메뉴 건너뛰기




Volumn 73, Issue 11, 2016, Pages 1349-1355

Genome editing of monogenic neuromuscular diseases: A systematic review

Author keywords

[No Author keywords available]

Indexed keywords

ADENOVIRUS VECTOR; CRISPR ASSOCIATED PROTEIN; DNA; DYSTROPHIN; LIPOSOME; NANOMATERIAL; PARVOVIRUS VECTOR; POLYMER; RNA; SURVIVAL MOTOR NEURON PROTEIN 1; TRANSCRIPTION ACTIVATOR LIKE EFFECTOR NUCLEASE; ZINC FINGER NUCLEASE;

EID: 84996629778     PISSN: 21686149     EISSN: None     Source Type: Journal    
DOI: 10.1001/jamaneurol.2016.3388     Document Type: Review
Times cited : (31)

References (58)
  • 1
    • 84989236765 scopus 로고    scopus 로고
    • Accessed August 19
    • World Health Organization. Genes and human disease. http://www.who.int/genomics/public/geneticdiseases/en/index2.html. Accessed August 19, 2016.
    • (2016) Genes and Human Disease
  • 2
    • 84962744763 scopus 로고    scopus 로고
    • The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome)
    • Kaplan JC, Hamroun D. The 2016 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2015;25 (12):991-1020.
    • (2015) Neuromuscul Disord. , vol.25 , Issue.12 , pp. 991-1020
    • Kaplan, J.C.1    Hamroun, D.2
  • 3
    • 0345504146 scopus 로고    scopus 로고
    • Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome
    • Pósfai G, Kolisnychenko V, Bereczki Z, Blattner FR. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 1999;27(22): 4409-4415.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.22 , pp. 4409-4415
    • Pósfai, G.1    Kolisnychenko, V.2    Bereczki, Z.3    Blattner, F.R.4
  • 4
    • 0030032063 scopus 로고    scopus 로고
    • Hybrid restriction enzymes: Zinc finger fusions to Fok i cleavage domain
    • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93 (3):1156-1160.
    • (1996) Proc Natl Acad Sci U S A. , vol.93 , Issue.3 , pp. 1156-1160
    • Kim, Y.G.1    Cha, J.2    Chandrasegaran, S.3
  • 5
    • 77449139581 scopus 로고    scopus 로고
    • Genome editing with modularly assembled zinc-finger nucleases
    • Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7(2):91-92.
    • (2010) Nat Methods. , vol.7 , Issue.2 , pp. 91-92
    • Kim, J.S.1    Lee, H.J.2    Carroll, D.3
  • 6
    • 78951479577 scopus 로고    scopus 로고
    • Targeting DNA double-strand breaks with TAL effector nucleases
    • Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757-761.
    • (2010) Genetics. , vol.186 , Issue.2 , pp. 757-761
    • Christian, M.1    Cermak, T.2    Doyle, E.L.3
  • 7
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823.
    • (2013) Science. , vol.339 , Issue.6121 , pp. 819-823
    • Cong, L.1    Ran, F.A.2    Cox, D.3
  • 8
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-826.
    • (2013) Science. , vol.339 , Issue.6121 , pp. 823-826
    • Mali, P.1    Yang, L.2    Esvelt, K.M.3
  • 9
    • 80755187806 scopus 로고    scopus 로고
    • Double-strand break end resection and repair pathway choice
    • Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247-271.
    • (2011) Annu Rev Genet. , vol.45 , pp. 247-271
    • Symington, L.S.1    Gautier, J.2
  • 10
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096): 816-821.
    • (2012) Science. , vol.337 , Issue.6096 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 11
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-771.
    • (2015) Cell. , vol.163 , Issue.3 , pp. 759-771
    • Zetsche, B.1    Gootenberg, J.S.2    Abudayyeh, O.O.3
  • 12
    • 84890033064 scopus 로고    scopus 로고
    • Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
    • Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658.
    • (2013) Cell Stem Cell. , vol.13 , Issue.6 , pp. 653-658
    • Schwank, G.1    Koo, B.K.2    Sasselli, V.3
  • 13
    • 84926061715 scopus 로고    scopus 로고
    • In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
    • Swiech L, Heidenreich M, Banerjee A, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015;33(1):102-106.
    • (2015) Nat Biotechnol. , vol.33 , Issue.1 , pp. 102-106
    • Swiech, L.1    Heidenreich, M.2    Banerjee, A.3
  • 14
    • 84960882884 scopus 로고    scopus 로고
    • Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
    • Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328-333.
    • (2016) Nat Biotechnol. , vol.34 , Issue.3 , pp. 328-333
