메뉴 건너뛰기




Volumn 20, Issue 3, 2011, Pages 417-439

Comparison of new activation functions in neural network for forecasting financial time series

Author keywords

Activation functions; CGF algorithm; Complementary log log; LM algorithm; Log log; Neural networks; Probit

Indexed keywords

ACTIVATION FUNCTIONS; CGF ALGORITHM; COMPLEMENTARY LOG-LOG; LM ALGORITHM; LOG-LOG; PROBIT;

EID: 79952817023     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0407-3     Document Type: Article
Times cited : (73)

References (36)
  • 2
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation
    • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50: 987-1008.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 3
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2: 303-314.
    • (1989) Math Control Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 4
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings
    • White H (1990) Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Net 3: 535-550.
    • (1990) Neural Net , vol.3 , pp. 535-550
    • White, H.1
  • 5
    • 0026449851 scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • Gallant AR, White H (1992) On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural Net 5: 129-138.
    • (1992) Neural Net , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 7
    • 0001023182 scopus 로고
    • Modeling the coherence in short-run nominal exchange rates: a multivariate generalized arch model
    • Bollerslev T (1990) Modeling the coherence in short-run nominal exchange rates: a multivariate generalized arch model. Rev Econ Statist 72: 498-505.
    • (1990) Rev Econ Statist , vol.72 , pp. 498-505
    • Bollerslev, T.1
  • 8
    • 10244235219 scopus 로고    scopus 로고
    • An activation function adapting training algorithm for sigmoidal feedforward networks
    • Chandra P, Singh Y (2004) An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61: 429-437.
    • (2004) Neurocomputing , vol.61 , pp. 429-437
    • Chandra, P.1    Singh, Y.2
  • 9
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • Duch W, Jankowski N (1999) Survey of neural transfer functions. Neural Comput Appl 2: 163-212.
    • (1999) Neural Comput Appl , vol.2 , pp. 163-212
    • Duch, W.1    Jankowski, N.2
  • 11
    • 0038648742 scopus 로고    scopus 로고
    • A class +1 sigmoidal activation functions for FFANNs
    • Singh Y and Chandra P (2003) A class +1 sigmoidal activation functions for FFANNs. J Econ Dynamic Control 28(1): 183-187.
    • (2003) J Econ Dynamic Control , vol.28 , Issue.1 , pp. 183-187
    • Singh, Y.1    Chandra, P.2
  • 13
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximations
    • Hartman E, Keeler JD, Kowalski JM (1990) Layered neural networks with gaussian hidden units as universal approximations. Neural Comput Appl 2(2): 210-215.
    • (1990) Neural Comput Appl , vol.2 , Issue.2 , pp. 210-215
    • Hartman, E.1    Keeler, J.D.2    Kowalski, J.M.3
  • 14
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Net 4(2): 251-257.
    • (1991) Neural Net , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 15
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik K (1993) Some new results on neural network approximation. Neural Net 6(9): 1069-1072.
    • (1993) Neural Net , vol.6 , Issue.9 , pp. 1069-1072
    • Hornik, K.1
  • 16
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Net 6(6): 861-867.
    • (1993) Neural Net , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 17
    • 0013268220 scopus 로고
    • Rational function neural network
    • Leung H, Haykin S (1993) Rational function neural network. Neural Comput Appl 5(6): 928-938.
    • (1993) Neural Comput Appl , vol.5 , Issue.6 , pp. 928-938
    • Leung, H.1    Haykin, S.2
  • 19
    • 20744448858 scopus 로고    scopus 로고
    • Modelling and FDI of dynamic discrete time systems using a MLP with a new sigmoidal activation function
    • Skoundrianos EN, Tzafestas SG (2004) Modelling and FDI of dynamic discrete time systems using a MLP with a new sigmoidal activation function. J Intell Robotics Syst 41(1): 19-36.
    • (2004) J Intell Robotics Syst , vol.41 , Issue.1 , pp. 19-36
    • Skoundrianos, E.N.1    Tzafestas, S.G.2
  • 20
    • 23044516364 scopus 로고    scopus 로고
    • Constructive feedforward neural networks using hermite polynomial activation functions
    • Ma L, Khorasani K (2005) Constructive feedforward neural networks using hermite polynomial activation functions. IEEE Trans Neural Net 16(4): 821-833.
    • (2005) IEEE Trans Neural Net , vol.16 , Issue.4 , pp. 821-833
    • Ma, L.1    Khorasani, K.2
  • 21
    • 38649135772 scopus 로고    scopus 로고
    • A max-piecewise-linear neural network for function approximation
    • Wen C, Ma X (2005) A max-piecewise-linear neural network for function approximation. Neurocomputing 71: 843-852.
    • (2005) Neurocomputing , vol.71 , pp. 843-852
    • Wen, C.1    Ma, X.2
  • 22
    • 52949151520 scopus 로고    scopus 로고
    • Novel neuronal activation functions for feedforward neural networks
    • Efe MO (2008) Novel neuronal activation functions for feedforward neural networks. Neural Process Lett 28: 63-79.
    • (2008) Neural Process Lett , vol.28 , pp. 63-79
    • Efe, M.O.1
  • 23
    • 55349146305 scopus 로고    scopus 로고
    • Complementary log-log and probit: activation functions implemented in artificial neural networks
    • IEEE Computer Society
    • Gomes GSS, Ludermir TB (2008) Complementary log-log and probit: activation functions implemented in artificial neural networks. In: 8th International conference on hybrid intelligent systems. IEEE Computer Society, pp 939-942.
    • (2008) 8th International conference on hybrid intelligent systems , pp. 939-942
    • Gomes, G.S.S.1    Ludermir, T.B.2
  • 24
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7: 149-154.
    • (1964) ComputJ , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 26
    • 0028543366 scopus 로고
    • Training feed-forward networks with the marquardt algorithm
    • Hagan MT, Menhaj M (1994) Training feed-forward networks with the marquardt algorithm. IEEE Trans Neural Net 5(6): 989-993.
    • (1994) IEEE Trans Neural Net , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 27
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431-441.
    • (1963) SIAM J Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 29
    • 0028757587 scopus 로고
    • Comparison of activation functions in multilayer neural network for pattern classification
    • IEEE World Congress on computational intelligence
    • Hara K, Nakayamma K (1994) Comparison of activation functions in multilayer neural network for pattern classification. In: International conference on neural networks vol 5, IEEE World Congress on computational intelligence, pp 2997-3002.
    • (1994) International conference on neural networks vol 5 , pp. 2997-3002
    • Hara, K.1    Nakayamma, K.2
  • 32
    • 0000121040 scopus 로고
    • The calculation of the dosage-mortality curve
    • Bliss CI (1935) The calculation of the dosage-mortality curve. Ann Appl Biol 22: 134-167.
    • (1935) Ann Appl Biol , vol.22 , pp. 134-167
    • Bliss, C.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.