-
1
-
-
84878020180
-
Meta-analysis methods for genome-wide association studies and beyond
-
Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 2013, 14:379-389.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 379-389
-
-
Evangelou, E.1
Ioannidis, J.P.A.2
-
2
-
-
84875707717
-
GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer
-
Pharoah PDP, Tsai Y-Y, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013, 45:362-370.
-
(2013)
Nat Genet
, vol.45
, pp. 362-370
-
-
Pharoah, P.D.P.1
Tsai, Y.-Y.2
Ramus, S.J.3
Phelan, C.M.4
Goode, E.L.5
Lawrenson, K.6
Buckley, M.7
Fridley, B.L.8
Tyrer, J.P.9
Shen, H.10
-
3
-
-
78649489009
-
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
-
Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010, 42:1118-1125.
-
(2010)
Nat Genet
, vol.42
, pp. 1118-1125
-
-
Franke, A.1
McGovern, D.P.B.2
Barrett, J.C.3
Wang, K.4
Radford-Smith, G.L.5
Ahmad, T.6
Lees, C.W.7
Balschun, T.8
Lee, J.9
Roberts, R.10
-
4
-
-
84870063111
-
iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple chip-seq datasets
-
Wei Y, Li X, Wang Q-f, Ji H. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple chip-seq datasets. BMC Genomics 2012, 13:681.
-
(2012)
BMC Genomics
, vol.13
, pp. 681
-
-
Wei, Y.1
Li, X.2
Wang, Q.-f.3
Ji, H.4
-
5
-
-
79959834606
-
Integrative analysis of many weighted co-expression networks using tensor computation
-
Li W, Liu C-C, Zhang T, Li H, Waterman MS, Zhou XJ. Integrative analysis of many weighted co-expression networks using tensor computation. PLoS Comput Biol 2011, 7:e1001106.
-
(2011)
PLoS Comput Biol
, vol.7
, pp. e1001106
-
-
Li, W.1
Liu, C.-C.2
Zhang, T.3
Li, H.4
Waterman, M.S.5
Zhou, X.J.6
-
6
-
-
84876068958
-
Sparse integrative clustering of multiple omics data sets
-
Shen R, Wang S, Mo Q. Sparse integrative clustering of multiple omics data sets. Ann Appl Stat 2013, 7:269-294.
-
(2013)
Ann Appl Stat
, vol.7
, pp. 269-294
-
-
Shen, R.1
Wang, S.2
Mo, Q.3
-
7
-
-
79959422007
-
An integrative clustering and modeling algorithm for dynamical gene expression data
-
Sivriver J, Habib N, Friedman N. An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinformatics 2011, 27:392-400.
-
(2011)
Bioinformatics
, vol.27
, pp. 392-400
-
-
Sivriver, J.1
Habib, N.2
Friedman, N.3
-
8
-
-
84868152524
-
Discovery of multi-dimensional modules by integrative analysis of cancer genomic data
-
Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 2012, 40:9379-9391.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 9379-9391
-
-
Zhang, S.1
Liu, C.-C.2
Li, W.3
Shen, H.4
Laird, P.W.5
Zhou, X.J.6
-
9
-
-
80052691824
-
Integrative analysis and variable selection with multiple high-dimensional data sets
-
Ma S, Huang J, Song X. Integrative analysis and variable selection with multiple high-dimensional data sets. Biostatistics 2011, 12:763-775.
-
(2011)
Biostatistics
, vol.12
, pp. 763-775
-
-
Ma, S.1
Huang, J.2
Song, X.3
-
10
-
-
81955167998
-
Integrative analysis of multiple cancer prognosis studies with gene expression measurements
-
Ma S, Huang J, Wei F, Xie Y, Fang K. Integrative analysis of multiple cancer prognosis studies with gene expression measurements. Stat Med 2011, 30:3361-3371.
-
(2011)
Stat Med
, vol.30
, pp. 3361-3371
-
-
Ma, S.1
Huang, J.2
Wei, F.3
Xie, Y.4
Fang, K.5
-
11
-
-
84869128714
-
Integrative analysis of cancer prognosis data with multiple subtypes using regularized gradient descent
-
Ma S, Zhang Y, Huang J, Huang Y, Lan Q, Rothman N, Zheng T. Integrative analysis of cancer prognosis data with multiple subtypes using regularized gradient descent. Genet Epidemiol 2012, 36:829-838.
-
(2012)
Genet Epidemiol
, vol.36
, pp. 829-838
-
-
Ma, S.1
Zhang, Y.2
Huang, J.3
Huang, Y.4
Lan, Q.5
Rothman, N.6
Zheng, T.7
-
12
-
-
84919463594
-
-
Variable selection, sparse meta-analysis and genetic risk prediction for genome-wide association studies. PhD Thesis, University of North Carolina at Chapel Hill
-
He Q. Variable selection, sparse meta-analysis and genetic risk prediction for genome-wide association studies. PhD Thesis, University of North Carolina at Chapel Hill, 2012.
