-
1
-
-
1842583789
-
Development by self-digestion: molecular mechanisms and biological functions of autophagy
-
[1] Levine, B., Klionsky, D.J., Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6 (2004), 463–477.
-
(2004)
Dev. Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
2
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
[2] Klionsky, D.J., Emr, S.D., Autophagy as a regulated pathway of cellular degradation. Science 290:5497 (2000), 1717–1721.
-
(2000)
Science
, vol.290
, Issue.5497
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
3
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
[3] Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12:9 (2010), 814–822.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.9
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
4
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
[4] Mizushima, N., Komatsu, M., Autophagy: renovation of cells and tissues. Cell 147:4 (2011), 728–741.
-
(2011)
Cell
, vol.147
, Issue.4
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
5
-
-
27644484061
-
Autophagy: molecular machinery for self-eating
-
[5] Yorimitsu, T., Klionsky, D.J., Autophagy: molecular machinery for self-eating. Cell Death Differ. 12:Suppl 2 (2005), 1542–1552.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1542-1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
6
-
-
34548188741
-
Self-eating and self-killing: crosstalk between autophagy and apoptosis
-
[6] Maiuri, M.C., et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8:9 (2007), 741–752.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, Issue.9
, pp. 741-752
-
-
Maiuri, M.C.1
-
7
-
-
79952100709
-
Autophagosomes and human diseases
-
[7] Beau, I., Mehrpour, M., Codogno, P., Autophagosomes and human diseases. Int. J. Biochem. Cell Biol. 43:4 (2011), 460–464.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, Issue.4
, pp. 460-464
-
-
Beau, I.1
Mehrpour, M.2
Codogno, P.3
-
8
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
[8] Mizushima, N., et al. Autophagy fights disease through cellular self-digestion. Nature 451:7182 (2008), 1069–1075.
-
(2008)
Nature
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Mizushima, N.1
-
9
-
-
84873660610
-
Autophagy in human health and disease
-
[9] Choi, A.M., Ryter, S.W., Levine, B., Autophagy in human health and disease. N. Engl. J. Med. 368:7 (2013), 651–662.
-
(2013)
N. Engl. J. Med.
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
10
-
-
77956414236
-
The origin of the autophagosomal membrane
-
[10] Tooze, S.A., Yoshimori, T., The origin of the autophagosomal membrane. Nat. Cell Biol. 12:9 (2010), 831–835.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.9
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
11
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
[11] Hamasaki, M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495:7441 (2013), 389–393.
-
(2013)
Nature
, vol.495
, Issue.7441
, pp. 389-393
-
-
Hamasaki, M.1
-
12
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
[12] Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:7548 (2015), 563–566.
-
(2015)
Nature
, vol.520
, Issue.7548
, pp. 563-566
-
-
Diao, J.1
-
13
-
-
36249025723
-
Autophagy: process and function
-
[13] Mizushima, N., Autophagy: process and function. Genes Dev. 21:22 (2007), 2861–2873.
-
(2007)
Genes Dev.
, vol.21
, Issue.22
, pp. 2861-2873
-
-
Mizushima, N.1
-
14
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
[14] Lamb, C.A., Yoshimori, T., Tooze, S.A., The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:12 (2013), 759–774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, Issue.12
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
15
-
-
0035503594
-
The pre©\autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
[15] Suzuki, K., et al. The pre©\autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:21 (2001), 5971–5981.
-
(2001)
EMBO J.
, vol.20
, Issue.21
, pp. 5971-5981
-
-
Suzuki, K.1
-
16
-
-
84921396314
-
Membrane dynamics in autophagosome biogenesis
-
[16] Carlsson, S.R., Simonsen, A., Membrane dynamics in autophagosome biogenesis. J. Cell Sci. 128:2 (2015), 193–205.
-
(2015)
J. Cell Sci.
, vol.128
, Issue.2
, pp. 193-205
-
-
Carlsson, S.R.1
Simonsen, A.2
-
17
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
[17] Hara, T., et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181:3 (2008), 497–510.
-
(2008)
J. Cell Biol.
, vol.181
, Issue.3
, pp. 497-510
-
-
Hara, T.1
-
18
-
-
84890887051
-
The beginning of the end: how scaffolds nucleate autophagosome biogenesis
-
[18] Stanley, R.E., Ragusa, M.J., Hurley, J.H., The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24:1 (2014), 73–81.
