-
1
-
-
15844401040
-
New globally convergent training scheme based on the resilient propagation algorithm
-
Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004
-
Anastasiadis A.D., Magoulas G.D., Vrahatis M.N. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 2005, 64:253-270. Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004.
-
(2005)
Neurocomputing
, vol.64
, pp. 253-270
-
-
Anastasiadis, A.D.1
Magoulas, G.D.2
Vrahatis, M.N.3
-
2
-
-
84904796370
-
-
UCI machine learning repository
-
K. Bache, M. Lichman, UCI machine learning repository, 2013.
-
(2013)
-
-
Bache, K.1
Lichman, M.2
-
3
-
-
0027599793
-
Universal approximation bounds for superposition of a sigmoidal function
-
Barron A. Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Inf. Theory 1993, 3:930-945.
-
(1993)
IEEE Trans. Inf. Theory
, vol.3
, pp. 930-945
-
-
Barron, A.1
-
4
-
-
0025747581
-
Approximation theory and feedforward networks
-
Blum E.K., Li L.K. Approximation theory and feedforward networks. Neural Netw. 1991, 4:511-515.
-
(1991)
Neural Netw.
, vol.4
, pp. 511-515
-
-
Blum, E.K.1
Li, L.K.2
-
5
-
-
30244511944
-
The PI method for estimating multivariate functions from noisy data
-
Breiman L. The PI method for estimating multivariate functions from noisy data. Technometrics 1991, 3:125-160.
-
(1991)
Technometrics
, vol.3
, pp. 125-160
-
-
Breiman, L.1
-
7
-
-
0842321952
-
Sigmoidal function classes for feedforward artificial neural networks
-
Chandra P. Sigmoidal function classes for feedforward artificial neural networks. Neural Process. Lett. 2003, 18:205-215.
-
(2003)
Neural Process. Lett.
, vol.18
, pp. 205-215
-
-
Chandra, P.1
-
8
-
-
0742271425
-
A case for the self-adaptation of activation functions in FFANNs
-
Chandra P., Singh Y. A case for the self-adaptation of activation functions in FFANNs. Neurocomputing 2004, 56:447-454.
-
(2004)
Neurocomputing
, vol.56
, pp. 447-454
-
-
Chandra, P.1
Singh, Y.2
-
9
-
-
9244245241
-
Feedforward sigmoidal networks-equicontinuity and fault-tolerance
-
Chandra P., Singh Y. Feedforward sigmoidal networks-equicontinuity and fault-tolerance. IEEE Trans. Neural Netw. 2004, 15:1350-1366.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, pp. 1350-1366
-
-
Chandra, P.1
Singh, Y.2
-
10
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation function and its application to dynamical systems
-
Chen T., Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation function and its application to dynamical systems. IEEE Trans. Neural Netw. 1995, 6:911-917.
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, pp. 911-917
-
-
Chen, T.1
Chen, H.2
-
11
-
-
0030196823
-
Comparison of adaptive methods for function estimation from samples
-
Cherkassky V., Gehring D., Mülier F. Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Netw. 1996, 7:969-984.
-
(1996)
IEEE Trans. Neural Netw.
, vol.7
, pp. 969-984
-
-
Cherkassky, V.1
Gehring, D.2
Mülier, F.3
-
13
-
-
72049084727
-
Modeling wine preferences by data mining from physicochemical properties
-
Cortez P., Cerdeira A., Almeida F., Matos T., Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47:547-553.
-
(2009)
Decis. Support Syst.
, vol.47
, pp. 547-553
-
-
Cortez, P.1
Cerdeira, A.2
Almeida, F.3
Matos, T.4
Reis, J.5
-
14
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
15
-
-
0000400323
-
Survey of neural transfer functions
-
Duch W., Jankowski N. Survey of neural transfer functions. Neural Comput. Surv. 1999, 2:163-212.
-
(1999)
Neural Comput. Surv.
, vol.2
, pp. 163-212
-
-
Duch, W.1
Jankowski, N.2
-
16
-
-
0024866495
-
On the approximate realization of continuous mapping by neural networks
-
Funahashi K. On the approximate realization of continuous mapping by neural networks. Neural Netw. 1989, 2:183-192.
-
(1989)
Neural Netw.
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
18
-
-
0041833491
-
Recurrent neural networks with trainable amplitude of activation functions
-
Goh S.L., Mandic D.P. Recurrent neural networks with trainable amplitude of activation functions. Neural Netw. 2003, 16:1095-1100.
-
(2003)
Neural Netw.
, vol.16
, pp. 1095-1100
-
-
Goh, S.L.1
Mandic, D.P.2
-
19
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Hagan M., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5:989-993.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 989-993
-
-
Hagan, M.1
Menhaj, M.B.2
-
21
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2:359-366.
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
23
-
-
0037238922
-
Empirical evaluation of the improved RPROP learning algorithms
-
Igel C., Hüsken M. Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing 2003, 50:105-123.
