메뉴 건너뛰기




Volumn 44, Issue 10, 2014, Pages 1871-1883

Efficient model selection for mixtures of probabilistic PCA via hierarchical BIC

Author keywords

BIC; clustering; expectation maximization; mixture model; model selection; principal component analysis

Indexed keywords

BIC; CLUSTERING; EXPECTATION - MAXIMIZATIONS; MIXTURE MODEL; MODEL SELECTION;

EID: 84907203415     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2298401     Document Type: Article
Times cited : (21)

References (33)
  • 2
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • Jan
    • N. Kambhatla and T. K. Leen, "Dimension reduction by local principal component analysis," Neural Comput., vol. 9, no. 7, pp. 1493-1516, Jan. 1997
    • (1997) Neural Comput , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 3
    • 0030737323 scopus 로고    scopus 로고
    • Modelling the manifolds of handwritten digits
    • Jan
    • G. Hinton, P. Dayan, and M. Revow, "Modelling the manifolds of handwritten digits," IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 65-74, Jan. 1997
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.1 , pp. 65-74
    • Hinton, G.1    Dayan, P.2    Revow, M.3
  • 4
    • 85153963785 scopus 로고
    • Recognizing handwritten digits using mixtures of linear models
    • G. Hinton, M. Revow, and P. Dayan, "Recognizing handwritten digits using mixtures of linear models," in Proc. Adv. Neural Inf. Process. Syst., 1995, pp. 1015-1022
    • (1995) Proc. Adv. Neural Inf. Process. Syst , pp. 1015-1022
    • Hinton, G.1    Revow, M.2    Dayan, P.3
  • 5
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • M. E. Tipping and C. M. Bishop, "Mixtures of probabilistic principal component analysers," Neural Comput., vol. 11, no. 2, pp. 443-482, 1999
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data using the em algorithm (with discussion)
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data using the EM algorithm (with discussion)," J. Roy. Stat. Soc. Ser. B, Stat. Methodol., vol. 39, no. 1, pp. 1-38, 1977
    • (1977) J. Roy. Stat. Soc. Ser. B, Stat. Methodol , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • Sep
    • P. D. McNicholas and T. B. Murphy, "Parsimonious Gaussian mixture models," Statist. Comput., vol. 18, no. 3, pp. 285-296, Sep. 2008
    • (2008) Statist. Comput , vol.18 , Issue.3 , pp. 285-296
    • Mc Nicholas, P.D.1    Murphy, T.B.2
  • 8
    • 0033330629 scopus 로고    scopus 로고
    • Optimal dimension reduction and transform coding with mixture principal components
    • C. Archer and T. K. Leen, "Optimal dimension reduction and transform coding with mixture principal components," in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2, 1996, pp. 916-920
    • (1996) Proc IEEE Int. Joint Conf. Neural Netw , vol.2 , pp. 916-920
    • Archer, C.1    Leen, T.K.2
  • 9
    • 0011187885 scopus 로고    scopus 로고
    • Resolution-based complexity control for Gaussian mixture
    • P. Meinicke and H. Ritter, "Resolution-based complexity control for Gaussian mixture," Neural Comput., vol. 13, no. 2, pp. 453-475, 2001
    • (2001) Neural Comput , vol.13 , Issue.2 , pp. 453-475
    • Meinicke, P.1    Ritter, H.2
  • 10
    • 14344262272 scopus 로고    scopus 로고
    • Automated hierarchical mixtures of probabilistic principal component analyzers
    • T. Su and J. G. Dy, "Automated hierarchical mixtures of probabilistic principal component analyzers," in Proc. 21th Int. Conf. Mach. Learn., 2004, pp. 775-782
    • (2004) Proc. 21th Int. Conf. Mach. Learn , pp. 775-782
    • Su, T.1    Dy, J.G.2
  • 11
    • 2942586816 scopus 로고    scopus 로고
    • Almost autonomous training of mixtures of principal component analyzers
    • M. E. M. Musa, D. de Ridder, R. P. W. Duin, and V. Atalay, "Almost autonomous training of mixtures of principal component analyzers," Pattern Recognit. Lett., vol. 25, no. 9, pp. 1085-1095, 2004
    • (2004) Pattern Recognit. Lett , vol.25 , Issue.9 , pp. 1085-1095
    • Musa, M.E.M.1    De Ridder, D.2    Duin, R.P.W.3    Atalay, V.4
  • 12
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • Mar
    • M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381-396, Mar. 2002
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 15
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixture of factor analysers
    • Z. Ghahramani and M. Beal, "Variational inference for Bayesian mixture of factor analysers," in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 449-455
    • (2000) Proc. Adv. Neural Inf. Process. Syst , pp. 449-455
    • Ghahramani, Z.1    Beal, M.2
  • 16
    • 84864278926 scopus 로고    scopus 로고
    • The infinite student's t-factor mixture analyzer for robust clustering and classification
    • X. Wei and Z. Yang, "The infinite student's t-factor mixture analyzer for robust clustering and classification," Pattern Recognit., vol. 45, no. 12, pp. 4346-4357, 2012
    • (2012) Pattern Recognit , vol.45 , Issue.12 , pp. 4346-4357
