메뉴 건너뛰기




Volumn 7, Issue 1, 2015, Pages 99-108

Integrative analysis of '-omics' data using penalty functions

Author keywords

Integrative analysis; Marker selection; Omics data; Penalization

Indexed keywords

WIRE;

EID: 84919463849     PISSN: 19395108     EISSN: 19390068     Source Type: Journal    
DOI: 10.1002/wics.1322     Document Type: Article
Times cited : (40)

References (55)
  • 1
    • 84878020180 scopus 로고    scopus 로고
    • Meta-analysis methods for genome-wide association studies and beyond
    • Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 2013, 14:379-389.
    • (2013) Nat Rev Genet , vol.14 , pp. 379-389
    • Evangelou, E.1    Ioannidis, J.P.A.2
  • 4
    • 84870063111 scopus 로고    scopus 로고
    • iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple chip-seq datasets
    • Wei Y, Li X, Wang Q-f, Ji H. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple chip-seq datasets. BMC Genomics 2012, 13:681.
    • (2012) BMC Genomics , vol.13 , pp. 681
    • Wei, Y.1    Li, X.2    Wang, Q.-f.3    Ji, H.4
  • 5
    • 79959834606 scopus 로고    scopus 로고
    • Integrative analysis of many weighted co-expression networks using tensor computation
    • Li W, Liu C-C, Zhang T, Li H, Waterman MS, Zhou XJ. Integrative analysis of many weighted co-expression networks using tensor computation. PLoS Comput Biol 2011, 7:e1001106.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1001106
    • Li, W.1    Liu, C.-C.2    Zhang, T.3    Li, H.4    Waterman, M.S.5    Zhou, X.J.6
  • 6
    • 84876068958 scopus 로고    scopus 로고
    • Sparse integrative clustering of multiple omics data sets
    • Shen R, Wang S, Mo Q. Sparse integrative clustering of multiple omics data sets. Ann Appl Stat 2013, 7:269-294.
    • (2013) Ann Appl Stat , vol.7 , pp. 269-294
    • Shen, R.1    Wang, S.2    Mo, Q.3
  • 7
    • 79959422007 scopus 로고    scopus 로고
    • An integrative clustering and modeling algorithm for dynamical gene expression data
    • Sivriver J, Habib N, Friedman N. An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinformatics 2011, 27:392-400.
    • (2011) Bioinformatics , vol.27 , pp. 392-400
    • Sivriver, J.1    Habib, N.2    Friedman, N.3
  • 8
    • 84868152524 scopus 로고    scopus 로고
    • Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
    • Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012, 40:9379-9391.
    • (2012) Nucleic Acids Res , vol.40 , pp. 9379-9391
    • Zhang, S.1    Liu, C.-C.2    Li, W.3    Shen, H.4    Laird, P.W.5    Zhou, X.J.6
  • 9
    • 80052691824 scopus 로고    scopus 로고
    • Integrative analysis and variable selection with multiple high-dimensional data sets
    • Ma S, Huang J, Song X. Integrative analysis and variable selection with multiple high-dimensional data sets. Biostatistics 2011, 12:763-775.
    • (2011) Biostatistics , vol.12 , pp. 763-775
    • Ma, S.1    Huang, J.2    Song, X.3
  • 10
    • 81955167998 scopus 로고    scopus 로고
    • Integrative analysis of multiple cancer prognosis studies with gene expression measurements
    • Ma S, Huang J, Wei F, Xie Y, Fang K. Integrative analysis of multiple cancer prognosis studies with gene expression measurements. Stat Med 2011, 30:3361-3371.
    • (2011) Stat Med , vol.30 , pp. 3361-3371
    • Ma, S.1    Huang, J.2    Wei, F.3    Xie, Y.4    Fang, K.5
  • 11
    • 84869128714 scopus 로고    scopus 로고
    • Integrative analysis of cancer prognosis data with multiple subtypes using regularized gradient descent
    • Ma S, Zhang Y, Huang J, Huang Y, Lan Q, Rothman N, Zheng T. Integrative analysis of cancer prognosis data with multiple subtypes using regularized gradient descent. Genet Epidemiol 2012, 36:829-838.
    • (2012) Genet Epidemiol , vol.36 , pp. 829-838
    • Ma, S.1    Zhang, Y.2    Huang, J.3    Huang, Y.4    Lan, Q.5    Rothman, N.6    Zheng, T.7
  • 12
    • 84919463594 scopus 로고    scopus 로고
    • Variable selection, sparse meta-analysis and genetic risk prediction for genome-wide association studies. PhD Thesis, University of North Carolina at Chapel Hill
