메뉴 건너뛰기




Volumn 31, Issue 16, 2015, Pages 2683-2690

Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; GENETIC DATABASE; HUMAN; PRINCIPAL COMPONENT ANALYSIS; PROCEDURES; SAMPLE SIZE; SOFTWARE;

EID: 84939536998     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv197     Document Type: Article
Times cited : (15)

References (27)
  • 2
    • 77952566299 scopus 로고    scopus 로고
    • High-dimensional Cox models: The choice of penalty as part of the model building process
    • IEEE. Benner, A. et al. (2010) High-dimensional Cox models: The choice of penalty as part of the model building process. Biometr. J. , 52, 50-69.
    • (2010) Biometr. J. , vol.52 , pp. 50-69
    • IEEE. Benner, A.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a) Bagging predictors. Mach. Learn. , 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996b) Heuristics of instability and stabilization in model selection. Ann. Stat. , 24, 2350-2383.
    • (1996) Ann. Stat. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Mach. Learn. , 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart, C. and Young, G. (1936) The approximation of one matrix by another of lower rank. Psychometrika, 1, 211-218.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. , 96, 1348-1360.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 0001247934 scopus 로고
    • A note on the use of principal components in regression
    • Jolliffe, I. T. (1982) A note on the use of principal components in regression. Appl. Stat. , 31, 300
    • (1982) Appl. Stat. , vol.31 , pp. 300
    • Jolliffe, I.T.1
  • 9
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the LASSO
    • Jolliffe, I. T. et al. (2003) A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. , 12, 531-547.
    • (2003) J. Comput. Graph. Stat , vol.12 , pp. 531-547
    • Jolliffe, I.T.1
  • 10
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung, S. and Marron, J. (2009) PCA consistency in high dimension, low sample size context. Ann. Stat. , 37, 4104-4130.
    • (2009) Ann. Stat. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.2
  • 11
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. , 28, 27-30.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 12
    • 59549093642 scopus 로고    scopus 로고
    • ArrayQualityMetrics: A bioconductor package for quality assessment of microarray data
    • Kauffmann, A. et al. (2009) arrayQualityMetrics: A bioconductor package for quality assessment of microarray data. Bioinformatics, 25, 415-416.
    • (2009) Bioinformatics , vol.25 , pp. 415-416
    • Kauffmann, A.1
  • 13
    • 84860698188 scopus 로고    scopus 로고
    • Consistent model selection criteria on high dimensions
    • Kim, Y. et al. (2012) Consistent model selection criteria on high dimensions. J. Mach. Learn. Res. , 13, 1037-1057.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1037-1057
    • Kim, Y.1
  • 14
    • 78650059908 scopus 로고    scopus 로고
    • Biclustering via sparse singular value decomposition
    • Lee, M. et al. (2010) Biclustering via sparse singular value decomposition. Biometrics, 66, 1087-1095.
    • (2010) Biometrics , vol.66 , pp. 1087-1095
    • Lee, M.1
  • 15
    • 80052160144 scopus 로고    scopus 로고
    • Principal component analysis based methods in bioinformatics studies
    • Ma, S. and Dai, Y. (2011) Principal component analysis based methods in bioinformatics studies. Brief. Bioinf. , 12, 714-722.
    • (2011) Brief. Bioinf. , vol.12 , pp. 714-722
    • Ma, S.1    Dai, Y.2
  • 16
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Ann. Stat. , 34, 1436-1462.
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 18
    • 80053980912 scopus 로고    scopus 로고
    • Fstl5 is a marker of poor prognosis in non-wnt/nonshh medulloblastoma
    • Remke, M. et al. (2011) Fstl5 is a marker of poor prognosis in non-wnt/nonshh medulloblastoma. J. Clin. Oncol. , 29, 3852-3861.
    • (2011) J. Clin. Oncol. , vol.29 , pp. 3852-3861
    • Remke, M.1
  • 19
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • Shen, D. et al. (2013) Consistency of sparse pca in high dimension, low sample size contexts. J. Multivar. Anal. , 115, 317-333.
    • (2013) J. Multivar. Anal. , vol.115 , pp. 317-333
    • Shen, D.1
  • 20
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen, H. and Huang, J. (2008) Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. , 99, 1015-1034.
    • (2008) J. Multivar. Anal. , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 21
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 79952610099 scopus 로고    scopus 로고
    • HTSanalyzeR: An R/Bioconductor package for integrated network analysis of high-throughput screens
    • Wang, X. et al. (2011) HTSanalyzeR: An R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics, 27, 879-880.
    • (2011) Bioinformatics , vol.27 , pp. 879-880
    • Wang, X.1
  • 23
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D. M. et al. (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10, 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1
  • 24
    • 84908070948 scopus 로고    scopus 로고
    • A sparse singular value decomposition method for highdimensional data
    • Yang, D. et al. (2014) A sparse singular value decomposition method for highdimensional data. J. Comput. Graph. Stat. , 23, 923-942.
    • (2014) J. Comput. Graph. Stat. , vol.23 , pp. 923-942
    • Yang, D.1
  • 25
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res. , 7, 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 26
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO and its oracle properties
    • Zou, H. (2006) The adaptive LASSO and its oracle properties. J. Am. Stat. Assoc. , 101, 1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 27
    • 29544445896 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • Zou, H. et al. (2004) Sparse principal component analysis. J. Comput. Graph. Stat. , 15, 1-30.
    • (2004) J. Comput. Graph. Stat. , vol.15 , pp. 1-30
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.