-
(2003)
Neurocomputing
, vol.50
, pp. 105-123
-
-
Igel, C.1
Hüsken, M.2
-
24
-
-
0025503458
-
Constructive approximations for neural networks by sigmoidal functions
-
Corrections and additions, Proc. IEEE (1991) 79, 243
-
Jones L.K. Constructive approximations for neural networks by sigmoidal functions. Proc. IEEE 1990, 78:1586-1589. Corrections and additions, Proc. IEEE (1991) 79, pp. 243.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1586-1589
-
-
Jones, L.K.1
-
26
-
-
84872543023
-
Efficient backprop
-
Springer, Berlin, G.B. Orr, K.R. Müller (Eds.)
-
LeCun Y., Bottou L., Orr G.B., Müller K.R. Efficient backprop. Neural Networks: Tricks of the trade, Lecture Notes in Computer Science, vol. 1524 1998, 9-50. Springer, Berlin. G.B. Orr, K.R. Müller (Eds.).
-
(1998)
Neural Networks: Tricks of the trade, Lecture Notes in Computer Science, vol. 1524
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.R.4
-
27
-
-
0025541996
-
Projection pursuit learning networks for regression
-
M. Maechler, D. Martin, J. Schimert, M. Csoppenszky, J. Hwang, Projection pursuit learning networks for regression, in: Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990, pp. 350-358.
-
(1990)
Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence
, pp. 350-358
-
-
Maechler, M.1
Martin, D.2
Schimert, J.3
Csoppenszky, M.4
Hwang, J.5
-
28
-
-
0000194429
-
Degree of approximation by neural and translation networks with a single hidden layer
-
Mhaskar H., Micchelli C. Degree of approximation by neural and translation networks with a single hidden layer. Adv. Appl. Math. 1995, 16:151-183.
-
(1995)
Adv. Appl. Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.1
Micchelli, C.2
-
29
-
-
0000358945
-
Approximation by superposition of sigmoidal and radial basis functions
-
Mhaskar H., Micchelli C.A. Approximation by superposition of sigmoidal and radial basis functions. Adv. Appl. Math. 1992, 13:350-373.
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.1
Micchelli, C.A.2
-
30
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6:525-533.
-
(1993)
Neural Netw.
, vol.6
, pp. 525-533
-
-
Moller, M.F.1
-
31
-
-
0025536870
-
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
-
D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: 1990 IJCNN International Joint Conference on Neural Networks, 1990, vol. 3, pp. 21-26.
-
(1990)
1990 IJCNN International Joint Conference on Neural Networks
, vol.3
, pp. 21-26
-
-
Nguyen, D.1
Widrow, B.2
-
32
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 143-195.
-
(1999)
Acta Numer.
, pp. 143-195
-
-
Pinkus, A.1
-
33
-
-
0028466750
-
Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms
-
Riedmiller M. Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces 1994, 16:265-278.
-
(1994)
Comput. Stand. Interfaces
, vol.16
, pp. 265-278
-
-
Riedmiller, M.1
-
34
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: the RPROP algorithm
-
M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: IEEE International Conference on Neural Networks, 1993, vol. 1, pp. 586-591.
-
(1993)
IEEE International Conference on Neural Networks
, vol.1
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
35
-
-
57649209233
-
Universal approximation by ridge computational models and neural networks. a survey
-
Sanguineti M. Universal approximation by ridge computational models and neural networks. a survey. Open Appl. Math. J. 2008, 2:31-58.
-
(2008)
Open Appl. Math. J.
, vol.2
, pp. 31-58
-
-
Sanguineti, M.1
-
36
-
-
0345195977
-
Universal approximation using feedforward neural networks. a survey of some existing methods, and some new results
-
Scarselli F., Tsoi A.C. Universal approximation using feedforward neural networks. a survey of some existing methods, and some new results. Neural Netw. 1998, 11:15-37.
-
(1998)
Neural Netw.
, vol.11
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
37
-
-
0035024581
-
Networks with trainable amplitude of activation functions
-
Trentin E. Networks with trainable amplitude of activation functions. Neural Netw. 2001, 14:471-493.
-
(2001)
Neural Netw.
, vol.14
, pp. 471-493
-
-
Trentin, E.1
-
38
-
-
84861793096
-
Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
-
Tsanas A., Xifara A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49:560-567.
-
(2012)
Energy Build.
, vol.49
, pp. 560-567
-
-
Tsanas, A.1
Xifara, A.2
-
39
-
-
77952287368
-
New study on neural networks. the essential order of approximation
-
Wang J., Xu Z. New study on neural networks. the essential order of approximation. Neural Netw. 2010, 23:618-624.
-
(2010)
Neural Netw.
, vol.23
, pp. 618-624
-
-
Wang, J.1
Xu, Z.2
-
40
-
-
0032295215
-
Modeling of strength of high-performance concrete using artificial neural networks
-
Yeh I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr. Res. 1998, 28:1797-1808.
-
(1998)
Cement Concr. Res.
, vol.28
, pp. 1797-1808
-
-
Yeh, I.C.1
-
41
-
-
84883765496
-
Approximation by neural networks with sigmoidal functions
-
Yu D.S. Approximation by neural networks with sigmoidal functions. Acta Math. Sin. Engl. Ser. 2013, 29:2013-2026.
-
(2013)
Acta Math. Sin. Engl. Ser.
, vol.29
, pp. 2013-2026
-
-
Yu, D.S.1
|