    • He Q. Variable selection, sparse meta-analysis and genetic risk prediction for genome-wide association studies. PhD Thesis, University of North Carolina at Chapel Hill, 2012.
    • (2012)
    • He, Q.1
  • 13
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • Huang J, Ma S, Xie H, Zhang C-H. A group bridge approach for variable selection. Biometrika 2009, 96:339-355.
    • (2009) Biometrika , vol.96 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.-H.4
  • 14
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 2009, 37:3468-3497.
    • (2009) Ann Stat , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 15
    • 79959342076 scopus 로고    scopus 로고
    • Penalized methods for bi-level variable selection
    • Breheny P, Huang J. Penalized methods for bi-level variable selection. Stat Interface 2009, 2:369-380.
    • (2009) Stat Interface , vol.2 , pp. 369-380
    • Breheny, P.1    Huang, J.2
  • 16
    • 84894276903 scopus 로고    scopus 로고
    • Integrative analysis of cancer diagnosis studies with composite penalization
    • Liu J, Ma S, Huang J. Integrative analysis of cancer diagnosis studies with composite penalization. Scand J Stat 2014, 41:87-103.
    • (2014) Scand J Stat , vol.41 , pp. 87-103
    • Liu, J.1    Ma, S.2    Huang, J.3
  • 17
    • 84871557274 scopus 로고    scopus 로고
    • A selective review of group selection in high-dimensional models
    • Huang J, Breheny P, Ma S. A selective review of group selection in high-dimensional models. Stat Sci 2012, 27:481-499.
    • (2012) Stat Sci , vol.27 , pp. 481-499
    • Huang, J.1    Breheny, P.2    Ma, S.3
  • 18
    • 84919463005 scopus 로고    scopus 로고
    • Variable fusion: a new adaptive signal regression method. Technical Report 656, Department of Statistics, Stanford University, Available at:
    • Land SR, Friedman JH. Variable fusion: a new adaptive signal regression method. Technical Report 656, Department of Statistics, Stanford University, 1996. Available at: http://www.stat.cmu.edu/tr/tr656/tr656.html.
    • (1996)
    • Land, S.R.1    Friedman, J.H.2
  • 19
    • 84858077893 scopus 로고    scopus 로고
    • The smooth-Lasso and other l1+l2 -penalized methods
    • Hebiri M, van de Geer S. The smooth-Lasso and other l1+l2 -penalized methods. Electron J Stat 2011, 5:1184-1226.
    • (2011) Electron J Stat , vol.5 , pp. 1184-1226
    • Hebiri, M.1    van de Geer, S.2
  • 20
    • 84895920054 scopus 로고    scopus 로고
    • A penalized robust method for identifying gene-environment interactions
    • Shi X, Liu J, Huang J, Zhou Y, Xie Y, Ma S. A penalized robust method for identifying gene-environment interactions. Genet Epidemiol 2014, 38:220-230.
    • (2014) Genet Epidemiol , vol.38 , pp. 220-230
    • Shi, X.1    Liu, J.2    Huang, J.3    Zhou, Y.4    Xie, Y.5    Ma, S.6
  • 21
    • 84919463593 scopus 로고    scopus 로고
    • The Mnet method for variable selection. Technical Report 402, Department of Statistics, University of Iowa, Available at:
    • Huang J, Breheny P, Ma S, Zhang C-H. The Mnet method for variable selection. Technical Report 402, Department of Statistics, University of Iowa, 2010. Available at: http://www.stat.uiowa.edu/files/stat/techrep/tr402.pdf.
    • (2010)
    • Huang, J.1    Breheny, P.2    Ma, S.3    Zhang, C.-H.4
  • 22
    • 84904682712 scopus 로고    scopus 로고
    • Challenges of big data analysis
    • Available at:
    • Fan J, Han F, Liu H. Challenges of big data analysis. 2013. Available at: http://arxiv.org/abs/1308.1479.
    • (2013)
    • Fan, J.1    Han, F.2    Liu, H.3
  • 23
    • 84872392871 scopus 로고    scopus 로고
    • Incorporating network structure in integrative analysis of cancer prognosis data
    • Liu J, Huang J, Ma S. Incorporating network structure in integrative analysis of cancer prognosis data. Genet Epidemiol 2013, 37:173-183.
    • (2013) Genet Epidemiol , vol.37 , pp. 173-183
    • Liu, J.1    Huang, J.2    Ma, S.3
  • 24
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:45.
    • (2005) Stat Appl Genet Mol Biol , vol.4 , pp. 45
    • Zhang, B.1    Horvath, S.2
  • 26
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol 2006, 68:49-67.
