메뉴 건너뛰기




Volumn 25-28-January-2016, Issue , 2016, Pages 298-301

Energy-efficient system design for IoT devices

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DESIGN; INTERNET OF THINGS;

EID: 84996614700     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASPDAC.2016.7428027     Document Type: Conference Paper
Times cited : (88)

References (52)
  • 1
    • 84906811244 scopus 로고    scopus 로고
    • Powering the internet of things
    • H. Jayakumar et al. Powering the internet of things. In ISLPED, pages 375-380, 2014.
    • (2014) ISLPED , pp. 375-380
    • Jayakumar, H.1
  • 2
    • 78149270870 scopus 로고    scopus 로고
    • A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring
    • C. Alippi et al. A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. Sensors Journal, IEEE, 11(1):45-55, 2011.
    • (2011) Sensors Journal IEEE , vol.11 , Issue.1 , pp. 45-55
    • Alippi, C.1
  • 3
    • 84915752781 scopus 로고    scopus 로고
    • An energy-harvesting sensor architecture and toolkit for building monitoring and event detection
    • Bradford Campbell and Prabal Dutta. An energy-harvesting sensor architecture and toolkit for building monitoring and event detection. In BuildSys, pages 100-109, 2014.
    • (2014) BuildSys , pp. 100-109
    • Bradford, C.1    Dutta, P.2
  • 4
    • 84908233516 scopus 로고    scopus 로고
    • Ambient rf energy-harvesting technologies for selfsustainable standalone wireless sensor platforms
    • Sangkil Kim et al. Ambient rf energy-harvesting technologies for selfsustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 2014.
    • (2014) Proceedings of the IEEE , vol.102 , Issue.11
    • Sangkil, K.1
  • 5
    • 77950673530 scopus 로고    scopus 로고
    • RF energy harvesting system and circuits for charging of mobile devices
    • H. Jabbar et al. RF energy harvesting system and circuits for charging of mobile devices. IEEE T CONSUM ELECTR, pages 247-253, 2010.
    • (2010) IEEE T CONSUM ELECTR , pp. 247-253
    • Jabbar, H.1
  • 6
    • 84873470138 scopus 로고    scopus 로고
    • Harvesting energy from ambient radio signals: A load of hot air
    • B. Allen et al. Harvesting energy from ambient radio signals: A load of hot air In LAPC, pages 1-4, 2012.
    • (2012) LAPC , pp. 1-4
    • Allen, B.1
  • 7
    • 84907365867 scopus 로고    scopus 로고
    • Indoor wifi energy harvester with multiple antenna for low-power wireless applications
    • E. Abd Kadir et al. Indoor wifi energy harvester with multiple antenna for low-power wireless applications. In ISIE, pages 526-530, 2014.
    • (2014) ISIE , pp. 526-530
    • Abd Kadir, E.1
  • 8
    • 84904364222 scopus 로고    scopus 로고
    • Movers and shakers: Kinetic energy harvesting for the internet of things
    • M. Gorlatova et al. Movers and shakers: Kinetic energy harvesting for the internet of things. In SIGMETRICS, pages 407-419, 2014.
    • (2014) SIGMETRICS , pp. 407-419
    • Gorlatova, M.1
  • 9
    • 43149123549 scopus 로고    scopus 로고
    • A MEMS-based piezoelectric power generator array for vibration energy harvesting
    • Jing-Quan Liu et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, 39(5):802-806, 2008.
    • (2008) Microelectronics Journal , vol.39 , Issue.5 , pp. 802-806
    • Liu, J.-Q.1
  • 10
    • 78650859161 scopus 로고    scopus 로고
    • A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage
    • Y.K. Ramadass and A.P. Chandrakasan. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J SOLID-ST CIRC, pages 333-341, 2011.
    • (2011) IEEE J SOLID-ST CIRC , pp. 333-341
    • Ramadass, Y.K.1    Chandrakasan, A.P.2
  • 11
    • 85083933197 scopus 로고    scopus 로고
    • When they are not listening: Harvesting power from idle sensors in embedded systems
    • W. S. Lee et al. When they are not listening: Harvesting power from idle sensors in embedded systems. In IGCC, pages 1-10, 2014.
    • (2014) IGCC , pp. 1-10
    • Lee, W.S.1
  • 12
    • 84866785967 scopus 로고    scopus 로고
    • A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts
    • R. Vyas et al. A battery-less, energy harvesting device for long range scavenging of wireless power from terrestrial TV broadcasts. In MTT, pages 1-3, 2012.