-
(2014)
Trends Cell Biol.
, vol.24
, Issue.1
, pp. 73-81
-
-
Stanley, R.E.1
Ragusa, M.J.2
Hurley, J.H.3
-
19
-
-
84883452831
-
Up-to-date membrane biogenesis in the autophagosome formation
-
[19] Hamasaki, M., Shibutani, S.T., Yoshimori, T., Up-to-date membrane biogenesis in the autophagosome formation. Curr. Opin. Cell Biol. 25:4 (2013), 455–460.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, Issue.4
, pp. 455-460
-
-
Hamasaki, M.1
Shibutani, S.T.2
Yoshimori, T.3
-
20
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
[20] Mizushima, N., Yoshimori, T., Ohsumi, Y., The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
21
-
-
77957198526
-
An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
-
[21] Mari, M., et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190:6 (2010), 1005–1022.
-
(2010)
J. Cell Biol.
, vol.190
, Issue.6
, pp. 1005-1022
-
-
Mari, M.1
-
22
-
-
78649682788
-
Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
-
[22] Ohashi, Y., Munro, S., Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol. Biol. Cell 21:22 (2010), 3998–4008.
-
(2010)
Mol. Biol. Cell
, vol.21
, Issue.22
, pp. 3998-4008
-
-
Ohashi, Y.1
Munro, S.2
-
23
-
-
84864991509
-
Atg9 vesicles are an important membrane source during early steps of autophagosome formation
-
[23] Yamamoto, H., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:2 (2012), 219–233.
-
(2012)
J. Cell Biol.
, vol.198
, Issue.2
, pp. 219-233
-
-
Yamamoto, H.1
-
24
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
-
[24] Orsi, A., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:10 (2012), 1860–1873.
-
(2012)
Mol. Biol. Cell
, vol.23
, Issue.10
, pp. 1860-1873
-
-
Orsi, A.1
-
25
-
-
58849092285
-
Membrane fusion: grappling with SNARE and SM proteins
-
[25] Sudhof, T.C., Rothman, J.E., Membrane fusion: grappling with SNARE and SM proteins. Science 323:5913 (2009), 474–477.
-
(2009)
Science
, vol.323
, Issue.5913
, pp. 474-477
-
-
Sudhof, T.C.1
Rothman, J.E.2
-
26
-
-
79960798816
-
SNARE proteins are required for macroautophagy
-
[26] Nair, U., et al. SNARE proteins are required for macroautophagy. Cell 146:2 (2011), 290–302.
-
(2011)
Cell
, vol.146
, Issue.2
, pp. 290-302
-
-
Nair, U.1
-
27
-
-
0027413655
-
SNAP receptors implicated in vesicle targeting and fusion
-
[27] Söllner, T., et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362:6418 (1993), 318–324.
-
(1993)
Nature
, vol.362
, Issue.6418
, pp. 318-324
-
-
Söllner, T.1
-
28
-
-
0032430423
-
Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs
-
[28] Fasshauer, D., et al. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc. Natl. Acad. Sci. 95:26 (1998), 15781–15786.
-
(1998)
Proc. Natl. Acad. Sci.
, vol.95
, Issue.26
, pp. 15781-15786
-
-
Fasshauer, D.1
-
29
-
-
0032549708
-
SNAREpins: minimal machinery for membrane fusion
-
[29] Weber, T., et al. SNAREpins: minimal machinery for membrane fusion. Cell 92 (1998), 759–772.
-
(1998)
Cell
, vol.92
, pp. 759-772
-
-
Weber, T.1
-
30
-
-
84875834380
-
A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy
-
[30] Jao, C.C., et al. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc. Natl. Acad. Sci. 110:14 (2013), 5486–5491.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.14
, pp. 5486-5491
-
-
Jao, C.C.1
-
31
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
[31] Moreau, K., et al. Autophagosome precursor maturation requires homotypic fusion. Cell 146:2 (2011), 303–317.
-
(2011)
Cell
, vol.146
, Issue.2
, pp. 303-317
-
-
Moreau, K.1
-
32
-
-
84872793852
-
Connections between SNAREs and autophagy
-
[32] Moreau, K., Renna, M., Rubinsztein, D.C., Connections between SNAREs and autophagy. Trends Biochem. Sci. 38:2 (2013), 57–63.