    • (2006) J R Stat Soc Ser B Stat Methodol , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 27
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: the bridge versus the Lasso
    • Fu WJ. Penalized regressions: the bridge versus the Lasso. J Comput Graph Stat 1998, 7:397-416.
    • (1998) J Comput Graph Stat , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 29
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for Lasso penalized regression
    • Wu TT, Lange K. Coordinate descent algorithms for Lasso penalized regression. Ann Appl Stat 2008, 2:224-244.
    • (2008) Ann Appl Stat , vol.2 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 30
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • Communicated by O.L. Mangasarian.
    • Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl 2001, 109:475-494. Communicated by O.L. Mangasarian.
    • (2001) J Optim Theory Appl , vol.109 , pp. 475-494
    • Tseng, P.1
  • 31
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann Appl Stat 2011, 5:232-253.
    • (2011) Ann Appl Stat , vol.5 , pp. 232-253
    • Breheny, P.1    Huang, J.2
  • 32
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Stat Methodol 1996, 58:267-288.
    • (1996) J R Stat Soc Ser B Stat Methodol , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • Wang H, Li R, Tsai C-L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 2007, 94:553-568.
    • (2007) Biometrika , vol.94 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.-L.3
  • 34
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criteria for model selection with large model spaces
    • Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95:759-771.
    • (2008) Biometrika , vol.95 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 35
    • 66849138434 scopus 로고    scopus 로고
    • Shrinkage tuning parameter selection with a diverging number of parameters
    • Wang H, Li B, Leng C. Shrinkage tuning parameter selection with a diverging number of parameters. J R Stat Soc Ser B Stat Methodol 2009, 71:671-683.
    • (2009) J R Stat Soc Ser B Stat Methodol , vol.71 , pp. 671-683
    • Wang, H.1    Li, B.2    Leng, C.3
  • 36
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the Lasso
    • Zou H, Hastie T, Tibshirani R. On the "degrees of freedom" of the Lasso. Ann Stat 2007, 35:2173-2192.
    • (2007) Ann Stat , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 37
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001, 96:1348-1360.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 38
    • 84908078845 scopus 로고    scopus 로고
    • Consistent cross-validation for tuning parameter selection in high-dimensional variable selection
    • Feng Y, Yu Y. Consistent cross-validation for tuning parameter selection in high-dimensional variable selection. http://arxiv.org/abs/1308.5390. 2013.
    • (2013)
    • Feng, Y.1    Yu, Y.2
  • 39
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang C-H. Nearly unbiased variable selection under minimax concave penalty. Ann Stat 2010, 38:894-942.
    • (2010) Ann Stat , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 40
    • 80052694528 scopus 로고    scopus 로고
    • Sparsenet: coordinate descent with nonconvex penalties
    • Mazumder R, Friedman JH, Hastie T. Sparsenet: coordinate descent with nonconvex penalties. J Am Stat Assoc 2011, 106:1125-1138.
    • (2011) J Am Stat Assoc , vol.106 , pp. 1125-1138
    • Mazumder, R.1    Friedman, J.H.2    Hastie, T.3
  • 41
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Tseng P, Yun S. A coordinate gradient descent method for nonsmooth separable minimization. Math Program 2009, 117:387-423.
    • (2009) Math Program , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 43
    • 84886289686 scopus 로고    scopus 로고
    • Identification of gene-environment interactions in cancer studies using penalization
    • Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T, Ma S. Identification of gene-environment interactions in cancer studies using penalization. Genomics 2013, 102:189-194.
    • (2013) Genomics , vol.102 , pp. 189-194
