메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol

Author keywords

Biochemical; Biofuel; Biorefinery; Glycerol; Metabolic engineering

Indexed keywords

BIOCONVERSION; FEEDSTOCKS; GLYCEROL; METABOLIC ENGINEERING; METABOLISM; ORGANIC CHEMICALS; REFINING;

EID: 84990821347     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0625-8     Document Type: Review
Times cited : (87)

References (93)
  • 1
    • 84878414591 scopus 로고    scopus 로고
    • Fermentation of glycerol and production of valuable chemical and biofuel molecules
    • Jose A, James M. Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett. 2013;35:831-42.
    • (2013) Biotechnol Lett , vol.35 , pp. 831-842
    • Jose, A.1    James, M.2
  • 2
    • 84949591364 scopus 로고    scopus 로고
    • Bioconversion technologies of crude glycerol to value added industrial products
    • Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Reports. 2016;9:9-14.
    • (2016) Biotechnol Reports , vol.9 , pp. 9-14
    • Garlapati, V.K.1    Shankar, U.2    Budhiraja, A.3
  • 3
    • 84867289760 scopus 로고    scopus 로고
    • Biodiesel biorefinery : opportunities and challenges for microbial production of fuels and chemicals from glycerol waste
    • 1:CAS:528:DC%2BC3sXitFKiurY%3D
    • Almeida JRM, Fávaro LCL, Quirino BF. Biodiesel biorefinery : opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels. 2012;5:48.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 48
    • Almeida, J.R.M.1    Fávaro, L.C.L.2    Quirino, B.F.3
  • 4
    • 84881274412 scopus 로고    scopus 로고
    • Glycerol : production, consumption, prices, characterization and new trends in combustion
    • 1:CAS:528:DC%2BC3sXhsVGjtbfM
    • Quispe CAG, Coronado CJR, Carvalho JA. Glycerol : production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev. 2013;27:475-93.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 475-493
    • Quispe, C.A.G.1    Coronado, C.J.R.2    Carvalho, J.A.3
  • 5
    • 84880753644 scopus 로고    scopus 로고
    • Glycerol production and its applications as a raw material: a review
    • 1:CAS:528:DC%2BC3sXhsVGjtbvI
    • Tan HW, Aziz ARA, Aroua MK. Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev. 2013;27:118-27.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 118-127
    • Tan, H.W.1    Aziz, A.R.A.2    Aroua, M.K.3
  • 6
    • 84871673203 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
    • 1:CAS:528:DC%2BC38XhslWqt77L
    • Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol. 2013;31:20-8.
    • (2013) Trends Biotechnol , vol.31 , pp. 20-28
    • Clomburg, J.M.1    Gonzalez, R.2
  • 7
    • 34249936957 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry
    • 1:CAS:528:DC%2BD2sXmtlagsb0%3D
    • Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol. 2007;18:213-9.
    • (2007) Curr Opin Biotechnol , vol.18 , pp. 213-219
    • Yazdani, S.S.1    Gonzalez, R.2
  • 8
    • 84962582113 scopus 로고    scopus 로고
    • Value-added processing of crude glycerol into chemicals and polymers
    • 1:CAS:528:DC%2BC28XktlCkur4%3D
    • Luo X, Ge X, Cui S, Li Y. Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol. 2016;215:144-54.
    • (2016) Bioresour Technol , vol.215 , pp. 144-154
    • Luo, X.1    Ge, X.2    Cui, S.3    Li, Y.4
  • 9
    • 84893405383 scopus 로고    scopus 로고
    • Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
    • Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng A-P. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80:1388-93.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 1388-1393
    • Chen, Z.1    Bommareddy, R.R.2    Frank, D.3    Rappert, S.4    Zeng, A.-P.5
  • 10
    • 84874118500 scopus 로고    scopus 로고
    • Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production
    • 1:CAS:528:DC%2BC3sXitlCgsL4%3D
    • Geng F, Chen Z, Zheng P, Sun J, Zeng A-P. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol. 2013;97:1963-71.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 1963-1971
    • Geng, F.1    Chen, Z.2    Zheng, P.3    Sun, J.4    Zeng, A.-P.5
  • 11
    • 84924257528 scopus 로고    scopus 로고
    • Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor
    • 1:CAS:528:DC%2BC3sXhvFemtLfJ
    • Chen Z, Rappert S, Zeng A. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor. ACS Synth Biol. 2015;4:126-31.
