메뉴 건너뛰기




Volumn 114, Issue 1, 2017, Pages 163-171

Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background

Author keywords

anaerobic; homolactic; lactate dehydrogenase; lactic acid; Saccharomyces cerevisiae; xylose fermentation

Indexed keywords

BOTTLES; CALCIUM CARBONATE; ETHANOL; FERMENTATION; GENES; GLUCOSE; METABOLIC ENGINEERING; SUGAR SUBSTITUTES; SUGARS; XYLOSE; YEAST;

EID: 84994441016     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26048     Document Type: Article
Times cited : (14)

References (51)
  • 1
    • 64549154964 scopus 로고    scopus 로고
    • Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity
    • Abbott DA, van den Brink J, Minneboo IM, Pronk JT, van Maris AJ. 2009a. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. FEMS Yeast Res 9(3):349–357.
    • (2009) FEMS Yeast Res , vol.9 , Issue.3 , pp. 349-357
    • Abbott, D.A.1    van den Brink, J.2    Minneboo, I.M.3    Pronk, J.T.4    van Maris, A.J.5
  • 2
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges
    • Abbott DA, Zelle RM, Pronk JT, van Maris AJA. 2009b. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges. FEMS Yeast Res 9(8):1123–1136.
    • (2009) FEMS Yeast Res , vol.9 , Issue.8 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    van Maris, A.J.A.4
  • 3
    • 0031658814 scopus 로고    scopus 로고
    • Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
    • Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K. 1998. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86(3):284–289.
    • (1998) J Ferment Bioeng , vol.86 , Issue.3 , pp. 284-289
    • Adachi, E.1    Torigoe, M.2    Sugiyama, M.3    Nikawa, J.-I.4    Shimizu, K.5
  • 4
    • 84885950727 scopus 로고    scopus 로고
    • Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris)
    • Agarwal PK, Uppada V, Noronha SB. 2013. Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 97(21):9439–9449.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.21 , pp. 9439-9449
    • Agarwal, P.K.1    Uppada, V.2    Noronha, S.B.3
  • 6
    • 51249083907 scopus 로고    scopus 로고
    • Plasmodium falciparum: enhanced soluble expression, purification and biochemical characterization of lactate dehydrogenase
    • Berwal R, Gopalan N, Chandel K, Prasad GB, Prakash S. 2008. Plasmodium falciparum: enhanced soluble expression, purification and biochemical characterization of lactate dehydrogenase. Exp Parasitol 120(2):135–141.
    • (2008) Exp Parasitol , vol.120 , Issue.2 , pp. 135-141
    • Berwal, R.1    Gopalan, N.2    Chandel, K.3    Prasad, G.B.4    Prakash, S.5
  • 7
    • 33144462944 scopus 로고    scopus 로고
    • Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export
    • Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D, Porro D. 2006. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microbial Cell Factories 5:4.
    • (2006) Microbial Cell Factories , vol.5 , pp. 4
    • Branduardi, P.1    Sauer, M.2    De Gioia, L.3    Zampella, G.4    Valli, M.5    Mattanovich, D.6    Porro, D.7
  • 8
    • 0027175712 scopus 로고
    • Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli
    • Bzik DJ, Fox BA, Gonyer K. 1993. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol Biochem Parasitol 59(1):155–166.
    • (1993) Mol Biochem Parasitol , vol.59 , Issue.1 , pp. 155-166
    • Bzik, D.J.1    Fox, B.A.2    Gonyer, K.3
  • 9
    • 84859038271 scopus 로고    scopus 로고
    • Plastics derived from biological sources: Present and future: A technical and environmental review
    • Chen GQ, Patel MK. 2012. Plastics derived from biological sources: Present and future: A technical and environmental review. Chem Rev 112(4):2082–2099.
    • (2012) Chem Rev , vol.112 , Issue.4 , pp. 2082-2099
    • Chen, G.Q.1    Patel, M.K.2
  • 10
    • 84952663246 scopus 로고    scopus 로고
    • Biobased organic acids production by metabolically engineered microorganisms
    • Chen Y, Nielsen J. 2016. Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37:165–172.
    • (2016) Curr Opin Biotechnol , vol.37 , pp. 165-172
    • Chen, Y.1    Nielsen, J.2
  • 11
    • 84923809316 scopus 로고    scopus 로고
    • Biorefineries for the production of top building block chemicals and their derivatives
    • Choi S, Song CW, Shin JH, Lee SY. 2015. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239.
