메뉴 건너뛰기




Volumn 112, Issue 4, 2015, Pages 751-758

Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid

Author keywords

L lactic acid; Redox balace engineering; S. cerevisiae

Indexed keywords

BIODEGRADABLE POLYMERS; ENCODING (SYMBOLS); GENE ENCODING; GENES; INDUSTRIAL CHEMICALS; METABOLIC ENGINEERING; METABOLISM; YEAST;

EID: 84924040473     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25488     Document Type: Article
Times cited : (62)

References (47)
  • 1
    • 0031658814 scopus 로고    scopus 로고
    • Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
    • Adachi E, Torigoe M, Sugiyama M, Nikawa JI, Shimizu K. 1998. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86:284-289.
    • (1998) J Ferment Bioeng , vol.86 , pp. 284-289
    • Adachi, E.1    Torigoe, M.2    Sugiyama, M.3    Nikawa, J.I.4    Shimizu, K.5
  • 2
    • 0015381694 scopus 로고
    • Induction of galactokinase in Saccharomyces cerevisiae: Kinetics of induction and glucose effects
    • Adams BG. 1972. Induction of galactokinase in Saccharomyces cerevisiae: Kinetics of induction and glucose effects. J Bacteriol 111:308-313.
    • (1972) J Bacteriol , vol.111 , pp. 308-313
    • Adams, B.G.1
  • 3
    • 0023392267 scopus 로고
    • A method for gene disruption that allows for repeated use of URA3 selection in the construction of multiply disrupted yeast strains
    • Alani E, Cao L, Kleckner N. 1987. A method for gene disruption that allows for repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541-545.
    • (1987) Genetics , vol.116 , pp. 541-545
    • Alani, E.1    Cao, L.2    Kleckner, N.3
  • 4
    • 0029786406 scopus 로고    scopus 로고
    • Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation
    • Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187-3195.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 3187-3195
    • Albers, E.1    Larsson, C.2    Liden, G.3    Niklasson, C.4    Gustafsson, L.5
  • 6
    • 0030908893 scopus 로고    scopus 로고
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179-2187.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adlerand, L.5
  • 8
    • 0023351590 scopus 로고
    • Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GALA
    • Baker SM, Johnston SA, Hopper JE, Jaehning JA. 1987. Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GALA. Mol Gen Genet 208:127-134.
    • (1987) Mol Gen Genet , vol.208 , pp. 127-134
    • Baker, S.M.1    Johnston, S.A.2    Hopper, J.E.3    Jaehning, J.A.4
  • 10
    • 0024614329 scopus 로고
    • +) in acquired osmotolerance of Saccharomyces cerevisiae
    • +) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087-1092.
    • (1989) J Bacteriol , vol.171 , pp. 1087-1092
    • Blomberg, A.1    Adler, L.2
  • 11
    • 0842278678 scopus 로고    scopus 로고
    • Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism
    • Bro C, Regenberg B, Nielsen J. 2004. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism. Biotechnol Bioeng 85:269-276.
    • (2004) Biotechnol Bioeng , vol.85 , pp. 269-276
    • Bro, C.1    Regenberg, B.2    Nielsen, J.3
  • 12
    • 0037735167 scopus 로고    scopus 로고
    • Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene
    • Colombié S, Dequin S, Sablayrolle JM. 2003. Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene. Enzyme Microb Technol 70:38-46.
    • (2003) Enzyme Microb Technol , vol.70 , pp. 38-46
    • Colombié, S.1    Dequin, S.2    Sablayrolle, J.M.3
  • 13
    • 84982624469 scopus 로고
    • Technological and economic potential of poly(lactic acid) and lactic acid derivatives
    • Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR. 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221-231.
    • (1995) FEMS Microbiol Rev , vol.16 , pp. 221-231
    • Datta, R.1    Tsai, S.P.2    Bonsignore, P.3    Moon, S.H.4    Frank, J.R.5
  • 14
    • 0028154060 scopus 로고
    • Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH
    • Dequin S, Barre P. 1994. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 12:173-177.
    • (1994) Biotechnology , vol.12 , pp. 173-177
    • Dequin, S.1    Barre, P.2
  • 15
  • 16