    • (2015) ACS Synth Biol , vol.4 , pp. 126-131
    • Chen, Z.1    Rappert, S.2    Zeng, A.3
  • 12
    • 84876686644 scopus 로고    scopus 로고
    • Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli
    • 1:CAS:528:DC%2BC3sXkt1Kisrs%3D
    • Chen L, Chen Z, Zheng P, Sun J, Zeng A-P. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol. 2013;97:2939-49.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2939-2949
    • Chen, L.1    Chen, Z.2    Zheng, P.3    Sun, J.4    Zeng, A.-P.5
  • 13
    • 84947059859 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose
    • 1:CAS:528:DC%2BC2MXhsl2mur7P
    • Chen Z, Huang J, Wu Y, Liu D. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose. Metab Eng. 2016;33:12-8.
    • (2016) Metab Eng , vol.33 , pp. 12-18
    • Chen, Z.1    Huang, J.2    Wu, Y.3    Liu, D.4
  • 14
    • 84922591980 scopus 로고    scopus 로고
    • Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
    • 1:CAS:528:DC%2BC2cXhvVGksLrP
    • Chen Z, Geng F, Zeng A-P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol J. 2015;10:284-9.
    • (2015) Biotechnol J , vol.10 , pp. 284-289
    • Chen, Z.1    Geng, F.2    Zeng, A.-P.3
  • 15
    • 0042367748 scopus 로고    scopus 로고
    • Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae
    • 1:CAS:528:DC%2BD3sXlvFCnu78%3D
    • Wang W, Sun J, Hartlep M, Deckwer W-D, Zeng A-P. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng. 2003;83:525-36.
    • (2003) Biotechnol Bioeng , vol.83 , pp. 525-536
    • Wang, W.1    Sun, J.2    Hartlep, M.3    Deckwer, W.-D.4    Zeng, A.-P.5
  • 17
    • 84977669166 scopus 로고    scopus 로고
    • Integrated analysis of gene expression and metabolic fluxes in PHA - producing Pseudomonas putida grown on glycerol
    • Beckers V, Castro IP, Tomasch J, Wittmann C. Integrated analysis of gene expression and metabolic fluxes in PHA - producing Pseudomonas putida grown on glycerol. Microb Cell Fact. 2016;15:73.
    • (2016) Microb Cell Fact , vol.15 , pp. 73
    • Beckers, V.1    Castro, I.P.2    Tomasch, J.3    Wittmann, C.4
  • 18
    • 71349083307 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis
    • 1:CAS:528:DC%2BD1MXhsVWms77I
    • Salazar M, Vongsangnak W, Panagiotou G, Andersen MR, Nielsen J. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis. Mol Genet Genomics. 2009;282:571-86.
    • (2009) Mol Genet Genomics , vol.282 , pp. 571-586
    • Salazar, M.1    Vongsangnak, W.2    Panagiotou, G.3    Andersen, M.R.4    Nielsen, J.5
  • 19
    • 81455143851 scopus 로고    scopus 로고
    • Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli
    • 1:CAS:528:DC%2BC3MXhsVOitrnL
    • Cintolesi A, Clomburg JM, Rigou V, Zygourakis K, Gonzalez R. Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng. 2012;109:187-98.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 187-198
    • Cintolesi, A.1    Clomburg, J.M.2    Rigou, V.3    Zygourakis, K.4    Gonzalez, R.5
  • 20
    • 84859835470 scopus 로고    scopus 로고
    • Advances in biotechnological production of 1, 3-propanediol
    • 1:CAS:528:DC%2BC38XlvFeis78%3D
    • Kaur G, Srivastava AK, Chand S. Advances in biotechnological production of 1, 3-propanediol. Biochem Eng J. 2012;64:106-18.
    • (2012) Biochem Eng J , vol.64 , pp. 106-118
    • Kaur, G.1    Srivastava, A.K.2    Chand, S.3
  • 21
    • 77954860039 scopus 로고    scopus 로고
    • Debottlenecking the 1,3-propanediol pathway by metabolic engineering
    • Celińska E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv. 2010;28:519-30.
    • (2010) Biotechnol Adv , vol.28 , pp. 519-530
    • Celińska, E.1
  • 22
    • 84876583071 scopus 로고    scopus 로고
    • Glycerol conversion to 1, 3-propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri
    • Vaidyanathan H, Kandasamy V, Ramakrishnan GG, Ramachandran KB. Glycerol conversion to 1, 3-propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express. 2011;1:37.
    • (2011) AMB Express , vol.1 , pp. 37
    • Vaidyanathan, H.1    Kandasamy, V.2    Ramakrishnan, G.G.3    Ramachandran, K.B.4
  • 23
    • 84956829584 scopus 로고    scopus 로고
    • High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii
    • Maervoet VET, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Microb Cell Fact. 2016;15:23.
    • (2016) Microb Cell Fact , vol.15 , pp. 23
    • Maervoet, V.E.T.1    De, M.S.2    Avci, F.G.3    Beauprez, J.4    Soetaert, W.K.5
  • 24
    • 29044445995 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol
    • Meynial-salles I, Mendes F, Andrade C, Vasconcelos I, Soucaille P. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol. Metab Eng. 2005;7:329-36.