    • (2015) Metab Eng , vol.28 , pp. 223-239
    • Choi, S.1    Song, C.W.2    Shin, J.H.3    Lee, S.Y.4
  • 12
    • 0033563156 scopus 로고    scopus 로고
    • Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity
    • Eberhardt I, Cederberg H, Li H, König S, Jordan F, Hohmann S. 1999. Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. Eur J Biochem 262(1):191–201.
    • (1999) Eur J Biochem , vol.262 , Issue.1 , pp. 191-201
    • Eberhardt, I.1    Cederberg, H.2    Li, H.3    König, S.4    Jordan, F.5    Hohmann, S.6
  • 13
    • 0018818947 scopus 로고
    • Bacterial lactate dehydrogenases
    • Garvie EI. 1980. Bacterial lactate dehydrogenases. Microbiol Rev 44(1):106–139.
    • (1980) Microbiol Rev , vol.44 , Issue.1 , pp. 106-139
    • Garvie, E.I.1
  • 14
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34.
    • (2007) Nat Protoc , vol.2 , Issue.1 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 15
    • 0031453699 scopus 로고    scopus 로고
    • Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum
    • Gomez MS, Piper RC, Hunsaker LA, Royer RE, Deck LM, Makler MT, Vander Jagt DL. 1997. Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum. Mol Biochem Parasitol 90(1):235–246.
    • (1997) Mol Biochem Parasitol , vol.90 , Issue.1 , pp. 235-246
    • Gomez, M.S.1    Piper, R.C.2    Hunsaker, L.A.3    Royer, R.E.4    Deck, L.M.5    Makler, M.T.6    Vander Jagt, D.L.7
  • 16
    • 0017074147 scopus 로고
    • Purification, properties and immunological relationship of L(+)-lactate dehydrogenase from Lactobacillus casei
    • Gordon GL, Doelle HW. 1976. Purification, properties and immunological relationship of L(+)-lactate dehydrogenase from Lactobacillus casei. Eur J Biochem 67(2):543–555.
    • (1976) Eur J Biochem , vol.67 , Issue.2 , pp. 543-555
    • Gordon, G.L.1    Doelle, H.W.2
  • 17
    • 0017724333 scopus 로고
    • Comparative studies of lactate dehydrogenases in lactic acid bacteria. Amino-acid composition of an active-site region and chemical properties of the L-lactate dehydrogenase of Lactobacillus casei, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus acidophilus
    • Hensel R, Mayr U, Fujiki H, Kandler O. 1977. Comparative studies of lactate dehydrogenases in lactic acid bacteria. Amino-acid composition of an active-site region and chemical properties of the L-lactate dehydrogenase of Lactobacillus casei, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus acidophilus. Eur J Biochem 80(1):83–92.
    • (1977) Eur J Biochem , vol.80 , Issue.1 , pp. 83-92
    • Hensel, R.1    Mayr, U.2    Fujiki, H.3    Kandler, O.4
  • 18
    • 0026315442 scopus 로고
    • Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae
    • Hohmann S. 1991. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173(24):1963–1969.
    • (1991) J Bacteriol , vol.173 , Issue.24 , pp. 1963-1969
    • Hohmann, S.1
  • 19
    • 0025304880 scopus 로고
    • Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
    • Hohmann S, Cederberg H. 1990. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188(3):615–621.
    • (1990) Eur J Biochem , vol.188 , Issue.3 , pp. 615-621
    • Hohmann, S.1    Cederberg, H.2
  • 20
    • 84878016831 scopus 로고    scopus 로고
    • Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
    • Ida Y, Hirasawa T, Furusawa C, Shimizu H. 2013. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 97(11):4811–4819.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.11 , pp. 4811-4819
    • Ida, Y.1    Hirasawa, T.2    Furusawa, C.3    Shimizu, H.4
  • 21
    • 84878004318 scopus 로고    scopus 로고
    • Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases
    • Ilmen M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttila M. 2013. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Fact 12:53.
    • (2013) Microb Cell Fact , vol.12 , pp. 53
    • Ilmen, M.1    Koivuranta, K.2    Ruohonen, L.3    Rajgarhia, V.4    Suominen, P.5    Penttila, M.6
  • 25
    • 17444407064 scopus 로고    scopus 로고
    • Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene
    • Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. 2005. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl Environ Microbiol 71(4):1964–1970.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.4 , pp. 1964-1970