-
(2013)
Trends Biochem. Sci.
, vol.38
, Issue.2
, pp. 57-63
-
-
Moreau, K.1
Renna, M.2
Rubinsztein, D.C.3
-
33
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
[33] Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:8 (2009), 513–525.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, Issue.8
, pp. 513-525
-
-
Stenmark, H.1
-
34
-
-
84872332447
-
Phosphatidylinositol 3-phosphatase myotubularin-related protein 6 (MTMR6) is regulated by small GTPase Rab1B in the early secretory and autophagic pathways
-
[34] Mochizuki, Y., et al. Phosphatidylinositol 3-phosphatase myotubularin-related protein 6 (MTMR6) is regulated by small GTPase Rab1B in the early secretory and autophagic pathways. J. Biol. Chem. 288:2 (2013), 1009–1021.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.2
, pp. 1009-1021
-
-
Mochizuki, Y.1
-
35
-
-
77952329475
-
Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy
-
[35] Lynch-Day, M.A., et al. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl. Acad. Sci. 107:17 (2010), 7811–7816.
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, Issue.17
, pp. 7811-7816
-
-
Lynch-Day, M.A.1
-
36
-
-
84878983074
-
Ypt1 recruits the Atg1 kinase to the preautophagosomal structure
-
[36] Wang, J., et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc. Natl. Acad. Sci. 110:24 (2013), 9800–9805.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.24
, pp. 9800-9805
-
-
Wang, J.1
-
37
-
-
84892147754
-
Autophagosome maturation and lysosomal fusion
-
[37] Ganley, I.G., Autophagosome maturation and lysosomal fusion. Essays Biochem. 55 (2013), 65–78.
-
(2013)
Essays Biochem.
, vol.55
, pp. 65-78
-
-
Ganley, I.G.1
-
38
-
-
84862618804
-
A role for Atg8-PE deconjugation in autophagosome biogenesis
-
[38] Nair, U., et al. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:5 (2012), 780–793.
-
(2012)
Autophagy
, vol.8
, Issue.5
, pp. 780-793
-
-
Nair, U.1
-
39
-
-
84864886799
-
Dual roles of Atg8-PE deconjugation by Atg4 in autophagy
-
[39] Yu, Z.Q., et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:6 (2012), 883–892.
-
(2012)
Autophagy
, vol.8
, Issue.6
, pp. 883-892
-
-
Yu, Z.Q.1
-
40
-
-
19244384656
-
Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice
-
[40] Tanaka, Y., et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:6798 (2000), 902–906.
-
(2000)
Nature
, vol.406
, Issue.6798
, pp. 902-906
-
-
Tanaka, Y.1
-
41
-
-
0036899730
-
Inhibition of autophagy in mitotic animal cells
-
[41] Eskelinen, E.-L., et al. Inhibition of autophagy in mitotic animal cells. Traffic 3:12 (2002), 878–893.
-
(2002)
Traffic
, vol.3
, Issue.12
, pp. 878-893
-
-
Eskelinen, E.-L.1
-
42
-
-
0032555641
-
Isolation and characterization of rat liver amphisomes: evidence for fusion of autophagosomes with both early and late endosomes
-
[42] Berg, T.O., et al. Isolation and characterization of rat liver amphisomes: evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273:34 (1998), 21883–21892.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.34
, pp. 21883-21892
-
-
Berg, T.O.1
-
43
-
-
84920939501
-
Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab: GTP for membrane binding and to catalyze tethering and fusion
-
[43] Orr, A., et al. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab: GTP for membrane binding and to catalyze tethering and fusion. Mol. Biol. Cell 26:2 (2015), 305–315.
-
(2015)
Mol. Biol. Cell
, vol.26
, Issue.2
, pp. 305-315
-
-
Orr, A.1
-
44
-
-
84901381389
-
The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17
-
[44] Jiang, P., et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25:8 (2014), 1327–1337.
-
(2014)
Mol. Biol. Cell
, vol.25
, Issue.8
, pp. 1327-1337
-
-
Jiang, P.1
-
45
-
-
48749099702
-
HOPS proofreads the trans-SNARE complex for yeast vacuole fusion
-
[45] Starai, V.J., Hickey, C.M., Wickner, W., HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol. Biol. Cell 19:6 (2008), 2500–2508.