    • (2005) Metab Eng , vol.7 , pp. 329-336
    • Meynial-Salles, I.1    Mendes, F.2    Andrade, C.3    Vasconcelos, I.4    Soucaille, P.5
  • 25
    • 0042367748 scopus 로고    scopus 로고
    • Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae
    • Wang W, Sun J, Hartlep M, Deckwer W, Zeng A. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng. 2003;5:525-36.
    • (2003) Biotechnol Bioeng , vol.5 , pp. 525-536
    • Wang, W.1    Sun, J.2    Hartlep, M.3    Deckwer, W.4    Zeng, A.5
  • 26
    • 33749436573 scopus 로고    scopus 로고
    • Inactivation of aldehyde dehydrogenase: a key factor for engineering 1, 3-propanediol production by Klebsiella pneumoniae
    • 1:CAS:528:DC%2BD28XhtVyitLvI
    • Zhang Y, Li Y, Du C, Liu M. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1, 3-propanediol production by Klebsiella pneumoniae. Metab Eng. 2006;8:578-86.
    • (2006) Metab Eng , vol.8 , pp. 578-586
    • Zhang, Y.1    Li, Y.2    Du, C.3    Liu, M.4
  • 27
    • 70350532561 scopus 로고    scopus 로고
    • Metabolism in 1,3-propanediol fed-batch fermentation by a d-lactate deficient mutant of Klebsiella pneumoniae
    • 1:CAS:528:DC%2BD1MXhtlSqs7vE
    • Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH. Metabolism in 1,3-propanediol fed-batch fermentation by a d-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng. 2009;104:965-72.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 965-972
    • Xu, Y.Z.1    Guo, N.N.2    Zheng, Z.M.3    Ou, X.J.4    Liu, H.J.5    Liu, D.H.6
  • 28
    • 84964994691 scopus 로고    scopus 로고
    • Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B
    • Rathnasingh C, Song H, Seung D, Park S. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresour Technol. 2016;214:432-40.
    • (2016) Bioresour Technol , vol.214 , pp. 432-440
    • Rathnasingh, C.1    Song, H.2    Seung, D.3    Park, S.4
  • 29
    • 84856297087 scopus 로고    scopus 로고
    • Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae
    • 1:CAS:528:DC%2BC38Xkt1Wntg%3D%3D
    • Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo LH, Kim S, Park D-H, Kim CH. Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. Appl Biochem Biotechnol. 2012;166:127-37.
    • (2012) Appl Biochem Biotechnol , vol.166 , pp. 127-137
    • Oh, B.-R.1    Seo, J.-W.2    Heo, S.-Y.3    Hong, W.-K.4    Luo, L.H.5    Kim, S.6    Park, D.-H.7    Kim, C.H.8
  • 30
    • 64549118750 scopus 로고    scopus 로고
    • Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system
    • Zhang Q, Xiu Z. Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol Prog. 2009;25:103-15.
    • (2009) Biotechnol Prog , vol.25 , pp. 103-115
    • Zhang, Q.1    Xiu, Z.2
  • 31
    • 68349139739 scopus 로고    scopus 로고
    • Regulation of 3-hydroxypropionaldehyde accumulation in Klebsiella pneumoniae by overexpression of dhaT and dhaD genes
    • Chen Z, Liu H, Liu D. Regulation of 3-hydroxypropionaldehyde accumulation in Klebsiella pneumoniae by overexpression of dhaT and dhaD genes. Enzyme Microb Technol. 2009;45:305-9.
    • (2009) Enzyme Microb Technol , vol.45 , pp. 305-309
    • Chen, Z.1    Liu, H.2    Liu, D.3
  • 32
    • 79953780967 scopus 로고    scopus 로고
    • Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase
    • 1:CAS:528:DC%2BC3MXksFemtro%3D
    • Chen Z, Liu H, Liu D. Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase. Biochem Eng J. 2011;54:151-7.
    • (2011) Biochem Eng J , vol.54 , pp. 151-157
    • Chen, Z.1    Liu, H.2    Liu, D.3
  • 33
    • 60849096352 scopus 로고    scopus 로고
    • Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol
    • Zhang Y, Huang Z, Du C, Li Y, Cao Z. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng. 2009;11:101-6.
    • (2009) Metab Eng , vol.11 , pp. 101-106
    • Zhang, Y.1    Huang, Z.2    Du, C.3    Li, Y.4    Cao, Z.5
  • 34
    • 62149127832 scopus 로고    scopus 로고
    • Microbial conversion of glycerol to 1, 3-propanediol by an engineered strain of Escherichia coli
    • 1:CAS:528:DC%2BD1MXjsFKgsLc%3D
    • Tang X, Tan Y, Zhu H, Zhao K, Shen W. Microbial conversion of glycerol to 1, 3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol. 2009;75:1628-34.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 1628-1634
    • Tang, X.1    Tan, Y.2    Zhu, H.3    Zhao, K.4    Shen, W.5
  • 35
    • 77956174814 scopus 로고    scopus 로고
    • Microbial production and applications of 1,2-propanediol
    • 1:CAS:528:DC%2BC3cXos1Chtbs%3D
    • Saxena RK, Anand P, Saran S, Isar J, Agarwal L. Microbial production and applications of 1,2-propanediol. Indian J Microbiol. 2010;50:2-11.
