메뉴 건너뛰기




Volumn 2015-September, Issue , 2015, Pages

A non-sigmoidal activation function for feedforward artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION; FEEDFORWARD NEURAL NETWORKS; FUNCTIONS; HYPERBOLIC FUNCTIONS; NEURAL NETWORKS; POLYNOMIAL APPROXIMATION; RADIOACTIVITY LOGGING;

EID: 84951100009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2015.7280440     Document Type: Conference Paper
Times cited : (9)

References (34)
  • 1
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W. McCulloch and W. Pitts," A logical calculus of the ideas immanent in nervous activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 2
    • 9244245241 scopus 로고    scopus 로고
    • Feedforward sigmoidal networks-equicontinuity and fault-tolerance
    • P. Chandra and Y Singh, "Feedforward sigmoidal networks-equicontinuity and fault-tolerance," IEEE Transactions on Neural Networks, vol. 15, no. 6, pp. 1350-1366,2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.6 , pp. 1350-1366
    • Chandra, P.1    Singh, Y.2
  • 3
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct.
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 4
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Foundations, D. E. Rumelhart, J. L. McClelland, and The PDP Research Group, Eds. Cambridge: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing: Volume I: Foundations, D. E. Rumelhart, J. L. McClelland, and The PDP Research Group, Eds. Cambridge: MIT Press, 1987, pp. 318-362.
    • (1987) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 5
    • 0141853652 scopus 로고
    • Learning representations by back-propagating errors
    • J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press
    • -, "Learning representations by back-propagating errors," in Neurocomputing: foundations of research, J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988, pp. 696-699.
    • (1988) Neurocomputing: Foundations of Research , pp. 696-699
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 6
    • 84943274699 scopus 로고    scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," in Proc. of IEEE conference on Neural Networks, vol. I, San Francisco, 2010, pp. 586-591.
    • (2010) Proc. of IEEE Conference on Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 7
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons from backpropagation to adaptive learning algorithms
    • M. Riedmiller, "Advanced supervised learning in multi-layer perceptrons from backpropagation to adaptive learning algorithms," Computer Standards & Interfaces, vol. 16, no. 3, pp. 265-278, 1994.
    • (1994) Computer Standards & Interfaces , vol.16 , Issue.3 , pp. 265-278
    • Riedmiller, M.1
  • 8
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved rprop learning algorithms
    • C. Igel and M. Husken, "Empirical evaluation of the improved rprop learning algorithms," Neurocomputing, vol. 50, no. 0, pp. 105-123, 2003.
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 9
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • M. T. Hagan and M. B. Menhaj, "Training feed forward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, vol. 5, pp. 989-993, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 11
    • 0001024110 scopus 로고
    • First and second order methods for learning: Btetween steepest descent and Newton's method
    • R. Battiti, "First and second order methods for learning: btetween steepest descent and Newton's method," Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 13
    • 0024874675 scopus 로고
    • Construction of neural networks using the Radon transform
    • S. M. Carroll and B. W. Dickinson, "Construction of neural networks using the Radon transform," in Proc. of the IJCNN, vol. 1, 1989, pp. 607-611.
    • (1989) Proc. of the IJCNN , vol.1 , pp. 607-611
    • Carroll, S.M.1    Dickinson, B.W.2
  • 14
    • 0003095817 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, "Approximation by superposition of a sigmoidal function," Mathematics of Control, Signal and Systems, vol. 5, pp. 233-243, 1989.
    • (1989) Mathematics of Control, Signal and Systems , vol.5 , pp. 233-243
    • Cybenko, G.1
  • 15
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 16
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 0024933821 scopus 로고
    • Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions
    • M. Stinchcombe and H. White, "Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions," in Neural Networks, 1989. IJCNN., International Joint Conference on, 1989, pp. 613-617 vol. I.
    • (1989) Neural Networks, 1989. IJCNN., International Joint Conference on , vol.1 , pp. 613-617
    • Stinchcombe, M.1    White, H.2
  • 18
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feed forward networks
    • K. Hornik, "Approximation capabilities of multilayer feed forward networks," Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 19
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation function can approximate any function
    • M. Leshno, V. Y Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a non-polynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 20
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus, "Approximation theory of the MLP model in neural networks," Acta NlImerica, vol. 8, pp. 143-195, 1999.
    • (1999) Acta NlImerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 21
    • 0032643084 scopus 로고    scopus 로고
    • Multilayer feed forward networks with adaptive spline activation function
    • May
    • S. Guarnieri, F. Piazza, and A. Uncini, "Multilayer feed forward networks with adaptive spline activation function," Nellral Networks, IEEE Transactions on, vol. 10, no. 3, pp. 672-683, May 1999.
    • (1999) Nellral Networks, IEEE Transactions on , vol.10 , Issue.3 , pp. 672-683
    • Guarnieri, S.1    Piazza, F.2    Uncini, A.3
  • 24
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural network transfer functions
    • W. Ouch and N. Jankowski, "Survey of neural network transfer functions," Neural Computing Surveys, vol. 2, pp. 163-212, 1999.
    • (1999) Neural Computing Surveys , vol.2 , pp. 163-212
    • Ouch, W.1    Jankowski, N.2
  • 25
    • 0842321952 scopus 로고    scopus 로고
    • Sigmoidal function classes for feedforward artificial neural networks
    • P. Chandra, "Sigmoidal function classes for feedforward artificial neural networks," Nellral Processing Letters, vol. 18, no. 3, pp. 205-215,2003.
    • (2003) Nellral Processing Letters , vol.18 , Issue.3 , pp. 205-215
    • Chandra, P.1
  • 26
    • 84904803668 scopus 로고    scopus 로고
    • Bi-modal derivative activation function for sigmoidal feed forward networks
    • S. S. Sodhi and P. Chandra, "Bi-modal derivative activation function for sigmoidal feed forward networks," Nellrocompllting, vol. 143, no. 0, pp. 182-196,2014.
    • (2014) Nellrocompllting , vol.143 , pp. 182-196
    • Sodhi, S.S.1    Chandra, P.2
  • 28
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organizing learning
    • S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Nellral Networks, vol. 4, no. 2, pp. 207-224, 1991.
    • (1991) Nellral Networks , vol.4 , Issue.2 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 30
    • 30244511944 scopus 로고
    • The PI method for estimating multivariate functions from noisy data
    • L. Breiman, "The PI method for estimating multivariate functions from noisy data," Technometrics, vol. 3, no. 2, pp. 125-160, 1991.
    • (1991) Technometrics , vol.3 , Issue.2 , pp. 125-160
    • Breiman, L.1
  • 31
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • V. Cherkassky, D. Gehring, and F. MUlier, "Comparison of adaptive methods for function estimation from samples," IEEE Transactions on Nellral Networks, vol. 7, no. 4, pp. 969-984, 1996.
    • (1996) IEEE Transactions on Nellral Networks , vol.7 , Issue.4 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.