-
(2012)
-
-
He, Q.1
-
13
-
-
66249102619
-
A group bridge approach for variable selection
-
Huang J, Ma S, Xie H, Zhang C-H. A group bridge approach for variable selection. Biometrika 2009, 96:339-355.
-
(2009)
Biometrika
, vol.96
, pp. 339-355
-
-
Huang, J.1
Ma, S.2
Xie, H.3
Zhang, C.-H.4
-
14
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat 2009, 37:3468-3497.
-
(2009)
Ann Stat
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
15
-
-
79959342076
-
Penalized methods for bi-level variable selection
-
Breheny P, Huang J. Penalized methods for bi-level variable selection. Stat Interface 2009, 2:369-380.
-
(2009)
Stat Interface
, vol.2
, pp. 369-380
-
-
Breheny, P.1
Huang, J.2
-
16
-
-
84894276903
-
Integrative analysis of cancer diagnosis studies with composite penalization
-
Liu J, Ma S, Huang J. Integrative analysis of cancer diagnosis studies with composite penalization. Scand J Stat 2014, 41:87-103.
-
(2014)
Scand J Stat
, vol.41
, pp. 87-103
-
-
Liu, J.1
Ma, S.2
Huang, J.3
-
17
-
-
84871557274
-
A selective review of group selection in high-dimensional models
-
Huang J, Breheny P, Ma S. A selective review of group selection in high-dimensional models. Stat Sci 2012, 27:481-499.
-
(2012)
Stat Sci
, vol.27
, pp. 481-499
-
-
Huang, J.1
Breheny, P.2
Ma, S.3
-
18
-
-
84919463005
-
-
Variable fusion: a new adaptive signal regression method. Technical Report 656, Department of Statistics, Stanford University, Available at:
-
Land SR, Friedman JH. Variable fusion: a new adaptive signal regression method. Technical Report 656, Department of Statistics, Stanford University, 1996. Available at: http://www.stat.cmu.edu/tr/tr656/tr656.html.
-
(1996)
-
-
Land, S.R.1
Friedman, J.H.2
-
19
-
-
84858077893
-
The smooth-Lasso and other l1+l2 -penalized methods
-
Hebiri M, van de Geer S. The smooth-Lasso and other l1+l2 -penalized methods. Electron J Stat 2011, 5:1184-1226.
-
(2011)
Electron J Stat
, vol.5
, pp. 1184-1226
-
-
Hebiri, M.1
van de Geer, S.2
-
20
-
-
84895920054
-
A penalized robust method for identifying gene-environment interactions
-
Shi X, Liu J, Huang J, Zhou Y, Xie Y, Ma S. A penalized robust method for identifying gene-environment interactions. Genet Epidemiol 2014, 38:220-230.
-
(2014)
Genet Epidemiol
, vol.38
, pp. 220-230
-
-
Shi, X.1
Liu, J.2
Huang, J.3
Zhou, Y.4
Xie, Y.5
Ma, S.6
-
21
-
-
84919463593
-
-
The Mnet method for variable selection. Technical Report 402, Department of Statistics, University of Iowa, Available at:
-
Huang J, Breheny P, Ma S, Zhang C-H. The Mnet method for variable selection. Technical Report 402, Department of Statistics, University of Iowa, 2010. Available at: http://www.stat.uiowa.edu/files/stat/techrep/tr402.pdf.
-
(2010)
-
-
Huang, J.1
Breheny, P.2
Ma, S.3
Zhang, C.-H.4
-
22
-
-
84904682712
-
Challenges of big data analysis
-
Available at:
-
Fan J, Han F, Liu H. Challenges of big data analysis. 2013. Available at: http://arxiv.org/abs/1308.1479.
-
(2013)
-
-
Fan, J.1
Han, F.2
Liu, H.3
-
23
-
-
84872392871
-
Incorporating network structure in integrative analysis of cancer prognosis data
-
Liu J, Huang J, Ma S. Incorporating network structure in integrative analysis of cancer prognosis data. Genet Epidemiol 2013, 37:173-183.
-
(2013)
Genet Epidemiol
, vol.37
, pp. 173-183
-
-
Liu, J.1
Huang, J.2
Ma, S.3
-
24
-
-
23944458138
-
A general framework for weighted gene co-expression network analysis
-
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:45.
-
(2005)
Stat Appl Genet Mol Biol
, vol.4
, pp. 45
-
-
Zhang, B.1
Horvath, S.2
-
26
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol 2006, 68:49-67.