    • Ishida, N.1    Saitoh, S.2    Tokuhiro, K.3    Nagamori, E.4    Matsuyama, T.5    Kitamoto, K.6    Takahashi, H.7
  • 26
    • 84897513442 scopus 로고    scopus 로고
    • Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae
    • Klimacek M, Kirl E, Krahulec S, Longus K, Novy V, Nidetzky B. 2014. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microb Cell Fact 13:37.
    • (2014) Microb Cell Fact , vol.13 , pp. 37
    • Klimacek, M.1    Kirl, E.2    Krahulec, S.3    Longus, K.4    Novy, V.5    Nidetzky, B.6
  • 27
    • 78649701348 scopus 로고    scopus 로고
    • Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
    • Klimacek M, Krahulec S, Sauer U, Nidetzky B. 2010. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76(22):7566–7574.
    • (2010) Appl Environ Microbiol , vol.76 , Issue.22 , pp. 7566-7574
    • Klimacek, M.1    Krahulec, S.2    Sauer, U.3    Nidetzky, B.4
  • 28
    • 84905741806 scopus 로고    scopus 로고
    • L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene
    • Koivuranta K, Ilmen M, Wiebe M, Ruohonen L, Suominen P, Penttila M. 2014. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene. Microb Cell Fact 13:107.
    • (2014) Microb Cell Fact , vol.13 , pp. 107
    • Koivuranta, K.1    Ilmen, M.2    Wiebe, M.3    Ruohonen, L.4    Suominen, P.5    Penttila, M.6
  • 29
    • 84878989095 scopus 로고    scopus 로고
    • Comparison of Scheffersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: Implications for xylose fermentation
    • Krahulec S, Kratzer R, Longus K, Nidetzky B. 2012. Comparison of Scheffersomyces stipitis strains CBS 5773 and CBS 6054 with regard to their xylose metabolism: Implications for xylose fermentation. Microbiologyopen 1(1):64–70.
    • (2012) Microbiologyopen , vol.1 , Issue.1 , pp. 64-70
    • Krahulec, S.1    Kratzer, R.2    Longus, K.3    Nidetzky, B.4
  • 30
    • 0035813391 scopus 로고    scopus 로고
    • Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae
    • Lange HC, Heijnen JJ. 2001. Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75(3):334–344.
    • (2001) Biotechnol Bioeng , vol.75 , Issue.3 , pp. 334-344
    • Lange, H.C.1    Heijnen, J.J.2
  • 31
    • 84924040473 scopus 로고    scopus 로고
    • Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid
    • Lee JY, Kang CD, Lee SH, Park YK, Cho KM. 2015. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol Bioeng 112(4):751–758.
    • (2015) Biotechnol Bioeng , vol.112 , Issue.4 , pp. 751-758
    • Lee, J.Y.1    Kang, C.D.2    Lee, S.H.3    Park, Y.K.4    Cho, K.M.5
  • 32
    • 84920161779 scopus 로고    scopus 로고
    • Synthetic biology for engineering acetyl coenzyme A metabolism in yeast
    • Nielsen J. 2014. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio 5(6):e02153-14.
    • (2014) MBio , vol.5 , Issue.6
    • Nielsen, J.1
  • 33
    • 84872247362 scopus 로고    scopus 로고
    • Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae
    • Novy V, Krahulec S, Longus K, Klimacek M, Nidetzky B. 2013. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae. Bioresour Technol 130:439–448.
    • (2013) Bioresour Technol , vol.130 , pp. 439-448
    • Novy, V.1    Krahulec, S.2    Longus, K.3    Klimacek, M.4    Nidetzky, B.5
  • 34
    • 84898449145 scopus 로고    scopus 로고
    • Process intensification through microbial strain evolution: Mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae
    • Novy V, Krahulec S, Wegleiter M, Muller G, Longus K, Klimacek M, Nidetzky B. 2014. Process intensification through microbial strain evolution: Mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):49.
    • (2014) Biotechnol Biofuels , vol.7 , Issue.1 , pp. 49
    • Novy, V.1    Krahulec, S.2    Wegleiter, M.3    Muller, G.4    Longus, K.5    Klimacek, M.6    Nidetzky, B.7
  • 35
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher B, Nidetzky B. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9.
    • (2008) Microb Cell Fact , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 36
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • Pronk JT, Yde Steensma H, Van Dijken JP. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633.
    • (1996) Yeast , vol.12 , Issue.16 , pp. 1607-1633
    • Pronk, J.T.1    Yde Steensma, H.2    Van Dijken, J.P.3
  • 37
    • 79551577475 scopus 로고    scopus 로고
