메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 182-196

Bi-modal derivative activation function for sigmoidal feedforward networks

Author keywords

Activation function; Bi modal activation function; Sigmoidal feed forward artificial neural network; Sigmoidal function class

Indexed keywords

APPROXIMATION ALGORITHMS; BACKPROPAGATION ALGORITHMS; BISMUTH COMPOUNDS; CHEMICAL ACTIVATION; NEURAL NETWORKS;

EID: 84904803668     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.06.007     Document Type: Article
Times cited : (30)

References (41)
  • 1
    • 15844401040 scopus 로고    scopus 로고
    • New globally convergent training scheme based on the resilient propagation algorithm
    • Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004
    • Anastasiadis A.D., Magoulas G.D., Vrahatis M.N. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 2005, 64:253-270. Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004.
    • (2005) Neurocomputing , vol.64 , pp. 253-270
    • Anastasiadis, A.D.1    Magoulas, G.D.2    Vrahatis, M.N.3
  • 2
    • 84904796370 scopus 로고    scopus 로고
    • UCI machine learning repository
    • K. Bache, M. Lichman, UCI machine learning repository, 2013.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron A. Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Inf. Theory 1993, 3:930-945.
    • (1993) IEEE Trans. Inf. Theory , vol.3 , pp. 930-945
    • Barron, A.1
  • 4
    • 0025747581 scopus 로고
    • Approximation theory and feedforward networks
    • Blum E.K., Li L.K. Approximation theory and feedforward networks. Neural Netw. 1991, 4:511-515.
    • (1991) Neural Netw. , vol.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 5
    • 30244511944 scopus 로고
    • The PI method for estimating multivariate functions from noisy data
    • Breiman L. The PI method for estimating multivariate functions from noisy data. Technometrics 1991, 3:125-160.
    • (1991) Technometrics , vol.3 , pp. 125-160
    • Breiman, L.1
  • 7
    • 0842321952 scopus 로고    scopus 로고
    • Sigmoidal function classes for feedforward artificial neural networks
    • Chandra P. Sigmoidal function classes for feedforward artificial neural networks. Neural Process. Lett. 2003, 18:205-215.
    • (2003) Neural Process. Lett. , vol.18 , pp. 205-215
    • Chandra, P.1
  • 8
    • 0742271425 scopus 로고    scopus 로고
    • A case for the self-adaptation of activation functions in FFANNs
    • Chandra P., Singh Y. A case for the self-adaptation of activation functions in FFANNs. Neurocomputing 2004, 56:447-454.
    • (2004) Neurocomputing , vol.56 , pp. 447-454
    • Chandra, P.1    Singh, Y.2
  • 9
    • 9244245241 scopus 로고    scopus 로고
    • Feedforward sigmoidal networks-equicontinuity and fault-tolerance
    • Chandra P., Singh Y. Feedforward sigmoidal networks-equicontinuity and fault-tolerance. IEEE Trans. Neural Netw. 2004, 15:1350-1366.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 1350-1366
    • Chandra, P.1    Singh, Y.2
  • 10
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation function and its application to dynamical systems
    • Chen T., Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation function and its application to dynamical systems. IEEE Trans. Neural Netw. 1995, 6:911-917.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 11
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • Cherkassky V., Gehring D., Mülier F. Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Netw. 1996, 7:969-984.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mülier, F.3
  • 13
    • 72049084727 scopus 로고    scopus 로고
    • Modeling wine preferences by data mining from physicochemical properties
    • Cortez P., Cerdeira A., Almeida F., Matos T., Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47:547-553.
    • (2009) Decis. Support Syst. , vol.47 , pp. 547-553
    • Cortez, P.1    Cerdeira, A.2    Almeida, F.3    Matos, T.4    Reis, J.5
  • 14
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 15
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • Duch W., Jankowski N. Survey of neural transfer functions. Neural Comput. Surv. 1999, 2:163-212.
    • (1999) Neural Comput. Surv. , vol.2 , pp. 163-212
    • Duch, W.1    Jankowski, N.2
  • 16
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mapping by neural networks
    • Funahashi K. On the approximate realization of continuous mapping by neural networks. Neural Netw. 1989, 2:183-192.
    • (1989) Neural Netw. , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 17
  • 18
    • 0041833491 scopus 로고    scopus 로고
    • Recurrent neural networks with trainable amplitude of activation functions
    • Goh S.L., Mandic D.P. Recurrent neural networks with trainable amplitude of activation functions. Neural Netw. 2003, 16:1095-1100.