-
(2006)
J R Stat Soc Ser B Stat Methodol
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
27
-
-
0032361278
-
Penalized regressions: the bridge versus the Lasso
-
Fu WJ. Penalized regressions: the bridge versus the Lasso. J Comput Graph Stat 1998, 7:397-416.
-
(1998)
J Comput Graph Stat
, vol.7
, pp. 397-416
-
-
Fu, W.J.1
-
28
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman J, Hastie T, Höfling H, Tibshirani R. Pathwise coordinate optimization. Ann Appl Stat 2007, 1:302-332.
-
(2007)
Ann Appl Stat
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
29
-
-
84863879353
-
Coordinate descent algorithms for Lasso penalized regression
-
Wu TT, Lange K. Coordinate descent algorithms for Lasso penalized regression. Ann Appl Stat 2008, 2:224-244.
-
(2008)
Ann Appl Stat
, vol.2
, pp. 224-244
-
-
Wu, T.T.1
Lange, K.2
-
30
-
-
0035533631
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
Communicated by O.L. Mangasarian.
-
Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl 2001, 109:475-494. Communicated by O.L. Mangasarian.
-
(2001)
J Optim Theory Appl
, vol.109
, pp. 475-494
-
-
Tseng, P.1
-
31
-
-
80053013888
-
Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
-
Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann Appl Stat 2011, 5:232-253.
-
(2011)
Ann Appl Stat
, vol.5
, pp. 232-253
-
-
Breheny, P.1
Huang, J.2
-
32
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Stat Methodol 1996, 58:267-288.
-
(1996)
J R Stat Soc Ser B Stat Methodol
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
33
-
-
34548536572
-
Tuning parameter selectors for the smoothly clipped absolute deviation method
-
Wang H, Li R, Tsai C-L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 2007, 94:553-568.
-
(2007)
Biometrika
, vol.94
, pp. 553-568
-
-
Wang, H.1
Li, R.2
Tsai, C.-L.3
-
34
-
-
50949108781
-
Extended Bayesian information criteria for model selection with large model spaces
-
Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95:759-771.
-
(2008)
Biometrika
, vol.95
, pp. 759-771
-
-
Chen, J.1
Chen, Z.2
-
35
-
-
66849138434
-
Shrinkage tuning parameter selection with a diverging number of parameters
-
Wang H, Li B, Leng C. Shrinkage tuning parameter selection with a diverging number of parameters. J R Stat Soc Ser B Stat Methodol 2009, 71:671-683.
-
(2009)
J R Stat Soc Ser B Stat Methodol
, vol.71
, pp. 671-683
-
-
Wang, H.1
Li, B.2
Leng, C.3
-
36
-
-
34548536008
-
On the "degrees of freedom" of the Lasso
-
Zou H, Hastie T, Tibshirani R. On the "degrees of freedom" of the Lasso. Ann Stat 2007, 35:2173-2192.
-
(2007)
Ann Stat
, vol.35
, pp. 2173-2192
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
-
37
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 2001, 96:1348-1360.
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
38
-
-
84908078845
-
Consistent cross-validation for tuning parameter selection in high-dimensional variable selection
-
Feng Y, Yu Y. Consistent cross-validation for tuning parameter selection in high-dimensional variable selection. http://arxiv.org/abs/1308.5390. 2013.
-
(2013)
-
-
Feng, Y.1
Yu, Y.2
-
39
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang C-H. Nearly unbiased variable selection under minimax concave penalty. Ann Stat 2010, 38:894-942.
-
(2010)
Ann Stat
, vol.38
, pp. 894-942
-
-
Zhang, C.-H.1
-
40
-
-
80052694528
-
Sparsenet: coordinate descent with nonconvex penalties
-
Mazumder R, Friedman JH, Hastie T. Sparsenet: coordinate descent with nonconvex penalties. J Am Stat Assoc 2011, 106:1125-1138.
-
(2011)
J Am Stat Assoc
, vol.106
, pp. 1125-1138
-
-
Mazumder, R.1
Friedman, J.H.2
Hastie, T.3
-
41
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
Tseng P, Yun S. A coordinate gradient descent method for nonsmooth separable minimization. Math Program 2009, 117:387-423.
-
(2009)
Math Program
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
43
-
-
84886289686
-
Identification of gene-environment interactions in cancer studies using penalization
-
Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T, Ma S. Identification of gene-environment interactions in cancer studies using penalization. Genomics 2013, 102:189-194.
