-
1
-
-
33751203862
-
SnapShot: cellular bodies
-
1 Spector, D.L., SnapShot: cellular bodies. Cell 127 (2006), 1071.e1–1071.e2.
-
(2006)
Cell
, vol.127
, pp. 1071.e1-1071.e2
-
-
Spector, D.L.1
-
2
-
-
84881146010
-
Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation
-
2 Barbarese, E., et al. Conditional knockout of tumor overexpressed gene in mouse neurons affects RNA granule assembly, granule translation, LTP and short term habituation. PLoS ONE, 8, 2013, e69989.
-
(2013)
PLoS ONE
, vol.8
, pp. e69989
-
-
Barbarese, E.1
-
3
-
-
67649976463
-
Germline P granules are liquid droplets that localize by controlled dissolution/condensation
-
3 Brangwynne, C.P., et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324 (2009), 1729–1732.
-
(2009)
Science
, vol.324
, pp. 1729-1732
-
-
Brangwynne, C.P.1
-
4
-
-
66249103703
-
RNA granules: post-transcriptional and epigenetic modulators of gene expression
-
4 Anderson, P., Kedersha, N., RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10 (2009), 430–436.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 430-436
-
-
Anderson, P.1
Kedersha, N.2
-
5
-
-
72149095755
-
Eukaryotic stress granules: the ins and outs of translation
-
5 Buchan, J.R., Parker, R., Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36 (2009), 932–941.
-
(2009)
Mol. Cell
, vol.36
, pp. 932-941
-
-
Buchan, J.R.1
Parker, R.2
-
6
-
-
33847417585
-
P bodies and the control of mRNA translation and degradation
-
6 Parker, R., Sheth, U., P bodies and the control of mRNA translation and degradation. Mol. Cell 25 (2007), 635–646.
-
(2007)
Mol. Cell
, vol.25
, pp. 635-646
-
-
Parker, R.1
Sheth, U.2
-
7
-
-
84955625345
-
ATPase-modulated stress granules contain a diverse proteome and substructure
-
7 Jain, S., et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164 (2016), 487–498.
-
(2016)
Cell
, vol.164
, pp. 487-498
-
-
Jain, S.1
-
8
-
-
84918594125
-
Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage
-
8 Aizer, A., et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J. Cell Sci. 127 (2014), 4443–4456.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4443-4456
-
-
Aizer, A.1
-
9
-
-
56149086182
-
P bodies promote stress granule assembly in Saccharomyces cerevisiae
-
9 Buchan, J.R., et al. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183 (2008), 441–455.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 441-455
-
-
Buchan, J.R.1
-
10
-
-
22344455246
-
Stress granules and processing bodies are dynamically linked sites of mRNP remodeling
-
10 Kedersha, N., et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169 (2005), 871–884.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 871-884
-
-
Kedersha, N.1
-
11
-
-
33744973775
-
Relief of microRNA-mediated translational repression in human cells subjected to stress
-
11 Bhattacharyya, S.N., et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125 (2006), 1111–1124.
-
(2006)
Cell
, vol.125
, pp. 1111-1124
-
-
Bhattacharyya, S.N.1
-
12
-
-
27144515901
-
Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies
-
12 Brengues, M., et al. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310 (2005), 486–489.
-
(2005)
Science
, vol.310
, pp. 486-489
-
-
Brengues, M.1
-
13
-
-
84879349589
-
Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
-
13 Buchan, J.R., et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153 (2013), 1461–1474.
-
(2013)
Cell
, vol.153
, pp. 1461-1474
-
-
Buchan, J.R.1
-
14
-
-
33845445765
-
Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies
-
14 Barbee, S.A., et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52 (2006), 997–1009.
-
(2006)
Neuron
, vol.52
, pp. 997-1009
-
-
Barbee, S.A.1
-
15
-
-
84878661360
-
Stress granules as crucibles of ALS pathogenesis
-
15 Li, Y.R., et al. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201 (2013), 361–372.
-
(2013)
J. Cell Biol.
, vol.201
, pp. 361-372
-
-
Li, Y.R.1
-
16
-
-
84882801549
-
Altered ribostasis: RNA–protein granules in degenerative disorders
-
16 Ramaswami, M., et al. Altered ribostasis: RNA–protein granules in degenerative disorders. Cell 154 (2013), 727–736.
-
(2013)
Cell
, vol.154
, pp. 727-736
-
-
Ramaswami, M.1
-
17
-
-
60149086205
-
mRNA localization: gene expression in the spatial dimension
-
17 Martin, K.C., Ephrussi, A., mRNA localization: gene expression in the spatial dimension. Cell 136 (2009), 719–730.
-
(2009)
Cell
, vol.136
, pp. 719-730
-
-
Martin, K.C.1
Ephrussi, A.2
-
18
-
-
80053625750
-
Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR
-
18 Damgaard, C.K., Lykke-Andersen, J., Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR. Genes Dev. 25 (2011), 2057–2068.