    • (2012) MTT , pp. 1-3
    • Vyas, R.1
  • 13
    • 84910676419 scopus 로고    scopus 로고
    • Hypnos: An ultra-low power sleep mode with SRAM data retention for embedded microcontrollers
    • H. Jayakumar et al. Hypnos: An Ultra-low Power Sleep Mode with SRAM Data Retention for Embedded Microcontrollers. In CODES, pages 11:1-11:10, 2014.
    • (2014) CODES , pp. 111-1110
    • Jayakumar, H.1
  • 15
    • 51549097605 scopus 로고    scopus 로고
    • Process variation tolerant SRAM array for ultra low voltage applications
    • J. Kulkarni et al. Process Variation Tolerant SRAM Array for Ultra Low Voltage Applications. In DAC, pages 108-113, 2008.
    • (2008) DAC , pp. 108-113
    • Kulkarni, J.1
  • 16
    • 84996688697 scopus 로고    scopus 로고
    • PhD thesis, University of Massachusetts Amherst January
    • Benjamin Ransford. Transiently Powered Computers. PhD thesis, University of Massachusetts Amherst, January 2013.
    • (2013) Transiently Powered Computers
    • Benjamin, R.1
  • 17
    • 84897878703 scopus 로고    scopus 로고
    • Normally-off computing project: Challenges and opportunities
    • H. Nakamura et al. Normally-off computing project: Challenges and opportunities. In ASP-DAC, pages 1-5, 2014.
    • (2014) ASP-DAC , pp. 1-5
    • Nakamura, H.1
  • 18
    • 79953123176 scopus 로고    scopus 로고
    • Mementos: System support for long-running computation on RFID-scale devices
    • B.Ransford et al. Mementos: System Support for Long-running Computation on RFID-scale Devices. SIGARCH Comput. Archit. News, 39(1):159-170, 2011.
    • (2011) SIGARCH Comput. Archit. News , vol.39 , Issue.1 , pp. 159-170
    • Ransford, B.1
  • 19
    • 84938686258 scopus 로고    scopus 로고
    • QuickRecall: A HW/SW approach for computing across power cycles in transiently powered computers
    • H. Jayakumar et al. QuickRecall: A HW/SW Approach for Computing Across Power Cycles in Transiently Powered Computers. J. Emerg. Technol. Comput. Syst., 12(1):8:1-8:19, 2015.
    • (2015) J. Emerg. Technol. Comput. Syst. , vol.12 , Issue.1 , pp. 81-819
    • Jayakumar, H.1
  • 20
    • 84894531233 scopus 로고    scopus 로고
    • QUICKRECALL: A low overhead HW/SW approach for enabling computations across power cycles in transiently powered computers
    • H. Jayakumar et al. QUICKRECALL: A Low Overhead HW/SW Approach for Enabling Computations Across Power Cycles in Transiently Powered Computers. In VLSID, pages 330-335, 2014.
    • (2014) VLSID , pp. 330-335
    • Jayakumar, H.1
  • 21
    • 84924285125 scopus 로고    scopus 로고
    • Hibernus: Sustaining computation during intermittent supply for energy-harvesting systems
    • D. Balsamo et al. Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting Systems. Embedded Systems Letters, IEEE, 7(1):15-18, 2015.
    • (2015) Embedded Systems Letters IEEE , vol.7 , Issue.1 , pp. 15-18
    • Balsamo, D.1
  • 23
    • 79955731779 scopus 로고    scopus 로고
    • An 82 uA/MHz microcontroller with embedded FeRAM for energy-harvesting applications
    • M. Zwerg et al. An 82 uA/MHz microcontroller with embedded FeRAM for energy-harvesting applications. In ISSCC, pages 334-336, 2011.
    • (2011) ISSCC , pp. 334-336
    • Zwerg, M.1
  • 24
    • 84964682663 scopus 로고    scopus 로고
    • Energy-aware memory mapping for hybrid FRAMSRAM MCUs in IoT edge devices
    • H. Jayakumar et al. Energy-Aware Memory Mapping for Hybrid FRAMSRAM MCUs in IoT Edge Devices. In VLSID, 2016.
    • (2016) VLSID
    • Jayakumar, H.1
  • 25
    • 80052176226 scopus 로고    scopus 로고
    • A non-volatile microcontroller with integrated floating-gate transistors
    • W. Yu et al. A non-volatile microcontroller with integrated floating-gate transistors. In DSN-W, pages 75-80, 2011.