    • 0025103023 scopus 로고
    • Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance
    • Gatignol A, Dassain M, Tiraby GC. 1990. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91:35-41.
    • (1990) Gene , vol.91 , pp. 35-41
    • Gatignol, A.1    Dassain, M.2    Tiraby, G.C.3
  • 17
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: Formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • Geertman JM, van Dijken JP, Pronk JT. 2006. Engineering NADH metabolism in Saccharomyces cerevisiae: Formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 6:1193-1203.
    • (2006) FEMS Yeast Res , vol.6 , pp. 1193-1203
    • Geertman, J.M.1    van Dijken, J.P.2    Pronk, J.T.3
  • 18
    • 33746891860 scopus 로고    scopus 로고
    • 2O-forming NADH oxidase and impact on redox metabolism
    • 2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8:303-314.
    • (2006) Metab Eng , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 19
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300-372.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 20
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • Hou J, Lages NF, Oldiges M, Vemuri GN. 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 11:253-261.
    • (2009) Metab Eng , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 21
    • 84878004318 scopus 로고    scopus 로고
    • Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases
    • Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. 2013. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Fact 12:53.
    • (2013) Microb Cell Fact , vol.12 , pp. 53
    • Ilmén, M.1    Koivuranta, K.2    Ruohonen, L.3    Rajgarhia, V.4    Suominen, P.5    Penttilä, M.6
  • 22
    • 17444407064 scopus 로고    scopus 로고
    • Efficient production of L
    • Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
    • Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. 2005. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl Environ Microbiol 71:1964-1970.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 1964-1970
    • Ishida, N.1    Saitoh, S.2    Tokuhiro, K.3    Nagamori, E.4    Matsuyama, T.5    Kitamoto, K.6    Takahashi, H.7
  • 25
    • 33947357776 scopus 로고    scopus 로고
    • Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes
    • Kim Y, Ingram LO, Shanmugam KT. 2007. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766-1771.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 1766-1771
    • Kim, Y.1    Ingram, L.O.2    Shanmugam, K.T.3
  • 26
    • 44349173795 scopus 로고    scopus 로고
    • Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12
    • Kim Y, Ingram LO, Shanmugam KT. 2008. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190:3851-3858.
    • (2008) J Bacteriol , vol.190 , pp. 3851-3858
    • Kim, Y.1    Ingram, L.O.2    Shanmugam, K.T.3
  • 27
    • 0020470890 scopus 로고
    • Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast
    • Laughon A, Gesteland RF. 1982. Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc Natl Acad Sci USA 79:6827-6831.
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 6827-6831
    • Laughon, A.1    Gesteland, R.F.2
  • 28
    • 0032544505 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH
    • Luttik MA, Overkamp KM, Kötter P, de Vries S, van Dijken JP, Pronk JT. 1998. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529-24534.
    • (1998) J Biol Chem , vol.273 , pp. 24529-24534
    • Luttik, M.A.1    Overkamp, K.M.2    Kötter, P.3    de Vries, S.4    van Dijken, J.P.5    Pronk, J.T.6
  • 29
    • 0028947362 scopus 로고
    • Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress
    • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S. 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360-1371.
    • (1995) EMBO J , vol.14 , pp. 1360-1371
    • Luyten, K.1    Albertyn, J.2    Skibbe, W.F.3    Prior, B.A.4    Ramos, J.5    Thevelein, J.M.6    Hohmann, S.7
  • 30
    • 0026089901 scopus 로고
    • Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: Ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