    • (2010) Indian J Microbiol , vol.50 , pp. 2-11
    • Saxena, R.K.1    Anand, P.2    Saran, S.3    Isar, J.4    Agarwal, L.5
  • 36
    • 79952582831 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol
    • 1:CAS:528:DC%2BC3MXjtFSqsbw%3D
    • Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol. Biotechnol Bioeng. 2011;108:867-79.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 867-879
    • Clomburg, J.M.1    Gonzalez, R.2
  • 37
    • 80052280696 scopus 로고    scopus 로고
    • Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae
    • Joon-Young J, Yun HS, Lee J, Oh M. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol. 2011;21:846-53.
    • (2011) J Microbiol Biotechnol , vol.21 , pp. 846-853
    • Joon-Young, J.1    Yun, H.S.2    Lee, J.3    Oh, M.4
  • 39
    • 84961244390 scopus 로고    scopus 로고
    • Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichia coli
    • 1:CAS:528:DC%2BC28XktVOnsbc%3D
    • Lee MJ, Brown IR, Juodeikis R, Frank S, Warren MJ. Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichia coli. Metab Eng. 2016;36:48-56.
    • (2016) Metab Eng , vol.36 , pp. 48-56
    • Lee, M.J.1    Brown, I.R.2    Juodeikis, R.3    Frank, S.4    Warren, M.J.5
  • 40
    • 84949225338 scopus 로고    scopus 로고
    • Metabolic engineering of Klebsiella pneumoniae for the production of 2-butanone from glucose
    • Chen Z, Sun H, Huang J, Wu Y, Liu D. Metabolic engineering of Klebsiella pneumoniae for the production of 2-butanone from glucose. PLoS One. 2015;10:e0140508.
    • (2015) PLoS One , vol.10 , pp. e0140508
    • Chen, Z.1    Sun, H.2    Huang, J.3    Wu, Y.4    Liu, D.5
  • 41
    • 84940740734 scopus 로고    scopus 로고
    • Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel
    • 1:CAS:528:DC%2BC2MXhsVCnurbO
    • Chen Z, Wu Y, Huang J, Liu D. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. Bioresour Technol. 2015;197:260-5.
    • (2015) Bioresour Technol , vol.197 , pp. 260-265
    • Chen, Z.1    Wu, Y.2    Huang, J.3    Liu, D.4
  • 42
    • 84921344488 scopus 로고    scopus 로고
    • Efficient production of 1, 3-butadiene in the catalytic dehydration of 2, 3-butanediol
    • 1:CAS:528:DC%2BC2cXitFygs7rJ
    • Duan H, Yamada Y, Sato S. Efficient production of 1, 3-butadiene in the catalytic dehydration of 2, 3-butanediol. Appl Catal A Gen. 2015;491:163-9.
    • (2015) Appl Catal A Gen , vol.491 , pp. 163-169
    • Duan, H.1    Yamada, Y.2    Sato, S.3
  • 43
    • 84941631235 scopus 로고    scopus 로고
    • High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
    • Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels. 2015;8:146.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 146
    • Cho, S.1    Kim, T.2    Woo, H.M.3    Kim, Y.4    Lee, J.5    Um, Y.6
  • 44
    • 84862802719 scopus 로고    scopus 로고
    • Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli
    • 1:CAS:528:DC%2BC38XltlKhsL4%3D
    • Lee S, Kim B, Park K, Um Y, Lee J. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl Biochem Biotechnol. 2012;166:1801-13.
    • (2012) Appl Biochem Biotechnol , vol.166 , pp. 1801-1813
    • Lee, S.1    Kim, B.2    Park, K.3    Um, Y.4    Lee, J.5
  • 45
    • 84939600952 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production from biodiesel-derived-glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens
    • Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Enhanced 2,3-butanediol production from biodiesel-derived-glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact. 2015;14:122.
    • (2015) Microb Cell Fact , vol.14 , pp. 122
    • Yang, T.1    Rao, Z.2    Zhang, X.3    Xu, M.4    Xu, Z.5    Yang, S.T.6
  • 46
    • 84907522136 scopus 로고    scopus 로고
    • Production of optically pure d-lactate from glycerol by engineered Klebsiella pneumoniae strain
    • Feng X, Ding Y, Xian M, Xu X, Zhang R, Zhao G. Production of optically pure d-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour Technol. 2013;172:269-75.