    • (2011) DSN-W , pp. 75-80
    • Yu, W.1
  • 26
    • 84996979525 scopus 로고    scopus 로고
    • An FRAM-based nonvolatile logic MCU SoC exhibiting 100% digital state retention at VDD= 0 v achieving zero leakage with < 400-ns Wakeup Time for ULP applications
    • sS. Khanna et al. An FRAM-Based Nonvolatile Logic MCU SoC Exhibiting 100% Digital State Retention at VDD= 0 V Achieving Zero Leakage With
    • (2013) IEEE JSSC , vol.99 , pp. 1-12
    • Khanna, S.1
  • 27
    • 84870772612 scopus 로고    scopus 로고
    • A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops
    • Y. Wang et al. A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops. In ESSCIRC, pages 149-152, 2012.
    • (2012) ESSCIRC , pp. 149-152
    • Wang, Y.1
  • 28
    • 84898075787 scopus 로고    scopus 로고
    • 10.5 A 90nm 20MHz fully nonvolatile microcontroller for standby-power-critical applications
    • N. Sakimura et al. 10.5 A 90nm 20MHz fully nonvolatile microcontroller for standby-power-critical applications. In ISSCC, pages 184-185, 2014.
    • (2014) ISSCC , pp. 184-185
    • Sakimura, N.1
  • 29
    • 84949549486 scopus 로고    scopus 로고
    • A sudden power-outage resilient nonvolatile microprocessor for immediate system recovery
    • N. Onizawa et al. A sudden power-outage resilient nonvolatile microprocessor for immediate system recovery. In NANOARCH, pages 39-44, 2015.
    • (2015) NANOARCH , pp. 39-44
    • Onizawa, N.1
  • 30
    • 84897839687 scopus 로고    scopus 로고
    • Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor
    • C. Wang et al. Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor. In ASPDAC, pages 379-384, 2014.
    • (2014) ASPDAC , pp. 379-384
    • Wang, C.1
  • 31
    • 84934295282 scopus 로고    scopus 로고
    • Architecture exploration for ambient energy harvesting nonvolatile processors
    • K. Ma et al. Architecture exploration for ambient energy harvesting nonvolatile processors. In HPCA, pages 526-537, 2015.
    • (2015) HPCA , pp. 526-537
    • Ma, K.1
  • 32
    • 84905649970 scopus 로고    scopus 로고
    • Incremental checkpointing of program state to NVRAM for transiently-powered systems
    • F.A. Aouda et al. Incremental checkpointing of program state to NVRAM for transiently-powered systems. In ReCoSoC, pages 1-4, 2014.
    • (2014) ReCoSoC , pp. 1-4
    • Aouda, F.A.1
  • 33
    • 84951744887 scopus 로고    scopus 로고
    • A simpler, safer programming and execution model for intermittent systems
    • B. Lucia and B. Ransford. A simpler, safer programming and execution model for intermittent systems. SIGPLAN Not., pages 575-585, 2015.
    • (2015) SIGPLAN Not , pp. 575-585
    • Lucia, B.1    Ransford, B.2
  • 34
    • 84863554442 scopus 로고    scopus 로고
    • Accuracy-configurable adder for approximate arithmetic designs
    • A.B. Kahng and S. Kang. Accuracy-configurable adder for approximate arithmetic designs. In DAC, pages 820-825, 2012.
    • (2012) DAC , pp. 820-825
    • Kahng, A.B.1    Kang, S.2
  • 35
    • 80052700256 scopus 로고    scopus 로고
    • Impact: Imprecise adders for low-power approximate computing
    • V. Gupta et al. Impact: Imprecise adders for low-power approximate computing. In ISLPED, pages 409-414, 2011.
    • (2011) ISLPED , pp. 409-414
    • Gupta, V.1
  • 36
    • 84903843071 scopus 로고    scopus 로고
    • ASLAN: Synthesis of approximate sequential circuits
    • A. Ranjan et al. ASLAN: Synthesis of approximate sequential circuits. In DATE, pages 364:1-6, 2014.
    • (2014) DATE , vol.364 , pp. 1-6
    • Ranjan, A.1
  • 37
    • 84883366732 scopus 로고    scopus 로고
    • A new circuit simplification method for error tolerant applications
    • D. Shin and S.K. Gupta. A new circuit simplification method for error tolerant applications. In DATE, pages 1-6, 2011.
    • (2011) DATE , pp. 1-6
    • Shin, D.1    Gupta, S.K.2
  • 38
    • 84863541914 scopus 로고    scopus 로고
    • SALSA: Systematic logic synthesis of approximate circuits
    • S. Venkataramani et al. SALSA: Systematic logic synthesis of approximate circuits. In DAC, pages 796-801, 2012.
    • (2012) DAC , pp. 796-801
    • Venkataramani, S.1
  • 39
    • 79952849170 scopus 로고    scopus 로고
    • Trading accuracy for power with an underdesigned multiplier architecture
    • P. Kulkarni et al. Trading accuracy for power with an underdesigned multiplier architecture. In VLSID, pages 346-351, 2011.