    • Yin, H.1    Song, C.Q.2    Dorkin, J.R.3
  • 15
    • 84960863986 scopus 로고    scopus 로고
    • A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
    • Yang Y,Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334-338.
    • (2016) Nat Biotechnol. , vol.34 , Issue.3 , pp. 334-338
    • Yang, Y.1    Wang, L.2    Bell, P.3
  • 16
    • 84961291537 scopus 로고    scopus 로고
    • Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
    • Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400-403.
    • (2016) Science. , vol.351 , Issue.6271 , pp. 400-403
    • Long, C.1    Amoasii, L.2    Mireault, A.A.3
  • 17
    • 84963940775 scopus 로고    scopus 로고
    • In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
    • Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403-407.
    • (2016) Science. , vol.351 , Issue.6271 , pp. 403-407
    • Nelson, C.E.1    Hakim, C.H.2    Ousterout, D.G.3
  • 18
    • 84963985350 scopus 로고    scopus 로고
    • In vivo gene editing in dystrophic mouse muscle and muscle stem cells
    • Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407-411.
    • (2016) Science. , vol.351 , Issue.6271 , pp. 407-411
    • Tabebordbar, M.1    Zhu, K.2    Cheng, J.K.3
  • 19
    • 84859181514 scopus 로고    scopus 로고
    • Evidence-based path to newborn screening for Duchenne muscular dystrophy
    • Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71 (3):304-313.
    • (2012) Ann Neurol. , vol.71 , Issue.3 , pp. 304-313
    • Mendell, J.R.1    Shilling, C.2    Leslie, N.D.3
  • 20
    • 84878016335 scopus 로고    scopus 로고
    • Therapy for Duchenne muscular dystrophy: Renewed optimism from genetic approaches
    • Fairclough RJ,Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013;14(6):373-378.
    • (2013) Nat Rev Genet. , vol.14 , Issue.6 , pp. 373-378
    • Fairclough, R.J.1    Wood, M.J.2    Davies, K.E.3
  • 21
    • 84907200149 scopus 로고    scopus 로고
    • Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
    • Long C,McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201): 1184-1188.
    • (2014) Science. , vol.345 , Issue.6201 , pp. 1184-1188
    • Long, C.1    McAnally, J.R.2    Shelton, J.M.3    Mireault, A.A.4    Bassel-Duby, R.5    Olson, E.N.6
  • 22
    • 84960328499 scopus 로고    scopus 로고
    • CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice
    • Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. 2016;24(3):564-569.
    • (2016) Mol Ther. , vol.24 , Issue.3 , pp. 564-569
    • Xu, L.1    Park, K.H.2    Zhao, L.3
  • 23
    • 84920853711 scopus 로고    scopus 로고
    • Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9
    • Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4(1):143-154.
    • (2015) Stem Cell Reports. , vol.4 , Issue.1 , pp. 143-154
    • Li, H.L.1    Fujimoto, N.2    Sasakawa, N.3
  • 24
    • 84923652406 scopus 로고    scopus 로고
    • Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
    • Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244.
    • (2015) Nat Commun. , vol.6 , pp. 6244
    • Ousterout, D.G.1    Kabadi, A.M.2    Thakore, P.I.3    Majoros, W.H.4    Reddy, T.E.5    Gersbach, C.A.6
  • 25
    • 84954388645 scopus 로고    scopus 로고
    • Spell checking nature: Versatility of CRISPR/Cas9 for developing treatments for inherited disorders
    • Wojtal D, Kemaladewi DU, Malam Z, et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet. 2016;98(1):90-101.
    • (2016) Am J Hum Genet. , vol.98 , Issue.1 , pp. 90-101
    • Wojtal, D.1    Kemaladewi, D.U.2    Malam, Z.3
  • 26
    • 84965050620 scopus 로고    scopus 로고
    • Selection-free gene repair after adenoviral vector transduction of designer nucleases: Rescue of dystrophin synthesis in DMD muscle cell populations
    • Maggio I, Stefanucci L, Janssen JM, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 2016;44(3): 1449-1470.
    • (2016) Nucleic Acids Res. , vol.44 , Issue.3 , pp. 1449-1470
    • Maggio, I.1    Stefanucci, L.2    Janssen, J.M.3
  • 27
    • 85015681287 scopus 로고    scopus 로고
    • Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method
    • Iyombe-Engembe JP, Ouellet DL, Barbeau X, et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids. 2016;5:e283.
    • (2016) Mol Ther Nucleic Acids. , vol.5 , pp. e283
    • Iyombe-Engembe, J.P.1    Ouellet, D.L.2    Barbeau, X.3
  • 28