    • (2013) Bioresour Technol , vol.172 , pp. 269-275
    • Feng, X.1    Ding, Y.2    Xian, M.3    Xu, X.4    Zhang, R.5    Zhao, G.6
  • 47
    • 84890844710 scopus 로고    scopus 로고
    • Efficient bioconversion of crude glycerol from biodiesel to optically pure d-lactate by metabolically engineered Escherichia coli
    • 1:CAS:528:DC%2BC3sXhvFCrt7bK
    • Chen X, Tian K, Niu D, Shen W, Algasan G, Singh S, Wang Z. Efficient bioconversion of crude glycerol from biodiesel to optically pure d-lactate by metabolically engineered Escherichia coli. Green Chem. 2014;16:342.
    • (2014) Green Chem , vol.16 , pp. 342
    • Chen, X.1    Tian, K.2    Niu, D.3    Shen, W.4    Algasan, G.5    Singh, S.6    Wang, Z.7
  • 48
    • 84946606915 scopus 로고    scopus 로고
    • Systematic engineering of Escherichia coli for d-lactate production from crude glycerol
    • 1:CAS:528:DC%2BC2MXhs1Ohu77O
    • Wang ZW, Saini M, Lin L, Chiang C, Chao Y. Systematic engineering of Escherichia coli for d-lactate production from crude glycerol. J Agric Food Chem. 2015;63:9583-9.
    • (2015) J Agric Food Chem , vol.63 , pp. 9583-9589
    • Wang, Z.W.1    Saini, M.2    Lin, L.3    Chiang, C.4    Chao, Y.5
  • 49
    • 77954254857 scopus 로고    scopus 로고
    • Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol
    • 1:CAS:528:DC%2BC3cXptFOjtrw%3D
    • Mazumdar S, Clomburg JM, Gonzalez R. Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl Environ Microbiol. 2010;76:4327-36.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 4327-4336
    • Mazumdar, S.1    Clomburg, J.M.2    Gonzalez, R.3
  • 50
    • 84872767064 scopus 로고    scopus 로고
    • Efficient synthesis of l-lactic acid from glycerol by metabolically engineered Escherichia coli
    • 1:CAS:528:DC%2BC3sXotFCmsr8%3D
    • Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R. Efficient synthesis of l-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact. 2013;12:7.
    • (2013) Microb Cell Fact , vol.12 , pp. 7
    • Mazumdar, S.1    Blankschien, M.D.2    Clomburg, J.M.3    Gonzalez, R.4
  • 51
    • 84924706138 scopus 로고    scopus 로고
    • Production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system
    • 1:CAS:528:DC%2BC2MXkt1enu78%3D
    • Doi Y. Production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system. Appl Environ Microbiol. 2015;81:2082-9.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2082-2089
    • Doi, Y.1
  • 52
    • 77957837613 scopus 로고    scopus 로고
    • Elementary mode analysis for the rational design of efficient succinate conversion from glycerol by Escherichia coli
    • Chen Z, Liu H, Zhang J, Liu D. Elementary mode analysis for the rational design of efficient succinate conversion from glycerol by Escherichia coli. J Biomed Biotechnol. 2010;2010:518743.
    • (2010) J Biomed Biotechnol , vol.2010 , pp. 518743
    • Chen, Z.1    Liu, H.2    Zhang, J.3    Liu, D.4
  • 53
    • 77955716950 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of succinate from glycerol
    • 1:CAS:528:DC%2BC3cXhtVeht77F
    • Blankschien MD, Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng. 2010;12:409-19.
    • (2010) Metab Eng , vol.12 , pp. 409-419
    • Blankschien, M.D.1    Clomburg, J.M.2    Gonzalez, R.3
  • 54
    • 2342516028 scopus 로고    scopus 로고
    • Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli
    • 1:CAS:528:DC%2BD2cXhs1Cgsbc%3D
    • Kim P, Laivenieks M, Vieille C, Zeikus JG. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl Environ Microbiol. 2004;70:1238-41.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 1238-1241
    • Kim, P.1    Laivenieks, M.2    Vieille, C.3    Zeikus, J.G.4
  • 55
    • 77950580812 scopus 로고    scopus 로고
    • Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli
    • 1:CAS:528:DC%2BC3cXlsVSmu7o%3D
    • Zhang X, Shanmugam KT, Ingram LO. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol. 2010;76:2397-401.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 2397-2401
    • Zhang, X.1    Shanmugam, K.T.2    Ingram, L.O.3
  • 56
    • 84873974724 scopus 로고    scopus 로고
    • Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum
    • Litsanov B, Brocker M, Bott M. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb Biotechnol. 2013;6:189-95.