    • (2011) VLSID , pp. 346-351
    • Kulkarni, P.1
  • 40
    • 84859059278 scopus 로고    scopus 로고
    • Energy parsimonious circuit design through probabilistic pruning
    • A. Lingamneni et al. Energy parsimonious circuit design through probabilistic pruning. In DATE, pages 1-6, 2011.
    • (2011) DATE , pp. 1-6
    • Lingamneni, A.1
  • 41
    • 84892644983 scopus 로고    scopus 로고
    • Energy-efficient recognition and mining processor using scalable effort design
    • V.K. Chippa et al. Energy-efficient recognition and mining processor using scalable effort design. In CICC, pages 1-4, 2013.
    • (2013) CICC , pp. 1-4
    • Chippa, V.K.1
  • 42
    • 84892524324 scopus 로고    scopus 로고
    • Quality programmable vector processors for approximate computing
    • S. Venkataramani et al. Quality programmable vector processors for approximate computing. In MICRO, pages 1-12, 2013.
    • (2013) MICRO , pp. 1-12
    • Venkataramani, S.1
  • 43
    • 84858790858 scopus 로고    scopus 로고
    • Architecture support for disciplined approximate programming
    • H. Esmaeilzadeh et al. Architecture support for disciplined approximate programming. In ASPLOS, pages 301-312, 2012.
    • (2012) ASPLOS , pp. 301-312
    • Esmaeilzadeh, H.1
  • 44
    • 80053213080 scopus 로고    scopus 로고
    • Managing performance vs. Accuracy tradeoffs with loop perforation
    • S. Sidiroglou-Douskos et al. Managing performance vs. accuracy tradeoffs with loop perforation. In ESEC/FSE, pages 124-134, 2011.
    • (2011) ESEC/FSE , pp. 124-134
    • Sidiroglou-Douskos, S.1
  • 45
    • 77956201221 scopus 로고    scopus 로고
    • Best-effort computing: Rethinking parallel software and hardware
    • S.T. Chakradhar and A. Raghunathan. Best-effort computing: Rethinking parallel software and hardware. In DAC, pages 865-870, 2010.
    • (2010) DAC , pp. 865-870
    • Chakradhar, S.T.1    Raghunathan, A.2
  • 46
    • 84876591853 scopus 로고    scopus 로고
    • Neural acceleration for general-purpose approximate programs
    • H. Esmaeilzadeh et al. Neural acceleration for general-purpose approximate programs. In MICRO, pages 449-460, 2012.
    • (2012) MICRO , pp. 449-460
    • Esmaeilzadeh, H.1
  • 47
    • 84996893650 scopus 로고    scopus 로고
    • Input-based dynamic reconfiguration of approximate arithmetic units for video encoding
    • A. Raha et al. Input-based dynamic reconfiguration of approximate arithmetic units for video encoding. TVLSI, pages 1-1, 2015.
    • (2015) TVLSI , pp. 1
    • Raha, A.1
  • 48
    • 84945918459 scopus 로고    scopus 로고
    • Quality configurable reduce-and-rank for energy efficient approximate computing
    • A. Raha et al. Quality Configurable Reduce-and-rank for Energy Efficient Approximate Computing. In DATE, pages 665-670, 2015.
    • (2015) DATE , pp. 665-670
    • Raha, A.1
  • 49
    • 84892535445 scopus 로고    scopus 로고
    • Approximate storage in solid-state memories
    • A. Sampson et al. Approximate Storage in Solid-state Memories. In MICRO, pages 25-36, 2013.
    • (2013) MICRO , pp. 25-36
    • Sampson, A.1
  • 50
    • 79953075520 scopus 로고    scopus 로고
    • Flikker: Saving dram refresh-power through critical data partitioning
    • S. Liu et al. Flikker: Saving DRAM Refresh-power Through Critical Data Partitioning. In ASPLOS, pages 213-224, 2011.
    • (2011) ASPLOS , pp. 213-224
    • Liu, S.1
  • 51
    • 84962297091 scopus 로고    scopus 로고
    • Quality-aware data allocation in approximate DRAM
    • A. Raha et al. Quality-aware Data Allocation in Approximate DRAM. In CASES, pages 89-98, 2015.
    • (2015) CASES , pp. 89-98
    • Raha, A.1
  • 52
    • 84924333914 scopus 로고    scopus 로고
    • Exploiting partially-forgetful memories for approximate computing
    • M. Shoushtari et al. Exploiting Partially-Forgetful Memories for Approximate Computing. Embedded Systems Letters, IEEE, 7(1):19-22, 2015.
    • (2015) Embedded Systems Letters IEEE , vol.7 , Issue.1 , pp. 19-22
    • Shoushtari, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.