-
(2013)
Genomics
, vol.102
, pp. 189-194
-
-
Liu, J.1
Huang, J.2
Zhang, Y.3
Lan, Q.4
Rothman, N.5
Zheng, T.6
Ma, S.7
-
44
-
-
84927692214
-
Integrative analysis of prognosis data on multiple cancer subtypes using penalization
-
Liu J, Huang J, Zhang Y, Lan Q, Nothman N, Zheng T, Ma S. Integrative analysis of prognosis data on multiple cancer subtypes using penalization. Biometrics 2014. doi:10.1111/biom.12177.
-
(2014)
Biometrics
-
-
Liu, J.1
Huang, J.2
Zhang, Y.3
Lan, Q.4
Nothman, N.5
Zheng, T.6
Ma, S.7
-
45
-
-
34249004618
-
Dimension reduction and coefficient estimation in multivariate linear regression
-
Yuan M, Ekici A, Lu Z, Monteiro R. Dimension reduction and coefficient estimation in multivariate linear regression. J R Stat Soc Ser B Stat Methodol 2007, 69:329-346.
-
(2007)
J R Stat Soc Ser B Stat Methodol
, vol.69
, pp. 329-346
-
-
Yuan, M.1
Ekici, A.2
Lu, Z.3
Monteiro, R.4
-
46
-
-
42149156031
-
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
-
Costa I, Krause R, Opitz L, Schliep A. Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data. BMC Bioinformatics 2007, 8:S3.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. S3
-
-
Costa, I.1
Krause, R.2
Opitz, L.3
Schliep, A.4
-
47
-
-
84919463314
-
Collaborative regression
-
Gross SM, Tibshirani R. Collaborative regression. http://arxiv.org/abs/1401.5823. 2014.
-
(2014)
-
-
Gross, S.M.1
Tibshirani, R.2
-
48
-
-
84862804849
-
Identification of breast cancer prognosis markers via integrative analysis
-
Ma S, Dai Y, Huang J, Xie Y. Identification of breast cancer prognosis markers via integrative analysis. Comput Stat Data Anal 2012, 56:2718-2728.
-
(2012)
Comput Stat Data Anal
, vol.56
, pp. 2718-2728
-
-
Ma, S.1
Dai, Y.2
Huang, J.3
Xie, Y.4
-
49
-
-
84891835103
-
Confidence intervals for low dimensional parameters in high dimensional linear models
-
Zhang C-H, Zhang SS. Confidence intervals for low dimensional parameters in high dimensional linear models. J R Stat Soc Ser B Stat Methodol 2014, 76:217-242.
-
(2014)
J R Stat Soc Ser B Stat Methodol
, vol.76
, pp. 217-242
-
-
Zhang, C.-H.1
Zhang, S.S.2
-
50
-
-
84879164483
-
Valid post-selection inference
-
Berk R, Brown L, Buja A, Zhang K, Zhao L. Valid post-selection inference. Ann Stat 2013, 41:802-837.
-
(2013)
Ann Stat
, vol.41
, pp. 802-837
-
-
Berk, R.1
Brown, L.2
Buja, A.3
Zhang, K.4
Zhao, L.5
-
51
-
-
84919463503
-
Confidence intervals and hypothesis testing for high-dimensional regression
-
Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression. http://arxiv.org/abs/1306.3171. 2014.
-
(2014)
-
-
Javanmard, A.1
Montanari, A.2
-
52
-
-
84901725783
-
Post-selection adaptive inference for least angle regression and the Lasso
-
Taylor J, Lockhart R, Tibshirani RJ, Tibshirani R. Post-selection adaptive inference for least angle regression and the Lasso. http://arxiv.org/abs/1401.3889. 2014.
-
(2014)
-
-
Taylor, J.1
Lockhart, R.2
Tibshirani, R.J.3
Tibshirani, R.4
-
53
-
-
84897740465
-
On asymptotically optimal confidence regions and tests for high-dimensional models
-
van de Geer S, Bühlmann P, Ritov Y, Dezeure R. On asymptotically optimal confidence regions and tests for high-dimensional models. http://arxiv.org/abs/1303.0518. 2013.
-
(2013)
-
-
van de Geer, S.1
Bühlmann, P.2
Ritov, Y.3
Dezeure, R.4
-
54
-
-
84919463886
-
On various confidence intervals post-model-selection
-
Leeb H, Poetscher BM, Ewald K. On various confidence intervals post-model-selection. http://arxiv.org/abs/1401.2267. 2014.
-
(2014)
-
-
Leeb, H.1
Poetscher, B.M.2
Ewald, K.3
-
55
-
-
84919463313
-
Inference in high dimensions with the penalized score test
-
Voorman A, Shojaie A, Witten D. Inference in high dimensions with the penalized score test. http://arxiv.org/abs/1401.2678. 2014.
-
(2014)
-
-
Voorman, A.1
Shojaie, A.2
Witten, D.3
|