-
(2011)
Genes Dev.
, vol.25
, pp. 2057-2068
-
-
Damgaard, C.K.1
Lykke-Andersen, J.2
-
19
-
-
84920847059
-
mRNP granules: assembly, function, and connections with disease
-
19 Buchan, J.R., mRNP granules: assembly, function, and connections with disease. RNA Biol. 11 (2014), 1019–1030.
-
(2014)
RNA Biol.
, vol.11
, pp. 1019-1030
-
-
Buchan, J.R.1
-
20
-
-
84947125502
-
Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress
-
20 Cherkasov, V., et al. Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Lett. 589 (2015), 3654–3664.
-
(2015)
FEBS Lett.
, vol.589
, pp. 3654-3664
-
-
Cherkasov, V.1
-
21
-
-
84941339084
-
Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress
-
21 Wallace, E.W.J., et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162 (2015), 1286–1298.
-
(2015)
Cell
, vol.162
, pp. 1286-1298
-
-
Wallace, E.W.J.1
-
22
-
-
70350367745
-
Unravelling the ultrastructure of stress granules and associated P-bodies in human cells
-
22 Souquere, S., et al. Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J. Cell Sci. 122 (2009), 3619–3626.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3619-3626
-
-
Souquere, S.1
-
23
-
-
79952723337
-
Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
-
23 Brangwynne, C.P., et al. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci.U.S.A. 108 (2011), 4334–4339.
-
(2011)
Proc. Natl. Acad. Sci.U.S.A.
, vol.108
, pp. 4334-4339
-
-
Brangwynne, C.P.1
-
24
-
-
77951229432
-
Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells
-
24 Sheth, U., et al. Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development. 137 (2010), 1305–1314.
-
(2010)
Development.
, vol.137
, pp. 1305-1314
-
-
Sheth, U.1
-
25
-
-
84926529027
-
Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans
-
25 Wang, J.T., et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Elife., 3, 2015, e04591.
-
(2015)
Elife.
, vol.3
, pp. e04591
-
-
Wang, J.T.1
-
26
-
-
84928938522
-
Independent and coordinate trafficking of single Drosophila germ plasm mRNAs
-
26 Little, S.C., et al. Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat. Cell Biol. 17 (2015), 558–568.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 558-568
-
-
Little, S.C.1
-
27
-
-
9444279617
-
Stress granule assembly is mediated by prion-like aggregation of TIA-1
-
27 Gilks, N., et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15 (2004), 5383–5398.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 5383-5398
-
-
Gilks, N.1
-
28
-
-
0037451173
-
The RasGAP-associated endoribonuclease G3BP assembles stress granules
-
28 Tourriere, H., The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160 (2003), 823–831.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 823-831
-
-
Tourriere, H.1
-
29
-
-
33947210861
-
Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs
-
29 Solomon, S., et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol. Cell Biol. 27 (2007), 2324–2342.
-
(2007)
Mol. Cell Biol.
, vol.27
, pp. 2324-2342
-
-
Solomon, S.1
-
30
-
-
84971547291
-
G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits
-
30 Kedersha, N., et al. G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212 (2016), 845–860.
-
(2016)
J. Cell Biol.
, vol.212
, pp. 845-860
-
-
Kedersha, N.1
-
31
-
-
84912083665
-
Stress granule-defective mutants deregulate stress responsive transcripts
-
31 Yang, X., et al. Stress granule-defective mutants deregulate stress responsive transcripts. PLoS Genet., 10, 2014, e1004763.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004763
-
-
Yang, X.1
-
32
-
-
40949135034
-
Regulation of stress granule dynamics by Grb7 and FAK signalling pathway
-
32 Tsai, N.P., et al. Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO J. 27 (2008), 715–726.
-
(2008)
EMBO J.