    • 84962787321 scopus 로고    scopus 로고
    • A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells
    • Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18(4):533-540.
    • (2016) Cell Stem Cell. , vol.18 , Issue.4 , pp. 533-540
    • Young, C.S.1    Hicks, M.R.2    Ermolova, N.V.3
  • 29
    • 84859867996 scopus 로고    scopus 로고
    • Overview on DMD exon skipping
    • Aartsma-Rus A. Overview on DMD exon skipping. Methods Mol Biol. 2012;867:97-116.
    • (2012) Methods Mol Biol. , vol.867 , pp. 97-116
    • Aartsma-Rus, A.1
  • 30
    • 84966692476 scopus 로고    scopus 로고
    • High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing
    • Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell. 2016;165(7): 1803-1817.
    • (2016) Cell. , vol.165 , Issue.7 , pp. 1803-1817
    • Mikuni, T.1    Nishiyama, J.2    Sun, Y.3    Kamasawa, N.4    Yasuda, R.5
  • 32
    • 69749083429 scopus 로고    scopus 로고
    • Differences in SMN1 allele frequencies among ethnic groups within North America
    • Hendrickson BC, Donohoe C, Akmaev VR, et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet. 2009;46(9):641-644.
    • (2009) J Med Genet. , vol.46 , Issue.9 , pp. 641-644
    • Hendrickson, B.C.1    Donohoe, C.2    Akmaev, V.R.3
  • 33
    • 84859816485 scopus 로고    scopus 로고
    • Childhood spinal muscular atrophy: Controversies and challenges
    • Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 2012;11(5):443-452.
    • (2012) Lancet Neurol. , vol.11 , Issue.5 , pp. 443-452
    • Mercuri, E.1    Bertini, E.2    Iannaccone, S.T.3
  • 34
    • 0033033434 scopus 로고    scopus 로고
    • A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy
    • Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96(11): 6307-6311.
    • (1999) Proc Natl Acad Sci U S A. , vol.96 , Issue.11 , pp. 6307-6311
    • Lorson, C.L.1    Hahnen, E.2    Androphy, E.J.3    Wirth, B.4
  • 35
    • 84871529372 scopus 로고    scopus 로고
    • Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy
    • Corti S, Nizzardo M, Simone C, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 2012;4(165):165ra162.
    • (2012) Sci Transl Med. , vol.4 , Issue.165 , pp. 165ra162
    • Corti, S.1    Nizzardo, M.2    Simone, C.3
  • 36
    • 2942671060 scopus 로고    scopus 로고
    • Inverse correlation between SMN1 and SMN2 copy numbers: Evidence for gene conversion from SMN2 to SMN1
    • Ogino S, Gao S, Leonard DG, Paessler M, Wilson RB. Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. Eur J Hum Genet. 2003;11(9): 723.
    • (2003) Eur J Hum Genet. , vol.11 , Issue.9 , pp. 723
    • Ogino, S.1    Gao, S.2    Leonard, D.G.3    Paessler, M.4    Wilson, R.B.5
  • 37
    • 38949190657 scopus 로고    scopus 로고
    • Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy
    • DiMatteo D, Callahan S, Kmiec EB. Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy. Exp Cell Res. 2008;314(4):878-886.
    • (2008) Exp Cell Res. , vol.314 , Issue.4 , pp. 878-886
    • Dimatteo, D.1    Callahan, S.2    Kmiec, E.B.3
  • 38
    • 80054832080 scopus 로고    scopus 로고
    • Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
    • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72(2):245-256.
    • (2011) Neuron. , vol.72 , Issue.2 , pp. 245-256
    • Dejesus-Hernandez, M.1    Mackenzie, I.R.2    Boeve, B.F.3
  • 39
    • 85020149387 scopus 로고    scopus 로고
    • Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes
    • Mutihac R, Ababneh N, Scaber J,Wade-Martins R, Cowley S, Talbot K. Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes. J Neurol Sci. 2015;357(suppl 1):e48.
    • (2015) J Neurol Sci. , vol.357 , pp. e48
    • Mutihac, R.1    Ababneh, N.2    Scaber, J.3    Wade-Martins, R.4    Cowley, S.5    Talbot, K.6
  • 41
    • 84922276167 scopus 로고    scopus 로고
    • Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms
    • Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015;1852(4):594-606.
    • (2015) Biochim Biophys Acta. , vol.1852 , Issue.4 , pp. 594-606
    • Meola, G.1    Cardani, R.2
  • 42
    • 70450203364 scopus 로고    scopus 로고
    • Pathogenic mechanisms of myotonic dystrophy
    • Lee JE, Cooper TA. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. 2009;37(pt 6):1281-1286.
    • (2009) Biochem Soc Trans. , vol.37 , pp. 1281-1286
    • Lee, J.E.1    Cooper, T.A.2