    • Liu, J.1    Huang, J.2    Zhang, Y.3    Lan, Q.4    Rothman, N.5    Zheng, T.6    Ma, S.7
  • 44
    • 84927692214 scopus 로고    scopus 로고
    • Integrative analysis of prognosis data on multiple cancer subtypes using penalization
    • Liu J, Huang J, Zhang Y, Lan Q, Nothman N, Zheng T, Ma S. Integrative analysis of prognosis data on multiple cancer subtypes using penalization. Biometrics 2014. doi:10.1111/biom.12177.
    • (2014) Biometrics
    • Liu, J.1    Huang, J.2    Zhang, Y.3    Lan, Q.4    Nothman, N.5    Zheng, T.6    Ma, S.7
  • 45
    • 34249004618 scopus 로고    scopus 로고
    • Dimension reduction and coefficient estimation in multivariate linear regression
    • Yuan M, Ekici A, Lu Z, Monteiro R. Dimension reduction and coefficient estimation in multivariate linear regression. J R Stat Soc Ser B Stat Methodol 2007, 69:329-346.
    • (2007) J R Stat Soc Ser B Stat Methodol , vol.69 , pp. 329-346
    • Yuan, M.1    Ekici, A.2    Lu, Z.3    Monteiro, R.4
  • 46
    • 42149156031 scopus 로고    scopus 로고
    • Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
    • Costa I, Krause R, Opitz L, Schliep A. Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data. BMC Bioinformatics 2007, 8:S3.
    • (2007) BMC Bioinformatics , vol.8 , pp. S3
    • Costa, I.1    Krause, R.2    Opitz, L.3    Schliep, A.4
  • 47
    • 84919463314 scopus 로고    scopus 로고
    • Collaborative regression
    • Gross SM, Tibshirani R. Collaborative regression. http://arxiv.org/abs/1401.5823. 2014.
    • (2014)
    • Gross, S.M.1    Tibshirani, R.2
  • 48
    • 84862804849 scopus 로고    scopus 로고
    • Identification of breast cancer prognosis markers via integrative analysis
    • Ma S, Dai Y, Huang J, Xie Y. Identification of breast cancer prognosis markers via integrative analysis. Comput Stat Data Anal 2012, 56:2718-2728.
    • (2012) Comput Stat Data Anal , vol.56 , pp. 2718-2728
    • Ma, S.1    Dai, Y.2    Huang, J.3    Xie, Y.4
  • 49
    • 84891835103 scopus 로고    scopus 로고
    • Confidence intervals for low dimensional parameters in high dimensional linear models
    • Zhang C-H, Zhang SS. Confidence intervals for low dimensional parameters in high dimensional linear models. J R Stat Soc Ser B Stat Methodol 2014, 76:217-242.
    • (2014) J R Stat Soc Ser B Stat Methodol , vol.76 , pp. 217-242
    • Zhang, C.-H.1    Zhang, S.S.2
  • 51
    • 84919463503 scopus 로고    scopus 로고
    • Confidence intervals and hypothesis testing for high-dimensional regression
    • Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression. http://arxiv.org/abs/1306.3171. 2014.
    • (2014)
    • Javanmard, A.1    Montanari, A.2
  • 52
    • 84901725783 scopus 로고    scopus 로고
    • Post-selection adaptive inference for least angle regression and the Lasso
    • Taylor J, Lockhart R, Tibshirani RJ, Tibshirani R. Post-selection adaptive inference for least angle regression and the Lasso. http://arxiv.org/abs/1401.3889. 2014.
    • (2014)
    • Taylor, J.1    Lockhart, R.2    Tibshirani, R.J.3    Tibshirani, R.4
  • 53
    • 84897740465 scopus 로고    scopus 로고
    • On asymptotically optimal confidence regions and tests for high-dimensional models
    • van de Geer S, Bühlmann P, Ritov Y, Dezeure R. On asymptotically optimal confidence regions and tests for high-dimensional models. http://arxiv.org/abs/1303.0518. 2013.
    • (2013)
    • van de Geer, S.1    Bühlmann, P.2    Ritov, Y.3    Dezeure, R.4
  • 54
    • 84919463886 scopus 로고    scopus 로고
    • On various confidence intervals post-model-selection
    • Leeb H, Poetscher BM, Ewald K. On various confidence intervals post-model-selection. http://arxiv.org/abs/1401.2267. 2014.
    • (2014)
    • Leeb, H.1    Poetscher, B.M.2    Ewald, K.3
  • 55
    • 84919463313 scopus 로고    scopus 로고
    • Inference in high dimensions with the penalized score test
    • Voorman A, Shojaie A, Witten D. Inference in high dimensions with the penalized score test. http://arxiv.org/abs/1401.2678. 2014.
    • (2014)
    • Voorman, A.1    Shojaie, A.2    Witten, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.