    • (2013) Microb Biotechnol , vol.6 , pp. 189-195
    • Litsanov, B.1    Brocker, M.2    Bott, M.3
  • 57
    • 84876676068 scopus 로고    scopus 로고
    • Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical
    • 1:CAS:528:DC%2BC3sXlt1Wqtbk%3D
    • Valdehuesa KNG, Liu H, Nisola GM, Chung W-J, Lee SH, Park SJ. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol. 2013;97:3309-21.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 3309-3321
    • Valdehuesa, K.N.G.1    Liu, H.2    Nisola, G.M.3    Chung, W.-J.4    Lee, S.H.5    Park, S.J.6
  • 58
    • 84870155643 scopus 로고    scopus 로고
    • Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions
    • 1:CAS:528:DC%2BC3sXhvFaiurs%3D
    • Huang Y, Li Z, Shimizu K, Ye Q. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions. Bioresour Technol. 2013;128:505-12.
    • (2013) Bioresour Technol , vol.128 , pp. 505-512
    • Huang, Y.1    Li, Z.2    Shimizu, K.3    Ye, Q.4
  • 59
    • 84871722147 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally
    • 1:CAS:528:DC%2BC38XhsVKgsLrK
    • Ashok S, Sankaranarayanan M, Ko Y, Jae K-E, Ainala SK, Kumar V, Park S. Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally. Biotechnol Bioeng. 2013;110:511-24.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 511-524
    • Ashok, S.1    Sankaranarayanan, M.2    Ko, Y.3    Jae, K.-E.4    Ainala, S.K.5    Kumar, V.6    Park, S.7
  • 60
    • 84870716533 scopus 로고    scopus 로고
    • Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT
    • 1:CAS:528:DC%2BC3sXnvFWqtA%3D%3D
    • Ashok S, Mohan Raj S, Ko Y, Sankaranarayanan M, Zhou S, Kumar V, Park S. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab Eng. 2013;15:10-24.
    • (2013) Metab Eng , vol.15 , pp. 10-24
    • Ashok, S.1    Mohan Raj, S.2    Ko, Y.3    Sankaranarayanan, M.4    Zhou, S.5    Kumar, V.6    Park, S.7
  • 61
    • 84893508699 scopus 로고    scopus 로고
    • Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli
    • 1:CAS:528:DC%2BC2cXmslWqu7k%3D
    • Kim K, Kim S-K, Park Y-C, Seo J-H. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol. 2014;156:170-5.
    • (2014) Bioresour Technol , vol.156 , pp. 170-175
    • Kim, K.1    Kim, S.-K.2    Park, Y.-C.3    Seo, J.-H.4
  • 62
    • 84897412160 scopus 로고    scopus 로고
    • Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli
    • 1:CAS:528:DC%2BC2cXntFGhsbg%3D
    • Jung WS, Kang JH, Chu HS, Choi IS, Myung K. Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metab Eng. 2014;23:116-22.
    • (2014) Metab Eng , vol.23 , pp. 116-122
    • Jung, W.S.1    Kang, J.H.2    Chu, H.S.3    Choi, I.S.4    Myung, K.5
  • 63
    • 84946481481 scopus 로고    scopus 로고
    • Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch
    • Tsuruno K, Honjo H, Hanai T. Enhancement of 3-hydroxypropionic acid production from glycerol by using a metabolic toggle switch. Microb Cell Fact. 2015;14:155.
    • (2015) Microb Cell Fact , vol.14 , pp. 155
    • Tsuruno, K.1    Honjo, H.2    Hanai, T.3
  • 64
    • 84900437499 scopus 로고    scopus 로고
    • Increased 3-hydroxypropionic acid production from glycerol by modification of central metabolism in Escherichia coli
    • Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H. Increased 3-hydroxypropionic acid production from glycerol by modification of central metabolism in Escherichia coli. Microb Cell Fact. 2014;13:64.
    • (2014) Microb Cell Fact , vol.13 , pp. 64
    • Tokuyama, K.1    Ohno, S.2    Yoshikawa, K.3    Hirasawa, T.4    Tanaka, S.5    Furusawa, C.6    Shimizu, H.7
  • 66
    • 70350497694 scopus 로고    scopus 로고
    • Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol
    • 1:CAS:528:DC%2BD1MXhtFOrsb%2FK
    • Rathnasingh C, Raj SM, Jo J-E, Park S. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng. 2009;104:729-39.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 729-739
    • Rathnasingh, C.1    Raj, S.M.2    Jo, J.-E.3    Park, S.4
  • 67
    • 85017356007 scopus 로고    scopus 로고
    • Lim HG, Noh MH, Jeong JH, Park S, Jung GY. Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth Biol. 2016. doi:10.1021/acssynbio.5b00303.