  • 43
    • 84976359265 scopus 로고    scopus 로고
    • Genome therapy ofmyotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy [published online June 28, 2016]
    • Gao Y, Guo X, Santostefano K, et al. Genome therapy ofmyotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy [published online June 28, 2016]. Mol Ther. doi:10 .1038/mt.2016.97
    • Mol Ther.
    • Gao, Y.1    Guo, X.2    Santostefano, K.3
  • 44
    • 0034640011 scopus 로고    scopus 로고
    • Fourteen and counting: Unraveling trinucleotide repeat diseases
    • Cummings CJ, Zoghbi HY. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet. 2000;9(6):909-916.
    • (2000) Hum Mol Genet. , vol.9 , Issue.6 , pp. 909-916
    • Cummings, C.J.1    Zoghbi, H.Y.2
  • 45
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu PD, Scott DA,Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-832.
    • (2013) Nat Biotechnol. , vol.31 , Issue.9 , pp. 827-832
    • Hsu, P.D.1    Scott, D.A.2    Weinstein, J.A.3
  • 46
    • 84958953000 scopus 로고    scopus 로고
    • Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
    • Jiang F, Taylor DW, Chen JS, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. 2016;351(6275):867-871.
    • (2016) Science. , vol.351 , Issue.6275 , pp. 867-871
    • Jiang, F.1    Taylor, D.W.2    Chen, J.S.3
  • 47
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935-949.
    • (2014) Cell. , vol.156 , Issue.5 , pp. 935-949
    • Nishimasu, H.1    Ran, F.A.2    Hsu, P.D.3
  • 48
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9): 833-838.
    • (2013) Nat Biotechnol. , vol.31 , Issue.9 , pp. 833-838
    • Mali, P.1    Aach, J.2    Stranges, P.B.3
  • 49
    • 84897954175 scopus 로고    scopus 로고
    • Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
    • Shen B, ZhangW, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4): 399-402.
    • (2014) Nat Methods. , vol.11 , Issue.4 , pp. 399-402
    • Shen, B.1    Zhang, W.2    Zhang, J.3
  • 50
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380-1389.
    • (2013) Cell. , vol.154 , Issue.6 , pp. 1380-1389
    • Ran, F.A.1    Hsu, P.D.2    Lin, C.Y.3
  • 51
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3): 279-284.
    • (2014) Nat Biotechnol. , vol.32 , Issue.3 , pp. 279-284
    • Fu, Y.1    Sander, J.D.2    Reyon, D.3    Cascio, V.M.4    Joung, J.K.5
  • 52
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu PD, Scott DA,Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-832.
    • (2013) Nat Biotechnol. , vol.31 , Issue.9 , pp. 827-832
    • Hsu, P.D.1    Scott, D.A.2    Weinstein, J.A.3
  • 53
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    • Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-495.
    • (2016) Nature. , vol.529 , Issue.7587 , pp. 490-495
    • Kleinstiver, B.P.1    Pattanayak, V.2    Prew, M.S.3
  • 54
  • 55
    • 84969504485 scopus 로고    scopus 로고
    • The emerging role of viral vectors as vehicles for DMD gene editing
    • Maggio I, Chen X, Gonçalves MA. The emerging role of viral vectors as vehicles for DMD gene editing. Genome Med. 2016;8(1):59.
    • (2016) Genome Med. , vol.8 , Issue.1 , pp. 59
    • Maggio, I.1    Chen, X.2    Gonçalves, M.A.3
  • 56
    • 0025803677 scopus 로고
    • Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy
    • Burrow KL, Coovert DD, Klein CJ, et al; CIDD Study Group. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. Neurology. 1991;41(5):661-666.
    • (1991) Neurology. , vol.41 , Issue.5 , pp. 661-666
    • CIDD Study Group1    Burrow, K.L.2    Coovert, D.D.3    Klein, C.J.4
  • 57
    • 84954521442 scopus 로고    scopus 로고
    • A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9
    • Carroll KJ, Makarewich CA,McAnally J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A. 2016;113(2):338-343.
    • (2016) Proc Natl Acad Sci U S A. , vol.113 , Issue.2 , pp. 338-343
    • Carroll, K.J.1    Makarewich, C.A.2    McAnally, J.3
  • 58
    • 84926652112 scopus 로고    scopus 로고
    • Inducible in vivo genome editing with CRISPR-Cas9
    • Dow LE, Fisher J, O'Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33(4):390-394.
    • (2015) Nat Biotechnol. , vol.33 , Issue.4 , pp. 390-394
    • Dow, L.E.1    Fisher, J.2    O'rourke, K.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.