-
(2008)
Mol. Biol. Cell
, vol.19
, Issue.6
, pp. 2500-2508
-
-
Starai, V.J.1
Hickey, C.M.2
Wickner, W.3
-
46
-
-
77954237882
-
Network organization of the human autophagy system
-
[46] Behrends, C., et al. Network organization of the human autophagy system. Nature 466:7302 (2010), 68–76.
-
(2010)
Nature
, vol.466
, Issue.7302
, pp. 68-76
-
-
Behrends, C.1
-
47
-
-
79956147302
-
A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens
-
[47] Ogawa, M., et al. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:5 (2011), 376–389.
-
(2011)
Cell Host Microbe
, vol.9
, Issue.5
, pp. 376-389
-
-
Ogawa, M.1
-
48
-
-
84862777210
-
A mammalian autophagosome maturation mechanism mediated by TECPR1 and the atg12-Atg5 conjugate
-
[48] Chen, D., et al. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the atg12-Atg5 conjugate. Mol. Cell 45:5 (2012), 629–641.
-
(2012)
Mol. Cell
, vol.45
, Issue.5
, pp. 629-641
-
-
Chen, D.1
-
49
-
-
84937615267
-
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins
-
[49] Brunger, A.T., Cipriano, D.J., Diao, J., Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit. Rev. Biochem. Mol. Biol., 50, 2015.
-
(2015)
Crit. Rev. Biochem. Mol. Biol.
, vol.50
-
-
Brunger, A.T.1
Cipriano, D.J.2
Diao, J.3
-
50
-
-
34548515059
-
An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system
-
[50] Kloepper, T.H., Kienle, C.N., Fasshauer, D., An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol. Biol. Cell 18:9 (2007), 3463–3471.
-
(2007)
Mol. Biol. Cell
, vol.18
, Issue.9
, pp. 3463-3471
-
-
Kloepper, T.H.1
Kienle, C.N.2
Fasshauer, D.3
-
51
-
-
46449111441
-
Mechanics of membrane fusion
-
[51] Chernomordik, L.V., Kozlov, M.M., Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:7 (2008), 675–683.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, Issue.7
, pp. 675-683
-
-
Chernomordik, L.V.1
Kozlov, M.M.2
-
52
-
-
84867582585
-
SNARE mediates autophagosome–lysosome fusion
-
[52] Furuta, N., Amano, A., SNARE mediates autophagosome–lysosome fusion. J. Oral Biosci. 54:2 (2012), 83–85.
-
(2012)
J. Oral Biosci.
, vol.54
, Issue.2
, pp. 83-85
-
-
Furuta, N.1
Amano, A.2
-
53
-
-
33747622293
-
SNAREs–engines for membrane fusion
-
[53] Jahn, R., Scheller, R.H., SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:9 (2006), 631–643.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, Issue.9
, pp. 631-643
-
-
Jahn, R.1
Scheller, R.H.2
-
54
-
-
77949448601
-
Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
-
[54] Furuta, N., et al. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21:6 (2010), 1001–1010.
-
(2010)
Mol. Biol. Cell
, vol.21
, Issue.6
, pp. 1001-1010
-
-
Furuta, N.1
-
55
-
-
72049088519
-
TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways
-
[55] Fader, C.M., et al. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793:12 (2009), 1901–1916.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, Issue.12
, pp. 1901-1916
-
-
Fader, C.M.1
-
56
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
[56] Ravikumar, B., et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:8 (2010), 747–757.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
-
57
-
-
3042735690
-
Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events
-
[57] Pryor, P.R., et al. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5:6 (2004), 590–595.
-
(2004)
EMBO Rep.
, vol.5
, Issue.6
, pp. 590-595
-
-
Pryor, P.R.1
-
58
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
[58] Xie, Z., Klionsky, D.J., Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. V 9:10 (2007), 1102–1109.
-
(2007)
Nat. Cell Biol. V
, vol.9
, Issue.10
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
59
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
[59] Itakura, E., Mizushima, N., Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:6 (2010), 764–776.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
60
-
-
80053300269
-
Autophagy: cells SNARE selves
-
[60] Stroupe, C., Autophagy: cells SNARE selves. Curr. Biol. 21:18 (2011), R697–9.
-
(2011)
Curr. Biol.