    • (2003) Neural Netw. , vol.16 , pp. 1095-1100
    • Goh, S.L.1    Mandic, D.P.2
  • 19
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5:989-993.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.B.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2:359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved RPROP learning algorithms
    • Igel C., Hüsken M. Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing 2003, 50:105-123.
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 24
    • 0025503458 scopus 로고
    • Constructive approximations for neural networks by sigmoidal functions
    • Corrections and additions, Proc. IEEE (1991) 79, 243
    • Jones L.K. Constructive approximations for neural networks by sigmoidal functions. Proc. IEEE 1990, 78:1586-1589. Corrections and additions, Proc. IEEE (1991) 79, pp. 243.
    • (1990) Proc. IEEE , vol.78 , pp. 1586-1589
    • Jones, L.K.1
  • 28
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • Mhaskar H., Micchelli C. Degree of approximation by neural and translation networks with a single hidden layer. Adv. Appl. Math. 1995, 16:151-183.
    • (1995) Adv. Appl. Math. , vol.16 , pp. 151-183
    • Mhaskar, H.1    Micchelli, C.2
  • 29
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • Mhaskar H., Micchelli C.A. Approximation by superposition of sigmoidal and radial basis functions. Adv. Appl. Math. 1992, 13:350-373.
    • (1992) Adv. Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.1    Micchelli, C.A.2
  • 30
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6:525-533.
    • (1993) Neural Netw. , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 31
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: 1990 IJCNN International Joint Conference on Neural Networks, 1990, vol. 3, pp. 21-26.
    • (1990) 1990 IJCNN International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 32
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 143-195.
    • (1999) Acta Numer. , pp. 143-195
    • Pinkus, A.1
  • 33
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms
    • Riedmiller M. Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Comput. Stand. Interfaces 1994, 16:265-278.
    • (1994) Comput. Stand. Interfaces , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 34
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm
    • M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: IEEE International Conference on Neural Networks, 1993, vol. 1, pp. 586-591.
    • (1993) IEEE International Conference on Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 35
    • 57649209233 scopus 로고    scopus 로고
    • Universal approximation by ridge computational models and neural networks. a survey
    • Sanguineti M. Universal approximation by ridge computational models and neural networks. a survey. Open Appl. Math. J. 2008, 2:31-58.
    • (2008) Open Appl. Math. J. , vol.2 , pp. 31-58
    • Sanguineti, M.1
  • 36
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks. a survey of some existing methods, and some new results
    • Scarselli F., Tsoi A.C. Universal approximation using feedforward neural networks. a survey of some existing methods, and some new results. Neural Netw. 1998, 11:15-37.
    • (1998) Neural Netw. , vol.11 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 37
    • 0035024581 scopus 로고    scopus 로고
    • Networks with trainable amplitude of activation functions
    • Trentin E. Networks with trainable amplitude of activation functions. Neural Netw. 2001, 14:471-493.
    • (2001) Neural Netw. , vol.14 , pp. 471-493
    • Trentin, E.1
  • 38
    • 84861793096 scopus 로고    scopus 로고
    • Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools
    • Tsanas A., Xifara A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49:560-567.
    • (2012) Energy Build. , vol.49 , pp. 560-567
    • Tsanas, A.1    Xifara, A.2
  • 39
    • 77952287368 scopus 로고    scopus 로고
    • New study on neural networks. the essential order of approximation
    • Wang J., Xu Z. New study on neural networks. the essential order of approximation. Neural Netw. 2010, 23:618-624.
    • (2010) Neural Netw. , vol.23 , pp. 618-624
    • Wang, J.1    Xu, Z.2
  • 40
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high-performance concrete using artificial neural networks
    • Yeh I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr. Res. 1998, 28:1797-1808.
    • (1998) Cement Concr. Res. , vol.28 , pp. 1797-1808
    • Yeh, I.C.1
  • 41
    • 84883765496 scopus 로고    scopus 로고
    • Approximation by neural networks with sigmoidal functions
    • Yu D.S. Approximation by neural networks with sigmoidal functions. Acta Math. Sin. Engl. Ser. 2013, 29:2013-2026.
    • (2013) Acta Math. Sin. Engl. Ser. , vol.29 , pp. 2013-2026
    • Yu, D.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.