2
Coovert, D.D.3
Klein, C.J.4
-
57
-
-
84954521442
-
A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9
-
Carroll KJ, Makarewich CA,McAnally J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A. 2016;113(2):338-343.
-
(2016)
Proc Natl Acad Sci U S A.
, vol.113
, Issue.2
, pp. 338-343
-
-
Carroll, K.J.1
Makarewich, C.A.2
McAnally, J.3
-
58
-
-
84926652112
-
Inducible in vivo genome editing with CRISPR-Cas9
-
Dow LE, Fisher J, O'Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390-394.
-
(2015)
Nat Biotechnol.
, vol.33
, Issue.4
, pp. 390-394
-
-
Dow, L.E.1
Fisher, J.2
O'rourke, K.P.3
|