메뉴 건너뛰기




Volumn , Issue , 2014, Pages

A skewed derivative activation function for SFFANNs

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION; FEEDFORWARD NEURAL NETWORKS; RADIOACTIVITY LOGGING;

EID: 84908635236     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICRAIE.2014.6909324     Document Type: Conference Paper
Times cited : (8)

References (22)
  • 4
    • 0024124325 scopus 로고
    • There exists a neural network that does not make avoidable mistakes
    • A. R. Gallant and H. White, "There exists a neural network that does not make avoidable mistakes, " in International Joint Conference onNeural Networks, vol. I, 1988, pp. 593-606.
    • (1988) International Joint Conference OnNeural Networks , vol.1 , pp. 593-606
    • Gallant, A.R.1    White, H.2
  • 5
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function, " Math. Control, Signals, and Systems, vol. 2, pp. 303-314, 1989.
    • (1989) Math. Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mapping by neural networks
    • K. Funahashi, "On the approximate realization of continuous mapping by neural networks, " Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators, " Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • [Online]. Available
    • W. Ouch and N. Jankowski, "Survey of neural transfer functions, " Neural Computing Surveys, vol. 2, pp. 163-212, 1999. [Online]. Available: http://www.icsi.berkeley. edu/ jagotalNCS
    • (1999) Neural Computing Surveys , vol.2 , pp. 163-212
    • Ouch, W.1    Jankowski, N.2
  • 10
    • 9244245241 scopus 로고    scopus 로고
    • Feedforward sigmoidal networks - Equicontinuity and fault-tolerance
    • P. Chandra and Y. Singh, "Feedforward sigmoidal networks - equicontinuity and fault-tolerance, " IEEE Transactions on Neural Networks, vol. 15, no. 6, pp. 1350-1366, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.6 , pp. 1350-1366
    • Chandra, P.1    Singh, Y.2
  • 12
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • V. Cherkassky, D. Gehring, and F. Mooulier, "Comparison of adaptive methods for function estimation from samples, " IEEE Transactions on Neural Networks, vol. 7, no. 4, pp. 969-984, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mooulier, F.3
  • 13
    • 30244511944 scopus 로고
    • The PI method for estimating multivariate functions from noisy data
    • L. Breiman, "The PI method for estimating multivariate functions from noisy data, " Technometrics, vol. 3, no. 2, pp. 125-160, 1991.
    • (1991) Technometrics , vol.3 , Issue.2 , pp. 125-160
    • Breiman, L.1
  • 14
    • 84943274699 scopus 로고    scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm, " in Proc. of IEEE conference on Neural Networks, vol. 1, San Francisco, 2010, pp. 586- 591.
    • (2010) Proc. of IEEE Conference on Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 17
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. F. Moller, "A scaled conjugate gradient algorithm for fast supervised learning, " Neural Networks, vol. 6, pp. 525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 18
    • 0001024110 scopus 로고
    • First and second order methods for learning: Between steepest descent and Newton's method
    • R. Battiti, "First and second order methods for learning: between steepest descent and Newton's method, " Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 20
    • 0038648742 scopus 로고    scopus 로고
    • A class +1 sigmoidal activation functions for FFANNs
    • Y. Singh and P. Chandra, "A class +1 sigmoidal activation functions for FFANNs, " Journal of Economic Dynamics and Control, vol. 28, no. I, pp. 183 - 187, 2003.
    • (2003) Journal of Economic Dynamics and Control , vol.28 , Issue.1 , pp. 183-187
    • Singh, Y.1    Chandra, P.2
  • 21
    • 0842321952 scopus 로고    scopus 로고
    • Sigmoidal function classes for feedforward artificial neural networks
    • P. Chandra, "Sigmoidal function classes for feedforward artificial neural networks, " Neural Processing Letters, vol. 18, no. 3, pp. 205- 215, 2003.
    • (2003) Neural Processing Letters , vol.18 , Issue.3 , pp. 205-215
    • Chandra, P.1
  • 22
    • 0742271425 scopus 로고    scopus 로고
    • A case for the self-adaptation of activation functions in FF ANNs
    • P. Chandra and Y. Singh, "A case for the self-adaptation of activation functions in FF ANNs, " Neurocomputing, vol. 56, pp. 447 - 454, 2004.
    • (2004) Neurocomputing , vol.56 , pp. 447-454
    • Chandra, P.1    Singh, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.