, vol.27
, pp. 715-726
-
-
Tsai, N.P.1
-
33
-
-
84874040052
-
Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
-
33 Wippich, F., et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152 (2013), 791–805.
-
(2013)
Cell
, vol.152
, pp. 791-805
-
-
Wippich, F.1
-
34
-
-
84923878820
-
Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
-
34 Nott, T.J., et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57 (2015), 936–947.
-
(2015)
Mol. Cell
, vol.57
, pp. 936-947
-
-
Nott, T.J.1
-
35
-
-
52949122554
-
TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules
-
35 Goulet, I., et al. TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum. Mol. Genet. 17 (2008), 3055–3074.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 3055-3074
-
-
Goulet, I.1
-
36
-
-
53349165578
-
A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly
-
[Internet]. 2008 Jan 1; Available from:
-
36 Ohn, T., et al. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat. Cell. Biol., 2008 [Internet]. 2008 Jan 1; Available from: http://www.nature.com/ncb/journal/v10/n10/abs/ncb1783.htmlhttp://www.nature.com/ncb/journal/v10/n10/abs/ncb1783.html.
-
(2008)
Nat. Cell. Biol.
-
-
Ohn, T.1
-
37
-
-
37449030154
-
The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response
-
37 Kwon, S., et al. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 21 (2007), 3381–3394.
-
(2007)
Genes Dev.
, vol.21
, pp. 3381-3394
-
-
Kwon, S.1
-
38
-
-
79955957616
-
Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm
-
38 Leung, A.K.L., et al. Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell. 42 (2011), 489–499.
-
(2011)
Mol. Cell.
, vol.42
, pp. 489-499
-
-
Leung, A.K.L.1
-
39
-
-
84944884978
-
Formation and maturation of phase-separated liquid droplets by RNA-binding proteins
-
39 Lin, Y., et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60 (2015), 208–219.
-
(2015)
Mol. Cell
, vol.60
, pp. 208-219
-
-
Lin, Y.1
-
40
-
-
84944907005
-
Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
-
40 Molliex, A., et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163 (2015), 123–133.
-
(2015)
Cell
, vol.163
, pp. 123-133
-
-
Molliex, A.1
-
41
-
-
84940503517
-
Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules
-
41 Kroschwald, S., et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife, 4, 2015, e06807.
-
(2015)
Elife
, vol.4
, pp. e06807
-
-
Kroschwald, S.1
-
42
-
-
84930960021
-
The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
-
42 Elbaum-Garfinkle, S., et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 7189–7194.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 7189-7194
-
-
Elbaum-Garfinkle, S.1
-
43
-
-
79955497151
-
P granules extend the nuclear pore complex environment in the C. elegans germ line
-
43 Updike, D.L., et al. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192 (2011), 939–948.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 939-948
-
-
Updike, D.L.1
-
44
-
-
35948951960
-
Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
-
44 Decker, C.J., et al. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol. 179 (2007), 437–449.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 437-449
-
-
Decker, C.J.1
-
45
-
-
84860872161
-
Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
-
45 Kato, M., et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149 (2012), 753–767.
-
(2012)
Cell
, vol.149
, pp. 753-767
-
-
Kato, M.1
-
46
-
-
50249131374
-
A role for Q/N-rich aggregation-prone regions in P-body localization
-
46 Reijns, M.A.M., et al. A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell Sci. 121:Pt 15 (2008), 2463–2472.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2463-2472
-
-
Reijns, M.A.M.1
-
47
-
-
79955506243
-
PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans
-
47 Hanazawa, M., et al. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J. Cell Biol. 192 (2011), 929–937.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 929-937
-
-
Hanazawa, M.1
-
48
-
-
84943801809
-
Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles
-
48 Hennig, S., et al. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J. Cell Biol. 1210 (2015), 529–539.
-
(2015)
J. Cell Biol.
, vol.1210
, pp. 529-539
-
-
Hennig, S.1
-
49
-
-
84890703972
-
The role of disordered protein regions in the assembly of decapping complexes and RNP granules
-
49 Jonas, S., Izaurralde, E., The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 27 (2013), 2628–2641.
-
(2013)
Genes Dev.
, vol.27
, pp. 2628-2641
-
-
Jonas, S.1
Izaurralde, E.2
-
50
-
-
79960040173
-
An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity
-
50 Guo, W., et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat. Struct. Mol. Biol. 18 (2011), 822–830.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 822-830
-
-
Guo, W.1
-
51
-
-
84940403835
-
A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
-
51 Patel, A., et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162 (2015), 1066–1077.
-
(2015)
Cell
, vol.162
, pp. 1066-1077
-
-
Patel, A.1
-
52
-
-
84944884155
-
RNA controls PolyQ protein phase transitions
-
52 Zhang, H., et al. RNA controls PolyQ protein phase transitions. Mol. Cell 60 (2015), 220–230.
-
(2015)
Mol. Cell
, vol.60
, pp. 220-230
-
-
Zhang, H.1
-
53
-
-
84946221201
-
The LC domain of hnRNPA2 Adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei
-
53 Xiang, S., et al. The LC domain of hnRNPA2 Adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163 (2015), 829–839.