    • 16 years research on lactic acid production with yeast—Ready for the market
    • Sauer M, Porro D, Mattanovich D, Branduardi P. 2010. 16 years research on lactic acid production with yeast—Ready for the market? Biotechnol Genet Eng Rev 27:229–256.
    • (2010) Biotechnol Genet Eng Rev , vol.27 , pp. 229-256
    • Sauer, M.1    Porro, D.2    Mattanovich, D.3    Branduardi, P.4
  • 38
    • 0030844235 scopus 로고    scopus 로고
    • Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme
    • Savijoki K, Palva A. 1997. Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme. Appl Environ Microbiol 63(7):2850–2856.
    • (1997) Appl Environ Microbiol , vol.63 , Issue.7 , pp. 2850-2856
    • Savijoki, K.1    Palva, A.2
  • 39
    • 34249017275 scopus 로고    scopus 로고
    • Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum
    • Shoemark DK, Cliff MJ, Sessions RB, Clarke AR. 2007. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS J 274(11):2738–2748.
    • (2007) FEBS J , vol.274 , Issue.11 , pp. 2738-2748
    • Shoemark, D.K.1    Cliff, M.J.2    Sessions, R.B.3    Clarke, A.R.4
  • 40
    • 0037255676 scopus 로고    scopus 로고
    • Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
    • Skory CD. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol 30(1):22–27.
    • (2003) J Ind Microbiol Biotechnol , vol.30 , Issue.1 , pp. 22-27
    • Skory, C.D.1
  • 41
    • 58849110199 scopus 로고    scopus 로고
    • Inhibition of Rhizopus lactate dehydrogenase by fructose 1,6-bisphosphate
    • Skory CD, Mertens JA, Rich JO. 2009. Inhibition of Rhizopus lactate dehydrogenase by fructose 1,6-bisphosphate. Enzyme Microb Technol 44(4):242–247.
    • (2009) Enzyme Microb Technol , vol.44 , Issue.4 , pp. 242-247
    • Skory, C.D.1    Mertens, J.A.2    Rich, J.O.3
  • 42
    • 84957601050 scopus 로고    scopus 로고
    • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae
    • Song JY, Park JS, Kang CD, Cho HY, Yang D, Lee S, Cho KM. 2016. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Metab Eng 35:38–45.
    • (2016) Metab Eng , vol.35 , pp. 38-45
    • Song, J.Y.1    Park, J.S.2    Kang, C.D.3    Cho, H.Y.4    Yang, D.5    Lee, S.6    Cho, K.M.7
  • 43
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T, Boles E. 2012. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 44
    • 84855355113 scopus 로고    scopus 로고
    • Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain
    • Tamakawa H, Ikushima S, Yoshida S. 2012. Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113(1):73–75.
    • (2012) J Biosci Bioeng , vol.113 , Issue.1 , pp. 73-75
    • Tamakawa, H.1    Ikushima, S.2    Yoshida, S.3
  • 45
    • 0036209598 scopus 로고    scopus 로고
    • Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids
    • Thomas KC, Hynes SH, Ingledew WM. 2002. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl Environ Microbiol 68(4):1616–1623.
    • (2002) Appl Environ Microbiol , vol.68 , Issue.4 , pp. 1616-1623
    • Thomas, K.C.1    Hynes, S.H.2    Ingledew, W.M.3
  • 46
    • 62949109270 scopus 로고    scopus 로고
    • Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene
    • Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H. 2009. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82(5):883–890.
    • (2009) Appl Microbiol Biotechnol , vol.82 , Issue.5 , pp. 883-890
    • Tokuhiro, K.1    Ishida, N.2    Nagamori, E.3    Saitoh, S.4    Onishi, T.5    Kondo, A.6    Takahashi, H.7
  • 49
    • 6044224979 scopus 로고    scopus 로고
    • Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes
    • van Maris AJ, Konings WN, van Dijken JP, Pronk JT. 2004a. Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metab Eng 6(4):245–255.
    • (2004) Metab Eng , vol.6 , Issue.4 , pp. 245-255
    • van Maris, A.J.1    Konings, W.N.2    van Dijken, J.P.3    Pronk, J.T.4
  • 50
    • 2442640659 scopus 로고    scopus 로고
    • Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export
    • van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT. 2004b. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70(5):2898–2905.
    • (2004) Appl Environ Microbiol , vol.70 , Issue.5 , pp. 2898-2905
    • van Maris, A.J.A.1    Winkler, A.A.2    Porro, D.3    van Dijken, J.P.4    Pronk, J.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.