  • 68
    • 84886244943 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans
    • 1:CAS:528:DC%2BC3sXhtVGrsbvF
    • Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng. 2013;110:3177-87.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 3177-3187
    • Zhou, S.1    Catherine, C.2    Rathnasingh, C.3    Somasundar, A.4    Park, S.5
  • 69
    • 84900817777 scopus 로고    scopus 로고
    • Development of a deletion mutant of Pseudomonas denitrificans that does not degrade 3-hydroxypropionic acid
    • 1:CAS:528:DC%2BC2cXitlSntrs%3D
    • Zhou S, Ashok S, Ko Y, Kim D-M, Park S. Development of a deletion mutant of Pseudomonas denitrificans that does not degrade 3-hydroxypropionic acid. Appl Microbiol Biotechnol. 2014;98:4389-98.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 4389-4398
    • Zhou, S.1    Ashok, S.2    Ko, Y.3    Kim, D.-M.4    Park, S.5
  • 70
    • 54949135760 scopus 로고    scopus 로고
    • Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum
    • 1:CAS:528:DC%2BD1cXht1ygu7jK
    • Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol. 2008;74:6216-22.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 6216-6222
    • Rittmann, D.1    Lindner, S.N.2    Wendisch, V.F.3
  • 71
    • 84883455148 scopus 로고    scopus 로고
    • Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum
    • 1:CAS:528:DC%2BC3sXlsVGgs70%3D
    • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol. 2013;145:254-8.
    • (2013) Bioresour Technol , vol.145 , pp. 254-258
    • Meiswinkel, T.M.1    Rittmann, D.2    Lindner, S.N.3    Wendisch, V.F.4
  • 72
    • 84923874240 scopus 로고    scopus 로고
    • Improvement of l-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes
    • Gottlieb K, Albermann C, Sprenger GA. Improvement of l-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb Cell Fact. 2014;13:96.
    • (2014) Microb Cell Fact , vol.13 , pp. 96
    • Gottlieb, K.1    Albermann, C.2    Sprenger, G.A.3
  • 73
    • 84903743153 scopus 로고    scopus 로고
    • A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    • 1:CAS:528:DC%2BC2cXht1OrurzL
    • Bommareddy RR, Chen Z, Rappert S, Zeng A-P. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng. 2014;25:30-7.
    • (2014) Metab Eng , vol.25 , pp. 30-37
    • Bommareddy, R.R.1    Chen, Z.2    Rappert, S.3    Zeng, A.-P.4
  • 74
    • 84946900963 scopus 로고    scopus 로고
    • A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source
    • 1:CAS:528:DC%2BC2MXhtFChtLjF
    • Valle A, Cabrera G, Muhamadali H, Trivedi DK, Ratray NJW. A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotechnol J. 2015;10(11):1750-61. doi:10.1002/biot.201500005.
    • (2015) Biotechnol J , vol.10 , Issue.11 , pp. 1750-1761
    • Valle, A.1    Cabrera, G.2    Muhamadali, H.3    Trivedi, D.K.4    Ratray, N.J.W.5
  • 75
    • 57049188930 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
    • Shams Yazdani S, Gonzalez R. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng. 2008;10:340-51.
    • (2008) Metab Eng , vol.10 , pp. 340-351
    • Shams Yazdani, S.1    Gonzalez, R.2
  • 77
    • 84876468510 scopus 로고    scopus 로고
    • Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
    • 1:CAS:528:DC%2BC38Xhsleis77J
    • Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol. 2013;135:339-49.
    • (2013) Bioresour Technol , vol.135 , pp. 339-349
    • Lan, E.I.1    Liao, J.C.2
  • 78
    • 84987870665 scopus 로고    scopus 로고
    • Pyne M, Sokolenko S, Liu X, Srirangan K, Bruder M, Aucoin M, Moo-Yong M, Chung D, Chou C. Disruption of the reductive 1,3-propanediol pathway triggers production of 1,2-propanediol for sustained glycerol fermentation by Clostridium pasteurianum. Appl Environ Microbiol. 2016. doi:10.1128/AEM.01354-16.
  • 79
    • 84910067798 scopus 로고    scopus 로고
    • 1-Butanol production from glycerol by engineered Klebsiella pneumoniae
    • 1:CAS:528:DC%2BC2cXhvVOmsLbE
    • Wang M, Fan L, Tan T. 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv. 2014;4:57791-8.
    • (2014) RSC Adv , vol.4 , pp. 57791-57798
    • Wang, M.1    Fan, L.2    Tan, T.3
  • 80
    • 84894459816 scopus 로고    scopus 로고
    • Butanol production from glycerol by recombinant Escherichia coli
    • 1:CAS:528:DC%2BC2cXivVCrsrk%3D
    • Zhou P, Zhang Y, Wang P, Xie J, Ye Q. Butanol production from glycerol by recombinant Escherichia coli. Ann Microbiol. 2014;64:219-27.