    • Wei, X.1    Yang, Z.2
  • 17
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • May
    • C. Constantinopoulos and A. Likas, "Unsupervised learning of Gaussian mixtures based on variational component splitting," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 745-755, May 2007
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461-464, 1978
    • (1978) Ann. Statist , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 20
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley and A. E. Raftery, "Model-based clustering, discriminant analysis, and density estimation," J. Amer. Statist. Assoc., vol. 97, no. 458, pp. 611-631, 2002
    • (2002) J. Amer. Statist. Assoc , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 21
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • J. L. Andrews and P. D. McNicholas, "Extending mixtures of multivariate t-factor analyzers." Statist. Comput., vol. 21, no. 3, pp. 361-373, 2011
    • (2011) Statist. Comput , vol.21 , Issue.3 , pp. 361-373
    • Andrews, J.L.1    Mc Nicholas, P.D.2
  • 22
    • 4644228752 scopus 로고    scopus 로고
    • A comparative investigation on subspace dimension determination
    • X. L. Hu and L. Xu, "A comparative investigation on subspace dimension determination," Neural Netw., vol. 17, nos. 8-9, pp. 1051-1059, 2004
    • (2004) Neural Netw , vol.17 , Issue.8-9 , pp. 1051-1059
    • Hu, X.L.1    Xu, L.2
  • 23
    • 34250622804 scopus 로고    scopus 로고
    • Bayesian quadratic discriminant analysis
    • S. Srivastava, M. R. Gupta, and B. A. Frigyik, "Bayesian quadratic discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 6, pp. 1277-1305, 2007
    • (2007) J. Mach. Learn. Res , vol.8 , Issue.6 , pp. 1277-1305
    • Srivastava, S.1    Gupta, M.R.2    Frigyik, B.A.3
  • 24
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • J. H. Friedman, "Regularized discriminant analysis," J. Amer. Statist. Assoc., vol. 84, no. 405, pp. 165-175, 1989
    • (1989) J. Amer. Statist. Assoc , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.H.1
  • 25
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Jul
    • C. Biernacki, G. Celeux, and G. Govaert, "Assessing a mixture model for clustering with the integrated completed likelihood," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 7, pp. 719-725, Jul. 2000
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 27
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert and P. Arabie, "Comparing partitions," J. Classif., vol. 2, no. 1, pp. 193-218, 1985
    • (1985) J. Classif , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 28
    • 69449103358 scopus 로고    scopus 로고
    • A note on variational Bayesian factor analysis
    • J. Zhao and P. L. H. Yu, "A note on variational Bayesian factor analysis," Neural Netw., vol. 22, no. 7, pp. 988-997, 2009
    • (2009) Neural Netw , vol.22 , Issue.7 , pp. 988-997
    • Zhao, J.1    Yu, P.L.H.2
  • 29
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high-dimensional data by mixtures of factor analyzers
    • G. J. McLachlan, D. Peel, and R. W. Bean, "Modelling high-dimensional data by mixtures of factor analyzers," Comput. Statist. Data Anal., vol. 41, nos. 3-4, pp. 379-388, 2003
    • (2003) Comput. Statist. Data Anal , vol.41 , Issue.3-4 , pp. 379-388
    • Mc Lachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 30
    • 56449104991 scopus 로고    scopus 로고
    • Fast ML estimation for the mixture of factor analyzers via an ECM algorithm
    • Nov
    • J. Zhao and P. L. H. Yu, "Fast ML estimation for the mixture of factor analyzers via an ECM algorithm," IEEE Trans. Neural Netw., vol. 19, no. 11, pp. 1956-1961, Nov. 2008
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.11 , pp. 1956-1961
    • Zhao, J.1    Yu, P.L.H.2
  • 31
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
    • Jul
    • J. Baek, G. J. McLachlan, and L. K. Flack, "Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1298-1309, Jul. 2010
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.7 , pp. 1298-1309
    • Baek, J.1    Mc Lachlan, G.J.2    Flack, L.K.3
  • 32
    • 33646014240 scopus 로고    scopus 로고
    • Convergence and asymptotic normality of variational bayesian approximations for exponential family models with missing values
    • B. Wang and D. M. Titterington, "Convergence and asymptotic normality of variational bayesian approximations for exponential family models with missing values," in Proc. Uncertain. Artif. Intell., 2004, pp. 577-584
    • (2004) Proc. Uncertain. Artif. Intell , pp. 577-584
    • Wang, B.1    Titterington, D.M.2
  • 33
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • H. Attias, "Inferring parameters and structure of latent variable models by variational Bayes," in Proc. 15th Uncertain. Artif. Intell., 1999, pp. 21-30.
    • (1999) Proc. 15th Uncertain. Artif. Intell , pp. 21-30
    • Attias, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.