    • Marres CA, de Vries S, Grivell LA. 1991. Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: Ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195:857-862.
    • (1991) Eur J Biochem , vol.195 , pp. 857-862
    • Marres, C.A.1    de Vries, S.2    Grivell, L.A.3
  • 31
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Muller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 32
    • 0023021129 scopus 로고
    • Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activating sequence but does not require TATA sequences
    • Ogden JE, Stanway C, Kim S, Mellor J, Kingsman AJ, Kingsman SM. 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activating sequence but does not require TATA sequences. Mol Cell Biol 6:4335-4343.
    • (1986) Mol Cell Biol , vol.6 , pp. 4335-4343
    • Ogden, J.E.1    Stanway, C.2    Kim, S.3    Mellor, J.4    Kingsman, A.J.5    Kingsman, S.M.6
  • 33
    • 0001778610 scopus 로고
    • Reaction-products of yeast fermentations
    • Oura E. 1977. Reaction-products of yeast fermentations. Process Biochem 12:19-21.
    • (1977) Process Biochem , vol.12 , pp. 19-21
    • Oura, E.1
  • 34
    • 79952108090 scopus 로고    scopus 로고
    • The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus
    • Pei J, Zhou Q, Jing Q, Li L, Dai C, Li H, Wiegel J, Shao W. 2011. The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metab Eng 13:186-193.
    • (2011) Metab Eng , vol.13 , pp. 186-193
    • Pei, J.1    Zhou, Q.2    Jing, Q.3    Li, L.4    Dai, C.5    Li, H.6    Wiegel, J.7    Shao, W.8
  • 35
    • 0029294111 scopus 로고
    • Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid
    • Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L. 1995. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294-298.
    • (1995) Biotechnol Prog , vol.11 , pp. 294-298
    • Porro, D.1    Brambilla, L.2    Ranzi, B.M.3    Martegani, E.4    Alberghina, L.5
  • 37
    • 78149328427 scopus 로고    scopus 로고
    • Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae
    • Partow S, Siewers V, Bjørn S, Nielsen J, Maury J. 2010. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955-964.
    • (2010) Yeast , vol.27 , pp. 955-964
    • Partow, S.1    Siewers, V.2    Bjørn, S.3    Nielsen, J.4    Maury, J.5
  • 38
    • 0344466725 scopus 로고    scopus 로고
    • Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway
    • Remize F, Cambon B, Barnavon L, Dequin S. 2003. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 20:1243-1253.
    • (2003) Yeast , vol.20 , pp. 1243-1253
    • Remize, F.1    Cambon, B.2    Barnavon, L.3    Dequin, S.4
  • 40
  • 42
    • 0037255676 scopus 로고    scopus 로고
    • Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
    • Skory CD. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol 30:22-27.
    • (2003) J Ind Microbiol Biotechnol , vol.30 , pp. 22-27
    • Skory, C.D.1
  • 43
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken J, Scheffers WA. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199-224.
    • (1986) FEMS Microbiol Lett , vol.32 , pp. 199-224
    • van Dijken, J.1    Scheffers, W.A.2
  • 44
    • 2442640659 scopus 로고    scopus 로고
    • Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export
    • van Maris AJ, Winkler AA, Porro D, van Dijken JP, Pronk JT. 2004. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70:2898-2905.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2898-2905
    • van Maris, A.J.1    Winkler, A.A.2    Porro, D.3    van Dijken, J.P.4    Pronk, J.T.5
  • 46
    • 0014734642 scopus 로고
    • Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis
    • von Jagow G, Klingenberg M. 1970. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem 12:583-592.
    • (1970) Eur J Biochem , vol.12 , pp. 583-592
    • von Jagow, G.1    Klingenberg, M.2
  • 47
    • 85007103334 scopus 로고    scopus 로고
    • Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits
    • Wang Y, Tashiro Y, Sonomoto K. 2014. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J Biosci Bioeng 14:002199.
    • (2014) J Biosci Bioeng , vol.14 , pp. 002199
    • Wang, Y.1    Tashiro, Y.2    Sonomoto, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.