, vol.21
, Issue.18
, pp. R697-9
-
-
Stroupe, C.1
-
61
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
[61] Itakura, E., Kishi-Itakura, C., Mizushima, N., The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:6 (2012), 1256–1269.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
62
-
-
84878615771
-
Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
-
[62] Takats, S., et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201:4 (2013), 531–539.
-
(2013)
J. Cell Biol.
, vol.201
, Issue.4
, pp. 531-539
-
-
Takats, S.1
-
63
-
-
84875210462
-
Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
-
[63] Marsh, S.A., et al. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92:11 (2013), 648–656.
-
(2013)
Life Sci.
, vol.92
, Issue.11
, pp. 648-656
-
-
Marsh, S.A.1
-
64
-
-
84900424968
-
Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment
-
[64] Kumar, A., et al. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J. Biol. Chem. 289:19 (2014), 13543–13553.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.19
, pp. 13543-13553
-
-
Kumar, A.1
-
65
-
-
84925284243
-
O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
-
[65] Guo, B., et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:12 (2014), 1215–1226.
-
(2014)
Nat. Cell Biol.
, vol.16
, Issue.12
, pp. 1215-1226
-
-
Guo, B.1
-
66
-
-
84867908726
-
O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases
-
[66] Wang, P., et al. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc. Natl. Acad. Sci. U. S. A. 109:43 (2012), 17669–17674.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, Issue.43
, pp. 17669-17674
-
-
Wang, P.1
-
67
-
-
77956178575
-
Regulation of membrane biogenesis in autophagy via PI3P dynamics
-
[67] Noda, T., et al. Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin. Cell Dev. Biol. 21:7 (2010), 671–676.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, Issue.7
, pp. 671-676
-
-
Noda, T.1
-
68
-
-
79956358522
-
Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
-
[68] Fan, W., Nassiri, A., Zhong, Q., Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). PNAS 108:19 (2011), 7769–7774.
-
(2011)
PNAS
, vol.108
, Issue.19
, pp. 7769-7774
-
-
Fan, W.1
Nassiri, A.2
Zhong, Q.3
-
69
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
-
[69] Matsunaga, K., et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol. 190:4 (2010), 511–521.
-
(2010)
J. Cell Biol.
, vol.190
, Issue.4
, pp. 511-521
-
-
Matsunaga, K.1
-
70
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
[70] Itakura, E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19:12 (2008), 5360–5372.
-
(2008)
Mol. Biol. Cell
, vol.19
, Issue.12
, pp. 5360-5372
-
-
Itakura, E.1
-
71
-
-
64049113909
-
Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
-
[71] Zhong, Y., et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:4 (2009), 468–476.
-
(2009)
Nat. Cell Biol.
, vol.11
, Issue.4
, pp. 468-476
-
-
Zhong, Y.1
-
72
-
-
67650305520
-
Regulation of beclin 1 in autophagy
-
[72] Sun, Q., Fan, W., Zhong, Q., Regulation of beclin 1 in autophagy. Autophagy 5:5 (2009), 713–716.
-
(2009)
Autophagy
, vol.5
, Issue.5
, pp. 713-716
-
-
Sun, Q.1
Fan, W.2
Zhong, Q.3
-
73
-
-
64049086758
-
Two Beclin 1-binding proteins: atg14L and Rubicon, reciprocally regulate autophagy at different stages
-
[73] Matsunaga, K., et al. Two Beclin 1-binding proteins: atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:4 (2009), 385–396.
-
(2009)
Nat. Cell Biol.
, vol.11
, Issue.4
, pp. 385-396
-
-
Matsunaga, K.1
-
74
-
-
84943175009
-
ATG14 controls SNARE-mediated autophagosome fusion with a lysosome
-
[74] Liu, R., Zhi, X., Zhong, Q., ATG14 controls SNARE-mediated autophagosome fusion with a lysosome. Autophagy 11:5 (2015), 847–849.
-
(2015)
Autophagy
, vol.11
, Issue.5
, pp. 847-849
-
-
Liu, R.1
Zhi, X.2
Zhong, Q.3
-
75
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
[75] Hanada, T., et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:52 (2007), 37298–37302.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.52
, pp. 37298-37302
-
-
Hanada, T.1
-
76
-
-
14744268915
-
Processing of ATG8s, ubiquitin-Like proteins, and their deconjugation by ATG4s are essential for plant autophagy
-
[76] Yoshimoto, K., Processing of ATG8s, ubiquitin-Like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell Online 16:11 (2004), 2967–2983.