-
(2015)
Cell
, vol.163
, pp. 829-839
-
-
Xiang, S.1
-
54
-
-
84890793288
-
Coordination of translational control and protein homeostasis during severe heat stress
-
54 Cherkasov, V., et al. Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23 (2013), 2452–2462.
-
(2013)
Curr. Biol.
, vol.23
, pp. 2452-2462
-
-
Cherkasov, V.1
-
55
-
-
73649097951
-
Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells
-
55 Chernov, K.G., et al. Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells. J. Biol. Chem. 284 (2009), 36569–36580.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 36569-36580
-
-
Chernov, K.G.1
-
56
-
-
70450285065
-
Dynein and kinesin regulate stress-granule and P-body dynamics
-
56 Loschi, M., et al. Dynein and kinesin regulate stress-granule and P-body dynamics. J. Cell Sci. 122 (2009), 3973–3982.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 3973-3982
-
-
Loschi, M.1
-
57
-
-
77249160149
-
Microtubules govern stress granule mobility and dynamics
-
57 Nadezhdina, E.S., et al. Microtubules govern stress granule mobility and dynamics. Biochim. Biophys. Acta BBA – Mol. Cell Res. 1803 (2010), 361–371.
-
(2010)
Biochim. Biophys. Acta BBA – Mol. Cell Res.
, vol.1803
, pp. 361-371
-
-
Nadezhdina, E.S.1
-
58
-
-
84886617003
-
Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development
-
58 Hubstenberger, A., et al. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev. Cell 27 (2013), 161–173.
-
(2013)
Dev. Cell
, vol.27
, pp. 161-173
-
-
Hubstenberger, A.1
-
59
-
-
80053022305
-
The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F–mRNA complex
-
59 Hilliker, A., et al. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F–mRNA complex. Mol. Cell 43 (2011), 962–972.
-
(2011)
Mol. Cell
, vol.43
, pp. 962-972
-
-
Hilliker, A.1
-
60
-
-
58049192398
-
Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain
-
60 Chalupnikova, K., et al. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J. Biol. Chem. 283 (2008), 35186–35198.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35186-35198
-
-
Chalupnikova, K.1
-
61
-
-
84887175099
-
The minichromosome maintenance replicative helicase
-
61 Bell, S.D., Botchan, M.R., The minichromosome maintenance replicative helicase. Cold Spring Harb. Perspect. Biol., 5, 2013, a012807.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a012807
-
-
Bell, S.D.1
Botchan, M.R.2
-
62
-
-
84959530090
-
HIV-1 exploits the host factor RuvB-like 2 to balance viral protein expression
-
62 Mu, X., et al. HIV-1 exploits the host factor RuvB-like 2 to balance viral protein expression. Cell Host Microbe 18 (2015), 233–242.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 233-242
-
-
Mu, X.1
-
63
-
-
84907059487
-
The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis
-
63 Meyer, H., Weihl, C.C., The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci. 127 (2014), 3877–3883.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3877-3883
-
-
Meyer, H.1
Weihl, C.C.2
-
64
-
-
34347406608
-
Inhibition of the ubiquitin–proteasome system induces stress granule formation
-
64 Mazroui, R., et al. Inhibition of the ubiquitin–proteasome system induces stress granule formation. Mol. Biol. Cell 18 (2007), 2603–2618.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2603-2618
-
-
Mazroui, R.1
-
65
-
-
84939780690
-
Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae
-
65 Walters, R.W., et al. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21 (2015), 1660–1671.
-
(2015)
RNA
, vol.21
, pp. 1660-1671
-
-
Walters, R.W.1
-
66
-
-
84862264020
-
Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies
-
66 Vanderweyde, T., et al. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32 (2012), 8270–8283.
-
(2012)
J. Neurosci.
, vol.32
, pp. 8270-8283
-
-
Vanderweyde, T.1
-
67
-
-
84865060036
-
Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity
-
67 Onomoto, K., et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE, 7, 2012, e43031.
-
(2012)
PLoS ONE
, vol.7
, pp. e43031
-
-
Onomoto, K.1
-
68
-
-
84923066571
-
The stress granule protein G3BP1 recruits protein kinase r to promote multiple innate immune antiviral responses
-
68 Reineke, L.C., Lloyd, R.E., The stress granule protein G3BP1 recruits protein kinase r to promote multiple innate immune antiviral responses. J. Virol. 89 (2015), 2575–2589.