    • (2014) Ann Microbiol , vol.64 , pp. 219-227
    • Zhou, P.1    Zhang, Y.2    Wang, P.3    Xie, J.4    Ye, Q.5
  • 82
    • 84924865807 scopus 로고    scopus 로고
    • Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency
    • 1:CAS:528:DC%2BC2MXosVKhsbY%3D
    • Tchakouteu S, Kalantzi O, Gardeli C, Koutinas A, Aggelis G, Papanikolaou S. Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol. 2015;118:911-27.
    • (2015) J Appl Microbiol , vol.118 , pp. 911-927
    • Tchakouteu, S.1    Kalantzi, O.2    Gardeli, C.3    Koutinas, A.4    Aggelis, G.5    Papanikolaou, S.6
  • 83
    • 84966373558 scopus 로고    scopus 로고
    • Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density
    • 1:CAS:528:DC%2BC28XnsFWnu7k%3D
    • Polburee P, Yongmanitchai W, Honda K, Ohashi T. Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density. Biochem Eng J. 2016;112:208-18.
    • (2016) Biochem Eng J , vol.112 , pp. 208-218
    • Polburee, P.1    Yongmanitchai, W.2    Honda, K.3    Ohashi, T.4
  • 84
    • 84961839672 scopus 로고    scopus 로고
    • A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis
    • 1:CAS:528:DC%2BC28XitFCitL0%3D
    • Karamerou EE, Theodoropoulos C, Webb C. A biorefinery approach to microbial oil production from glycerol by Rhodotorula glutinis. Biomass Bioenergy. 2016;89:113-22.
    • (2016) Biomass Bioenergy , vol.89 , pp. 113-122
    • Karamerou, E.E.1    Theodoropoulos, C.2    Webb, C.3
  • 85
    • 84924033019 scopus 로고    scopus 로고
    • Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity
    • Muto M, Tanaka M, Liang Y, Yoshino T, Matsumoto M, Tanaka T. Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity. Biotechnol Biofuels. 2015;8:4.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 4
    • Muto, M.1    Tanaka, M.2    Liang, Y.3    Yoshino, T.4    Matsumoto, M.5    Tanaka, T.6
  • 86
    • 84966454971 scopus 로고    scopus 로고
    • Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803
    • Wang X, Xiong X, Sa N, Roje S, Chen S. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol. 2016:6091-6101.
    • (2016) Appl Microbiol Biotechnol , pp. 6091-6101
    • Wang, X.1    Xiong, X.2    Sa, N.3    Roje, S.4    Chen, S.5
  • 87
    • 84926370206 scopus 로고    scopus 로고
    • Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates
    • Bommareddy RR, Sabra W, Maheshwari G, Zeng A-P. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Fact. 2015;14:36. doi:10.1186/s12934-015-0217-5.
    • (2015) Microb Cell Fact , vol.14 , pp. 36
    • Bommareddy, R.R.1    Sabra, W.2    Maheshwari, G.3    Zeng, A.-P.4
  • 88
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in E. coli: implications for biodiesel production
    • 1:CAS:528:DC%2BD1cXhsVKrt7jO
    • Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng. 2008;10:333-9.
    • (2008) Metab Eng , vol.10 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 89
    • 77953044867 scopus 로고    scopus 로고
    • A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes
    • 1:CAS:528:DC%2BC3cXltFKisrs%3D
    • Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng. 2010;106:193-202.
    • (2010) Biotechnol Bioeng , vol.106 , pp. 193-202
    • Lennen, R.M.1    Braden, D.J.2    West, R.M.3    Dumesic, J.A.4    Pfleger, B.F.5
  • 90
    • 84904576385 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol
    • 1:CAS:528:DC%2BC2cXht1Orur3O
    • Wu H, Karanjikar M, San K-Y. Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metab Eng. 2014;25:82-91.
    • (2014) Metab Eng , vol.25 , pp. 82-91
    • Wu, H.1    Karanjikar, M.2    San, K.-Y.3
  • 91
    • 84869472029 scopus 로고    scopus 로고
    • A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle
    • 1:CAS:528:DC%2BC38XhsFWjurrP
    • Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá, Gonzalez R. A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle. ACS Synth Biol. 2012;1:541-54.
    • (2012) ACS Synth Biol , vol.1 , pp. 541-554
    • Clomburg, J.M.1    Vick, J.E.2    Blankschien, M.D.3    Rodríguez-Moyá4    Gonzalez, R.5
  • 93
    • 84981538192 scopus 로고    scopus 로고
    • Protein engineering approaches to chemical biotechnology
    • 1:CAS:528:DC%2BC28XhtlaitL%2FE
    • Chen Z, Zeng A-P. Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol. 2016;42:198-205.
    • (2016) Curr Opin Biotechnol , vol.42 , pp. 198-205
    • Chen, Z.1    Zeng, A.-P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.