-
(2004)
Plant Cell Online
, vol.16
, Issue.11
, pp. 2967-2983
-
-
Yoshimoto, K.1
-
77
-
-
84892161646
-
The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
-
[77] Slobodkin, M.R., Elazar, Z., The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55 (2013), 51–64.
-
(2013)
Essays Biochem.
, vol.55
, pp. 51-64
-
-
Slobodkin, M.R.1
Elazar, Z.2
-
78
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
[78] Kabeya, Y., et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117:13 (2004), 2805–2812.
-
(2004)
J. Cell Sci.
, vol.117
, Issue.13
, pp. 2805-2812
-
-
Kabeya, Y.1
-
79
-
-
34447098106
-
A ubiquitin-like protein involved in membrane fusion
-
[79] Subramani, S., Farre, J.C., A ubiquitin-like protein involved in membrane fusion. Cell 130:1 (2007), 18–20.
-
(2007)
Cell
, vol.130
, Issue.1
, pp. 18-20
-
-
Subramani, S.1
Farre, J.C.2
-
80
-
-
47549092694
-
Atg8 controls phagophore expansion during autophagosome formation
-
[80] Xie, Z., Nair, U., Klionsky, D.J., Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19 (2008), 3290–3298.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3290-3298
-
-
Xie, Z.1
Nair, U.2
Klionsky, D.J.3
-
81
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
[81] Nakatogawa, H., Ichimura, Y., Ohsumi, Y., Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:1 (2007), 165–178.
-
(2007)
Cell
, vol.130
, Issue.1
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
82
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
[82] Kabeya, Y., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:21 (2000), 5720–5728.
-
(2000)
EMBO J.
, vol.19
, Issue.21
, pp. 5720-5728
-
-
Kabeya, Y.1
-
83
-
-
79954544250
-
LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
-
[83] Weidberg, H., et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:4 (2011), 444–454.
-
(2011)
Dev. Cell
, vol.20
, Issue.4
, pp. 444-454
-
-
Weidberg, H.1
-
84
-
-
84879148115
-
Studying protein-reconstituted proteoliposome fusion with content indicators in vitro
-
[84] Diao, J.J., et al. Studying protein-reconstituted proteoliposome fusion with content indicators in vitro. Bioessays 35:7 (2013), 658–665.
-
(2013)
Bioessays
, vol.35
, Issue.7
, pp. 658-665
-
-
Diao, J.J.1
-
85
-
-
84928732864
-
Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion
-
[85] Lai, Y., et al. Lipid molecules influence early stages of yeast SNARE-mediated membrane fusion. Phys. Biol., 12(2), 2015, 025003.
-
(2015)
Phys. Biol.
, vol.12
, Issue.2
, pp. 025003
-
-
Lai, Y.1
-
86
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
[86] Xie, Z., Klionsky, D.J., Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:10 (2007), 1102–1109.
-
(2007)
Nat. Cell Biol.
, vol.9
, Issue.10
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
87
-
-
84869210001
-
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
-
[87] Romanov, J., et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 31:22 (2012), 4304–4317.
-
(2012)
EMBO J.
, vol.31
, Issue.22
, pp. 4304-4317
-
-
Romanov, J.1
-
88
-
-
84884220705
-
Diverse autophagosome membrane sources coalesce in recycling endosomes
-
[88] Puri, C., et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154:6 (2013), 1285–1299.
-
(2013)
Cell
, vol.154
, Issue.6
, pp. 1285-1299
-
-
Puri, C.1
-
89
-
-
0031841313
-
Vam7p: a SNAP-25-Like molecule, and vam3p, a syntaxin homolog, function together in yeast vacuolar protein traffickin
-
[89] Sato, T.K., Darsow, T., Emr, S.D., Vam7p: a SNAP-25-Like molecule, and vam3p, a syntaxin homolog, function together in yeast vacuolar protein traffickin. Mol. Cell. Biol. 18:9 (1998), 5308–5319.
-
(1998)
Mol. Cell. Biol.
, vol.18
, Issue.9
, pp. 5308-5319
-
-
Sato, T.K.1
Darsow, T.2
Emr, S.D.3
|