-
(2015)
J. Virol.
, vol.89
, pp. 2575-2589
-
-
Reineke, L.C.1
Lloyd, R.E.2
-
69
-
-
84928787115
-
Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and caprin1
-
69 Reineke, L.C., et al. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and caprin1. MBio, 6, 2015, e02486.
-
(2015)
MBio
, vol.6
, pp. e02486
-
-
Reineke, L.C.1
-
70
-
-
84872675863
-
Diversion of stress granules and P-bodies during viral infection
-
70 Reineke, L.C., Lloyd, R.E., Diversion of stress granules and P-bodies during viral infection. Virology 436 (2013), 255–267.
-
(2013)
Virology
, vol.436
, pp. 255-267
-
-
Reineke, L.C.1
Lloyd, R.E.2
-
71
-
-
55549130760
-
Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways
-
71 Arimoto, K., et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10 (2008), 1324–1332.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1324-1332
-
-
Arimoto, K.1
-
72
-
-
14844360344
-
Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions
-
72 Kim, W.J., et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell Biol. 25 (2005), 2450–2462.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 2450-2462
-
-
Kim, W.J.1
-
73
-
-
84864308260
-
Transient sequestration of TORC1 into stress granules during heat stress
-
73 Takahara, T., Maeda, T., Transient sequestration of TORC1 into stress granules during heat stress. Mol. Cell 47 (2012), 242–252.
-
(2012)
Mol. Cell
, vol.47
, pp. 242-252
-
-
Takahara, T.1
Maeda, T.2
-
74
-
-
84882800242
-
Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells
-
74 Thedieck, K., et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154 (2013), 859–874.
-
(2013)
Cell
, vol.154
, pp. 859-874
-
-
Thedieck, K.1
-
75
-
-
84874927677
-
Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing
-
75 Klar, J., et al. Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum. Mutat. 34 (2013), 572–577.
-
(2013)
Hum. Mutat.
, vol.34
, pp. 572-577
-
-
Klar, J.1
-
76
-
-
78649941297
-
Exome sequencing reveals VCP mutations as a cause of familial ALS
-
76 Johnson, J.O., et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68 (2010), 857–864.
-
(2010)
Neuron
, vol.68
, pp. 857-864
-
-
Johnson, J.O.1
-
77
-
-
40449133507
-
Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia
-
77 Kimonis, V.E., et al. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am. J. Med. Genet. A 146A (2008), 745–757.
-
(2008)
Am. J. Med. Genet. A
, vol.146A
, pp. 745-757
-
-
Kimonis, V.E.1
-
78
-
-
84957045630
-
Autophagy in motor neuron disease: key pathogenetic mechanisms and therapeutic targets
-
78 Cipolat Mis, M.S., et al. Autophagy in motor neuron disease: key pathogenetic mechanisms and therapeutic targets. Mol. Cell Neurosci. 72 (2016), 84–90.
-
(2016)
Mol. Cell Neurosci.
, vol.72
, pp. 84-90
-
-
Cipolat Mis, M.S.1
-
79
-
-
84962854690
-
Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy
-
79 Li, S., et al. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum. Mol. Genet. 25 (2016), 936–950.
-
(2016)
Hum. Mol. Genet.
, vol.25
, pp. 936-950
-
-
Li, S.1
-
80
-
-
84940925534
-
GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport
-
80 Freibaum, B.D., et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525 (2015), 129–133.
-
(2015)
Nature
, vol.525
, pp. 129-133
-
-
Freibaum, B.D.1
-
81
-
-
84881490873
-
Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis
-
81 Ling, S.-C., et al. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79 (2013), 416–438.
-
(2013)
Neuron
, vol.79
, pp. 416-438
-
-
Ling, S.-C.1
-
82
-
-
84940923271
-
The C9orf72 repeat expansion disrupts nucleocytoplasmic transport
-
82 Zhang, K., et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525 (2015), 56–61.
-
(2015)
Nature
, vol.525
, pp. 56-61
-
-
Zhang, K.1
-
84
-
-
84952935587
-
Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells
-
84 Adjibade, P., et al. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells. Oncotarget 6 (2015), 43927–43943.
-
(2015)
Oncotarget
, vol.6
, pp. 43927-43943
-
-
Adjibade, P.1
-
85
-
-
84903215050
-
5-Fluorouracil affects assembly of stress granules based on RNA incorporation
-
85 Kaehler, C., et al. 5-Fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res. 42 (2014), 6436–6447.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6436-6447
-
-
Kaehler, C.1
-
86
-
-
84928252446
-
YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1
-
86 Somasekharan, S.P., et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J. Cell Biol. 208 (2015), 913–929.
-
(2015)
J. Cell Biol.
, vol.208
, pp. 913-929
-
-
Somasekharan, S.P.1
|